Индуктивный ток это кратко

Обновлено: 05.07.2024

Явление электромагнитной индукции знакомо нам ещё со школы, однако далеко не каждый запомнил что это такое или смог в своё время разобраться в мудреном определении. Возможно вы изучаете физику прямо сейчас и ищете более понятное изложение традиционно сложного описания. Тогда эта статья прекрасно вам подойдет и нужно дочитать её до самого конца.

Электромагнитная индукция - одно из главных физических явлений, с которым нам приходится иметь дело чуть ли не ежесекундно. Виноваты многочисленные электронные устройства вокруг нас. Но что это такое и где мы можем встретиться с индукцией?

Электромагнитная индукция — явление возникновения электрического тока, электрического поля или электрической поляризации при изменении магнитного поля во времени или при движении материальной среды в магнитном поле.

Спасибо! Теперь-то всё ясно! Мы уже не запутаемся и прекрасно поняли, что такое электромагнитная индукция .

Давайте разбираться в сложном для большинства читателей определении также, как мы это делали с законом ома или законами Ньютона на нашем канале.

" Возникновение электрического тока " - вроде вопрос возникать не должен. Где-то и почему-то возникает электрический ток. Что такое электрический ток мы уже знаем. Теперь мы понимаем, что иногда он может возникать из-за чего-то и наверное тут оно как-то связано с индукцией.

" Электрического поля и электрической поляризации. " - важное дополнение, но для базового понимания не требуется. Достаточно просто понять, что может возникать электрический ток. Электрическое поле - понятие связанное. Поляризация - вообще скорее как связанное явление.

"При изменении магнитного поля. " - тут нужно вспомнить, что магнитным полем называется особый вид материи, существующий вокруг магнитов будь-то постоянных или переменных. Также оно существует и вокруг проводников с током. Уместно вспомнить картинку с линиями магнитной индукции вокруг магнитика.

Под изменением магнитного поля понимается изменение размера (значения) вектора магнитной индукции (В) или напряженности магнитного поля. Про напряженность магнитного поля чаще говорят применительно к вакууму, а вот про вектор магнитной индукции отметим дополнительно. Это численная силовая характеристика магнитного поля. Чем мощнее поле, тем больше этот вектор.

По сути дела вектор магнитной индукции - это величина, показывающая с какой силой (обозначаем F) действует магнитное поле на внесенный в него проводник с током (обозначено I) и определенной длиной (l). Это приведенная характеристика, которая используется для удобства и возможности описания силы магнитного поля.

Или, соотношение силы, действующей на проводник к произведению его длины на силу тока в этом проводнике.

Вектор магнитной индукции направлен следующим образом (при этом основная сплошная линия - это силовая магнитная линия магнитного поля):

Так вот под изменением магнитного поля в основном определении подразумевается изменение параметров этого вектора магнитной индукции .

" . во времени. " - тут всё ясно. Вся изложенная выше канитель меняется во времени. Сейчас вектор был равен 1, а через две минуты значение стало равным 2. Вот и изменилось магнитное поле во времени.

" . при движении материальной среды в магнитном поле. " - ну тут есть отличный пример. Катались ли вы на велосипеде под линиями электропередач? А било ли вас током от движущегося велосипеда под линиями электромагнитных передач? Если да, то привет! Вы на практике познали электромагнитную индукцию. Высоковольтные провода окружены магнитным полем или линиями магнитной индукции. Когда вы заезжаете в зону его действия, вы являетесь той самой материальной средой, которая движется в магнитном поле . На вас появляется электрический ток. Он и лупит по рукам, а иногда и по пятой точке от сиденья. Такой электрический ток называется индукционным током .

Правда есть тут одно важное уточнение - эта материальная среда должна быть замкнутым контуром, как рама велосипеда . Почему-то в определении из википедии это важнейшее обстоятельство опущено. Но Фарадей когда-то обнаружил рассматриваемое явление именно в экспериментах с замкнутым контуром. Да и в тех же электродвигателях мы имеем дело с короткозамкнутым ротором.

Поэтому, гораздо чаще в учебниках мы встречаем такое определение:

Электромагнитная индукция - это явление возникновения тока в замкнутом проводнике при прохождении через него магнитного потока, изменяющегося со временем.

Вроде всё и проще, и понятнее. Кроме новой фразы магнитный поток.

Магнитный поток - это поток вектора магнитной индукции, о котором мы говорили выше, через поверхность. Ну а упрощая эту фразу - это то, сколько раз линии магнитной индукции пронизывают некоторую площадь или даже СКОЛЬКО векторов магнитной индукции проходят через площадь.

ИНДУКЦИОННЫЙ ТОК — это электрический ток, возникающий при изменении потока магнитной индукции в замкнутом проводящем контуре. Это явление носит название электромагнитной индукции. Хотите узнать какое направление индукционного тока? Росиндуктор — это торговый информационный портал, где вы найдете информацию про ток.

Индукционный ток правило

Индукционный ток правило

Направление индукционного тока

Направление индукционного тока, как и его величина, определяется правилом Ленца, в котором говорится, что направление индукционного тока всегда ослабляет действие фактора, возбудившего ток. При изменении потока магнитного поля через контур направление индукционного тока будет таким, чтобы скомпенсировать эти изменения. Когда магнитное поле возбуждающее ток в контуре создается в другом контуре, направление индукционного тока зависит от характера изменений: при увеличении внешнего тока индукционный ток имеет противоположное направление, при уменьшении — направлен в ту же сторону и стремиться усилить поток.

Направление индукционного тока
Направление индукционного тока

Индукционный ток в катушке

Катушка с индукционным током имеет два полюса (северный и южный), которые определяются в зависимости от направления тока: индукционные линии выходят из северного полюса. Приближение магнита к катушке вызывает появление тока с направлением, отталкивающим магнит. При удалении магнита ток в катушке имеет направление, способствующее притягиванию магнита.

Индукционный ток в катушке
Индукционный ток в катушке

Индукционный ток возникает

Индукционный ток возникает в замкнутом контуре, находящемся в переменном магнитном поле. Контур может быть как неподвижным (помещенным в изменяющийся поток магнитной индукции), так и движущимся (движение контура вызывает изменение магнитного потока). Возникновение индукционного тока обуславливает вихревое электрическое поле, которое возбуждается под воздействием магнитного поля.

Индукционный ток возникает

Как создать индукционный ток

О том, как создать кратковременный индукционный ток можно узнать из школьного курса физики.

Для этого есть несколько способов:

  • - перемещение постоянного магнита или электромагнита относительно катушки,
  • - перемещение сердечника относительно вставленного в катушку электромагнита,
  • - замыкание и размыкание цепи,
  • - регулирование тока в цепи.

Как создать индукционный ток
Как создать индукционный ток

Сила индукционного тока

Основной закон электродинамики (закон Фарадея) гласит, что сила индукционного тока для любого контура равна скорости изменения магнитного потока, проходящего через контур, взятой со знаком минус. Сила индукционного тока носит название электродвижущей силы.

При течении тока по проводнику всегда вокруг движущихся зарядов возникает магнитное поле. Для случая, когда в цепи имеется место с несколькими витками, вокруг них возникающее магнитное поле пронизывает собственный проводник, действуя как дополнительная ЭДС помимо основного источника питания. Под действием этой ЭДС в проводнике возникает ток самоиндукции, который в случае сети переменного При течении тока по проводнику всегда вокруг движущихся зарядов возникает магнитное поле. Для случая, когда в цепи имеется место с несколькими витками, вокруг них возникающее магнитное поле пронизывает собственный проводник, действуя как дополнительная ЭДС помимо основного источника питания. Под действием этой ЭДС в проводнике возникает ток самоиндукции, который в случае сети переменного напряжения также носит знакопеременный характер.

В соответствии с правилом Ленца, сила самоиндукции во всех случаях противодействует сите, вызвавшей её.

Поскольку ЭДС самоиндукции согласно данному условию противодействует изменениям в цепи, то в сети переменного тока этот фактор учитывается и обозначается как индуктивное сопротивление (ХL), измеряющееся аналогично активному сопротивлению в Омах.

Величина индуктивного сопротивления определяется величиной ЭДС самоиндукции, которая в свою очередь зависит от индуктивности катушки и частоты изменения напряжения в катушке.

где L — это индуктивность катушки, измеряется в Генриях (Гн);

ω — угловая частота переменного тока (рад/сек).

Другими словами, индуктивное сопротивление тем больше, чем выше частота протекающего переменного тока и чем большее количество витков имеется в катушке.

Индуктивность в цепи переменного тока 1

Катушки индуктивности в цепях переменного тока создают ток самоиндукции, который по фазе опережает напряжение в цепи на угол 90°. При этом в разные периоды изменения базового напряжения в катушке сначала происходит накопление энергии (при возрастании напряжения в любую сторону), а затем отдача её обратно в сеть (во время уменьшения напряжения в сторону нуля).

Таким образом, если пренебречь собственным активным сопротивлением проводника катушки, в среднем она не потребляет электроэнергию, а лишь изменяет характеристики и характер проходящего тока в цепи во времени.

То есть, вся запасённая в катушке в первый период энергия затем отдаётся обратно в электрическую сеть.

Это свойство позволило широко использовать катушки индуктивности в электротехнике для множества целей:

Индуктивность в цепи переменного тока 3

— в качестве основного накапливающего элемента в стабилизаторах, что позволяет преобразовывать уровни напряжения;

— несколько связанных между собой индуктивно катушек образуют трансформатор;

— в качестве электромагнитов;

— в радиосвязи для приёма и излучения электромагнитных волн (кольцевая антенна, магнитная антенна);

— для обнаружения магнитных полей;

— для нагрева проводящих ток материалов в печах индукционного типа и многое др.

При выборе подходящей для тех или иных целей катушки (индуктивности) необходимо учитывать частоту в сети, собственные характеристики катушки (резонансная частота, индуктивность, допустимый ток, накапливаемая мощность и т.д.).


Электромагнитная индукция — очень сложная штука. Поэтому будем разбираться в ней на обручах и бабулях.

О чем эта статья:

11 класс, ЕГЭ/ОГЭ

Магнитный поток

Прежде, чем разобраться с тем, что такое электромагнитная индукция, нужно определить такую сущность, как магнитный поток.

Представьте, что вы взяли обруч в руки и вышли на улицу в ливень. Чем сильнее ливень, тем больше через этот обруч пройдет воды — поток воды больше.


Метафора магнитного потока, рисунок 1

Если обруч расположен горизонтально, то через него пройдет много воды. А если начать его поворачивать — уже меньше, потому что он расположен не под прямым углом к вертикали.


Метафора магнитного потока, рисунок 2

Теперь давайте поставим обруч вертикально — ни одной капли не пройдет сквозь него (если ветер не подует, конечно).


Метафора магнитного потока, рисунок 3

Магнитный поток по сути своей — это тот же самый поток воды через обруч, только считаем мы величину прошедшего через площадь магнитного поля, а не дождя.

Магнитным потоком через площадь ​S​ контура называют скалярную физическую величину, равную произведению модуля вектора магнитной индукции ​B​, площади поверхности ​S​, пронизываемой данным потоком, и косинуса угла ​α​ между направлением вектора магнитной индукции и вектора нормали (перпендикуляра к плоскости данной поверхности):

Магнитный поток


формула

Ф — магнитный поток [Вб]

B — магнитная индукция [Тл]

S — площадь пронизываемой поверхности [м^2]

n — вектор нормали (перпендикуляр к поверхности) [-]

Магнитный поток можно наглядно представить как величину, пропорциональную числу магнитных линий, проходящих через данную площадь.

В зависимости от угла ​α магнитный поток может быть положительным (α 90°). Если α = 90°, то магнитный поток равен 0. Это зависит от величины косинуса угла.

Изменить магнитный поток можно меняя площадь контура, модуль индукции поля или расположение контура в магнитном поле (поворачивая его).

В случае неоднородного магнитного поля и неплоского контура, магнитный поток находят как сумму магнитных потоков, пронизывающих площадь каждого из участков, на которые можно разбить данную поверхность.

Электромагнитная индукция

Электромагнитная индукция — явление возникновения тока в замкнутом проводящем контуре при изменении магнитного потока, пронизывающего его.

Явление электромагнитной индукции было открыто М. Фарадеем.

Майкл Фарадей провел ряд опытов, которые помогли открыть явление электромагнитной индукции.

Опыт раз. На одну непроводящую основу намотали две катушки: витки первой катушки были расположены между витками второй. Витки одной катушки были замкнуты на гальванометр, а второй — подключены к источнику тока.

При замыкании ключа и протекании тока по второй катушке в первой возникал импульс тока. При размыкании ключа также наблюдался импульс тока, но ток через гальванометр тек в противоположном направлении.

Опыт два. Первую катушку подключили к источнику тока, а вторую — к гальванометру. При этом вторая катушка перемещалась относительно первой. При приближении или удалении катушки фиксировался ток.

Опыт три. Катушка замкнута на гальванометр, а магнит движется вдвигается (выдвигается) относительно катушки


опыт

Вот, что показали эти опыты:

  1. Индукционный ток возникает только при изменении линий магнитной индукции.
  2. Направление тока будет различно при увеличении числа линий и при их уменьшении.
  3. Сила индукционного тока зависит от скорости изменения магнитного потока. Может изменяться само поле, или контур может перемещаться в неоднородном магнитном поле.

Почему возникает индукционный ток?

Ток в цепи может существовать, когда на свободные заряды действуют сторонние силы. Работа этих сил по перемещению единичного положительного заряда вдоль замкнутого контура равна ЭДС.

Значит, при изменении числа магнитных линий через поверхность, ограниченную контуром, в нем появляется ЭДС, которую называют ЭДС индукции.

Онлайн-курсы физики в Skysmart не менее увлекательны, чем наши статьи!

Закон электромагнитной индукции

Закон электромагнитной индукции (закон Фарадея) звучит так:

ЭДС индукции в замкнутом контуре равна и противоположна по знаку скорости изменения магнитного потока через поверхность, ограниченную контуром.

Математически его можно описать формулой:

Закон Фарадея


закон Фарадея

Ɛi — ЭДС индукции [В]

ΔФ/Δt — скорость изменения магнитного потока [Вб/с]

Если контур состоит из ​N витков (то есть он — катушка), то ЭДС индукции будет вычисляться следующим образом.

Закон Фарадея для контура из N витков


закон Фарадея для контура

Ɛi — ЭДС индукции [В]

ΔФ/Δt — скорость изменения магнитного потока [Вб/с]

N — количество витков [-]

Сила индукционного тока в замкнутом проводящем контуре с сопротивлением ​R​:

Закон Ома для проводящего контура


Закон Ома

Ɛi — ЭДС индукции [В]

I — сила индукционного тока [А]

R — сопротивление контура [Ом]

Если проводник длиной l будет двигаться со скоростью ​v​ в постоянном однородном магнитном поле с индукцией ​B​ ЭДС электромагнитной индукции равна:

ЭДС индукции для движущегося проводника


ЭДС индукции

Ɛi — ЭДС индукции [В]

B — магнитная индукция [Тл]

v — скорость проводника [м/с]

l — длина проводника [м]

Возникновение ЭДС индукции в движущемся в магнитном поле проводнике объясняется действием силы Лоренца на свободные заряды в движущихся проводниках. Сила Лоренца играет в этом случае роль сторонней силы.

Движущийся в магнитном поле проводник, по которому протекает индукционный ток, испытывает магнитное торможение. Полная работа силы Лоренца равна нулю.

Количество теплоты в контуре выделяется либо за счет работы внешней силы, которая поддерживает скорость проводника неизменной, либо за счет уменьшения кинетической энергии проводника.

Изменение магнитного потока, пронизывающего замкнутый контур, может происходить по двум причинам:

  • вследствие перемещения контура или его частей в постоянном во времени магнитном поле. Это случай, когда проводники, а вместе с ними и свободные носители заряда, движутся в магнитном поле
  • вследствие изменения во времени магнитного поля при неподвижном контуре. В этом случае возникновение ЭДС индукции уже нельзя объяснить действием силы Лоренца. Явление электромагнитной индукции в неподвижных проводниках, возникающее при изменении окружающего магнитного поля, также описывается формулой Фарадея

Таким образом, явления индукции в движущихся и неподвижных проводниках протекают одинаково, но физическая причина возникновения индукционного тока оказывается в этих двух случаях различной:

  • в случае движущихся проводников ЭДС индукции обусловлена силой Лоренца
  • в случае неподвижных проводников ЭДС индукции является следствием действия на свободные заряды вихревого электрического поля, возникающего при изменении магнитного поля.

Правило Ленца

Чтобы определить направление индукционного тока, нужно воспользоваться правилом Ленца.

Академически это правило звучит следующим образом: индукционный ток, возбуждаемый в замкнутом контуре при изменении магнитного потока, всегда направлен так, что создаваемое им магнитное поле препятствует изменению магнитного потока, вызывающего индукционный ток.


Правило Ленца

Давайте попробуем чуть проще: катушка в данном случае — это недовольная бабуля. Забирают у нее магнитный поток — она недовольна и создает магнитное поле, которое этот магнитный поток хочет обратно отобрать.

Читайте также: