Голография кратко и понятно

Обновлено: 04.07.2024

Голограммы — неотъемлемый атрибут любого фантастического боевика, но насколько эта технология развита в жизни? Давайте разберемся, что же представляют собой голограммы, где они используются и можно ли создать голограмму своими руками.

Голограммы — неотъемлемый атрибут любого фантастического боевика, но насколько эта технология развита в жизни? Давайте разберемся, что же представляют собой голограммы, где они используются и можно ли создать голограмму своими руками.

Что такое голография

С изобретением фотоаппарата у нас появилась возможность запечатлеть момент точнее, чем это может сделать профессиональный художник. В свое время эта технология произвела настоящий фурор, но даже у нее есть существенные ограничения. Насколько бы точной ни была картинка, изображение все равно остается двухмерным.

Голография — это следующая ступень регистрации визуальной информации, позволяющая записывать и воспроизводить уже трехмерные изображения. Голограммы объемны, а потому куда больше похожи на реальные объекты, чем фотографии. Сейчас для их создания используются голографические проекторы… Впрочем, обо всем по порядку.

Голографический принцип


Объемные изображения стали возможны благодаря свойствам света: дифракции и интерференции. Эти термины сводятся к перераспределению интенсивности света и преломлению двух световых волн: предметной и опорной. Опорную волну создает лазер, а предметная, как понятно из названия, формируется, отражаясь от предмета, который мы хотим записать. Попадая на фотопластину, они и создают интерференционную картину, то есть голограмму.

Голограммы не может получиться без линзы — полупрозрачного зеркала, разделяющего пучки света из лазера надвое. Каждый полупучок, отражаясь от зеркал, попадает на объект, который мы хотим снять, и, уже отразившись на него, оказывается на фотопленке. Под воздействием световолны, близкой к опорной, проявляется голограмма.

Эффект голограммы


Каждый объект в мире рассеивает свет. При помощи линзы фотоаппарат фокусирует его на фотопленке, благодаря чему мы получаем фотографию. При просмотре этого снимка наши глаза воспринимают одну и ту же информацию, только под разными углами. Благодаря этому наш мозг понимает, что изображение плоское.

Как же устроена голограмма? Каждая ее точка моделирует все лучи, рассеянные всеми точками предмета, в то время как на снимке оказываются лишь лучи сфокусированные. В этом и причина, почему голограммы дают ощущение объема. Они точно воспроизводят световые волны, рассеянные объектом.

Первая голограмма в мире


Первая голограмма была невысокого качества. Причина тому — ртутные дуговые лампы, использовавшиеся в те годы. Они давали излучение низкого качества, поэтому и изображения были плохими. По-настоящему реалистичными голограммы стали в 60-х годах с появлением лазерных технологий.

Первая лазерная голограмма была создана в 1964 году американскими физиками Эмметтом Лейтом и Юрисом Упатниексом. На ней были изображены игрушечный поезд и птица. В 1968 году в создании лазерных голограмм преуспел советский ученый Ю.Н. Денисюк. А спустя еще 11 лет значительного прогресса в этой области достиг американский исследователь Ллойд Кросс. С тех пор голограммы активно развиваются и используются в самых разных областях.

Голограмма и ее применение


Каждый человек сталкивался с простыми голограммами-наклейками, предназначающимися для борьбы с контрафактом. Но этим сфера применения голограмм отнюдь не ограничивается.

Общение

Расстояние перестает быть препятствием для общения. Доказательство тому — знаменитый видеозвонок между главами американской компании Verizon и корейской Korea Telecom, совершенный в 2017 году. Пообщаться генеральные директора смогли при помощи сети 5G, которая отличается высокой пропускной способностью. Звонок примечателен еще и тем, что собеседники видели голограммы друг друга.


Генеральный директор Verizon Лоуэлл Мак-Адам и генеральный директор Korea Telecom Чанг-Гю Хванг

Реклама

Голограммы — отличный инструмент в руках умелых маркетологов. Интерактивные изображения позволяют презентовать продукт и привлечь внимание клиентов. Так, в 2017 году Barbie с помощью голограммы показала роботизированную куклу, реагирующую на голосовые команды. Эта продвинутая игрушка со встроенным будильником способна поддерживать простые беседы с пользователем.

Дистанционное обучение

Дистанционное образование набрало большую популярность в период пандемии, но существенных успехов в этой сфере удалось достичь еще до коронавируса. Так, в 2015 году профессор физики Стэнфордского университета Карл Виман смог выступить в Наньянском технологическом университете в Сингапуре. Примечательно, что для этого нобелевскому лауреату даже не пришлось покидать США. Выступление профессора транслировали при помощи голограммы.


Голография может создать полную иллюзию личного присутствия лектора на занятии, что позитивно скажется на успеваемости. К тому же голограмму можно транслировать сразу в нескольких университетах. Это позволит охватить большую аудиторию и сэкономить время преподавательского состава.

Медицина

В 2013 году в Лондонском университете Святого Георгия наглядно показали, как можно использовать голограммы в медицине. Сотрудникам университета удалось создать полноценные интерактивные модели почек, черепа и других органов. Подобные голограммы органов вполне можно использовать для обучения студентов и в медицинской практике.

Развлечения

У нас уже была новость о немецком цирке, заменившем настоящих животных голограммами. Также с помощью голограмм можно создавать виртуальные копии предметов искусства или даже внедрять в музеи цифровых экскурсоводов. В пример можно привести электронного экскурсовода Нюшу из Музея истории Костромского края.

В последние годы популярность набирают голографические шоу и даже полноценные концерты с участием цифровых звезд.

Голограмма человека — уже не редкость, и людям доступны выступления электронных копий ушедших знаменитостей. Пара видео для ознакомления:

Виды голограмм

Сложные сценические голограммы можно условно разделить на два типа.

Голограммы, работающие на отражении

Такие голограммы работают с помощью светодиодного или проекционного экрана. Устройство располагается на полу, и изображение отражается в прозрачной пленке, натянутой под углом 45%.


За самой пленкой могут располагаться уже артисты и декорации. Таким образом реальность и иллюзия становятся одним целым.

Голограммы-проекции

Этот вид голограмм устроен еще проще. Он предполагает обратную проекцию на прозрачную пленку или стекло. Пример такой голограммы — уже знакомая нам Хацунэ Мику.

Конструкцию для создания такой голограммы куда проще смонтировать, но есть пара нюансов. Если вы хотите, чтобы ваши голограммы буквально парили в воздухе, нужно оборудовать затемненный фон, за которым не должно располагаться никаких объектов.

Как сделать голограмму

Голограммы выглядят завораживающе, поэтому многим кажется, что для их создания нужен дорогостоящий проектор. Так сколько же стоит голограмма? Конечно, с профессиональным оборудованием ваши возможности существенно вырастут, но создать простенькую голограмму можно даже в домашних условиях с минимальными затратами. Вот что для этого потребуется:

  • кусок прозрачного пластика,
  • ножницы,
  • линейка,
  • скотч,
  • смартфон.
  • и совсем немного времени.

Из пластика нужно вырезать 4 трапеции с нижним основанием в 6 см и верхним в 1 см. Высота каждой фигурки должна равняться 3,5 см. Если вы хотите изготовить проектор побольше, можно сделать все стороны трапеции вдвое длиннее. Скрепив фигурки скотчем, мы получаем наш мини-проектор. Теперь осталось положить его на дисплей смартфона, включить видео для голограмм (таких предостаточно на YouTube) и наслаждаться.

Поделитесь этим с друзьями!

Постоянный автор HiTecher с 2017 года, журналист, имеет степень магистра по экономической безопасности. В сфере его интересов: программирование, робототехника, компьютерные игры, финансовые рынки.

Коломийчук Вероника Григорьевна

Оптика - раздел физики, в котором изучаются оптическое излучение (свет), его распространение и явления, наблюдаемые при взаимодействии света с веществом. Примерно до середины XX столетия казалось, что оптика как наука закончила развитие. Однако в последние десятилетия в этой области физики произошли революционные изменения, связанные как с открытием новых закономерностей (принципы квантового усиления, лазеры), так и с развитием идей, основанных на классических и хорошо проверенных представлениях. Здесь прежде всего имеется в виду голография, которая значительно расширяет область практического использования волновых явлений и дает толчок теоретическим исследованиям.
Как средство отображения реальной действительности, голограмма обладает уникальным свойством: в отличие от фотографии, создающей плоское изображение, голографическое изображение может воспроизводить точную трехмерную копию оригинального объекта. Такое изображение со множеством ракурсов, изменяющихся с изменением точки наблюдения, обладает удивительной реалистичностью и зачастую неотличимо от реального объекта.
Голография – метод получения объемного изображения объекта, путем регистрации и последующего восстановления волн. Волны могут быть любые – световые, рентгеновкие, акустические и т.п. Голограмма является записью интерференционной картины.




Любой голографический метод состоит из двух этапов.

1. Вначале получают (записывают) голограмму – интерференционную картину, возникающую на фотопластинке при сложении двух когерентных пучков света. На фотопластинке образуется интерференционная картина, представляющая собой чередование светлых и темных пятен. Голографическое изображение не соответствует его внешнему виду.
2. Для восстановления голограммы ее освещают таким же когерентным излучением. Поскольку голограмма представляет сложную интерференционную картину, то на ее прозрачных и непрозрачных участках происходит дифракция когерентного излучения, и в результате получается изображение.

Основные свойства голограмм

Эти свойства связаны именно с тем, что на голограммах фиксируются не только амплитуды, но и фазы волн. Практически на каждую точку поверхности пластинки падает излучение, отраженное от всех точек предмета. Это означает, что любая, даже маленькая часть содержит зрительную информацию о всем предмете.

2 . Голографическое изображение можно увеличить на стадии восстановления. Когда голограмму записывают параллельным световым пучком, а восстанавливают расходящимся, изображение увеличивается пропорционально углу расхождения. (Это свойство используется в рентгеновских голографических микроскопах).

3 . Если на одну пластинку записать несколько голограмм, используя разные, но не кратные, длины волн, все они могут быть считаны независимо при помощи лазеров с соответствующим излучением. Таким же образом можно записать и полноцветное изображение.

4 . Голограмму можно рассчитать и нарисовать при помощи компьютера и даже вручную. Можно создавать голограммы, на которых изображены предметы, не существующие в реальности. Достаточно компьютеру задать форму объекта и длину волны падающего на него света. По этим данным компьютер рисует картину интерференции отраженных лучей. Пропустив световой пучок сквозь искусственную голограмму, можно увидеть объемное изображение придуманного предмета.

Следовательно, голография позволяет записывать, хранить, обрабатывать и быстро преобразовывать огромное количество данных. Эти особенности голографии используют для решения многих технических и научных проблем.

Хотя мы считаем, что голография интересна больше возможностями для 3D-дисплеев, в целом у нее есть возможность применения во многих сферах. Вот несколько примеров:

ГОЛОГРАФИЯ (от греч. холос – полный и графо – пишу) – способ получения объемных изображений предметов на фотопластинке (голограмме) при помощи когерентного (см. КОГЕРЕНТНОСТЬ) излучения лазера. Голограмма фиксирует не само изображение предмета, а структуру отраженной от него световой волны (ее амплитуду и фазу). Для получения голограммы необходимо, чтобы на фотографическую пластинку одновременно попали два когерентных световых пучка: предметный, отраженный от снимаемого объекта, и опорный – приходящий непосредственно от лазера. Свет обоих пучков интерферирует, создавая на пластинке чередование очень узких темных и светлых полос – картину интерференции.

После появления мощного источника когерентного света – лазера интерес к голографии вспыхнул вновь. В 1962 американские оптики и радиофизики Эммет Лейт и Дж. Юрис Упатниекс усовершенствовали схему Габора, разделив предметный и опорный пучки, которые стали теперь пересекаться непосредственно перед фотопластинкой. Это позволило, во-первых, голографировать непрозрачные предметы сложной формы, а во-вторых, разнести восстановленные изображения в пространстве. Схема Лейта – Упатниекса стала основой современных голографических установок.

В это же время на голографические методы записи изображения обратил внимание российский физик Юрий Николаевич Денисюк. Он создал принципиально новый способ записи голограмм в толстом слое фотографической эмульсии. Предметный и опорный пучки приходят к пластинке с разных сторон и интерферируют. В объеме ее эмульсионного слоя на разной высоте в областях максимумов интерференции возникают микроскопические пятна почернения. Падающий на проявленную голограмму свет отражается от них и, интерферируя, формирует восстановленное изображения предмета. При этом из голограммы выходят только свет, частота которого равна частоте записывающего лазерного излучения, а все остальные частоты автоматически подавляются. Объемную голограмму восстанавливают обычным белым светом, получая монохромное изображение.

Голографические изображения можно получать при помощи любых когерентных волн, например, акустических, возбужденных в жидкости синхронно работающими вибраторами. Интерференция звуковых волн создает на поверхности жидкости рябь, с которой эту акустическую голограмму восстанавливают лазерным лучом.

Свойства голограмм.

Голографическое изображение отличается от фотографии не только своей объемностью, но и еще несколькими важными свойствами.

2. Голографическое изображение можно увеличить на стадии восстановления. Когда голограмму записывают параллельным световым пучком, а восстанавливают расходящимся, изображение увеличивается пропорционально углу расхождения (геометрический коэффициент увеличения kг). Если запись ведется излучением длиной волны l 1, а восстановление – кратной ему l 2 > l 1, изображение станет больше в k = l 2/ l 1 раз (волновой коэффициент увеличения kв). Полное увеличение равно произведению обоих коэффициентов; например, для рентгеновского микроскопа ( l 1 = 10 –2 мкм, l 2 = 0,5 мкм) с kг = 200 полное увеличение k = 10 6 .

3. Если на одну пластинку записать несколько голограмм, используя разные, но не кратные, длины волн, все они могут быть считаны независимо при помощи лазеров с соответствующим излучением. Таким же образом можно записать и полноцветное изображение.

4. Голограмму можно рассчитать и нарисовать при помощи компьютера и даже вручную. Так, зонную пластинку Френеля нетрудно начертить, получив простейшую голограмму одной точки, но чем сложнее объект, тем более запутанной становится такая искусственная голограмма.

Применение голографии.

Наиболее широкое применение голография находит в науке и технике. Голографическими методами контролируют точность изготовления изделий сложной формы, исследуют их деформации и вибрации. Для этого деталь, подлежащую контролю, облучают светом лазера, и отраженный свет пропускают сквозь голограмму эталонного образца. При отклонении размеров от эталонных, искажении формы и появлении поверхностных напряжений возникают полосы интерференции, число и расположение которых характеризует степень отличия изделия от образца или величину деформаций. Аналогичным образом исследуют обтекание тел потоками жидкости и газа: голограммы позволяют не только увидеть в них вихри и области уплотнений, но и оценить их интенсивность.

Голографическими методами можно распознавать образы, т.е. искать объекты, идентичные заданному, среди множества других, похожих на него. Такими объектами могут быть геометрические фигуры, фотографии людей, буквы или слова, отпечатки пальцев и т.д. На пути лазерного луча устанавливают сначала кадр, на котором может находиться искомый объект, а за ним – голограмму этого объекта. Появление яркого пятна на выходе говорит, что объект в кадре присутствует. Такая оптическая фильтрация может производиться автоматически и с большой скоростью.

Методами акустической голографии удается получать объемные изображения предметов в мутной воде, где обычная оптика бессильна.

Голограммы музейных редкостей уже сделались довольно обычной вещью: они не только экспонируются на выставках, но и продаются в сувенирных ларьках. Начинают появляться, хотя и очень редко, объемные книжные иллюстрации. А голографическое кино и телевидение, несмотря на многолетние исследования и экспериментальные съемки, возникнет, видимо, нескоро.

Андрей Путилин

Чем голограмма отличается от фотографии, как увеличить скорость передачи данных и какие дисплеи нужны в 3D-кинотеатрах

Над материалом работали

Андрей Путилин

кандидат физико-математических наук, ведущий научный сотрудник, заведующий лабораторией сверхбыстродействующей электроники и обработки информации Физического института им. П. Н. Лебедева РАН

Голограмма

Однако качество первых голограмм было невысоким по причине использования для их создания примитивных газоразрядных ламп. Все изменилось в 60-е годы с изобретением лазеров, что поспособствовало стремительному развитию голографических технологий. Первые высококачественные лазерные голограммы были получены советским физиком Ю. Н. Денисюком в 1968 году, а спустя 11 лет, его американский коллега Ллойд Кросс создал еще более сложную мультиплексную голограмму.

Денеш Габор

Принцип формирования голограммы

Голография — это особая технология фотографирования, с помощью которой получаются трехмерные (объемные) изображения объектов. Это стало возможным благодаря двум свойствам световых волн – дифракции (преломление, огибание) и интерференции (перераспределение интенсивности света при наложении нескольких волн).

Формирование голограммы

3D-голограмма

3D-голограмма и ее применение

Современная голограмма – это по сути трехмерная проекция объемного изображения конкретного предмета. 3D-голограмма уверенно осваивает самые различные сферы человеческой деятельности. Примеров тому множество. Один из них – голограммы в воздухе. Это голографические модели (масштаб 1:1) и 3D-пирамиды. На презентациях, конференциях, выставках и прочих мероприятиях различного уровня все чаще используются пространственные голограммы, которые создаются с помощью голографических проекторов. Простейший 3D-проектор можно сделать своими руками из обычного смартфона.

Как работают голографические проекторы

голограмма в воздухе

В ряду новейших технологий передачи информации – видеоконференции и интерактивная голография, формирующая эффект висящей в воздухе прозрачной поверхности.

проектор голограмм

Голограмма человека


Голография на дисплее смартфона

голограмма на смартфоне

С появлением мобильных телефонов, а позже смартфонов, стало ясно, что однажды пути этих двух знаковых технологий XXI века пересекутся. Так и случилось. И вот уже YouTube переполнен советами пользователей по превращению смартфона в голографический мини-проектор.

RED Hydrogen One

Свежую идею подхватил один из лидеров по производству цифровых фото- и видеокамер компания RED. В июле прошлого года она представила первый в мире смартфон с 5,7 дюймовым голографическим экраном – RED Hydrogen One. Кроме привычных 2D-изображений он воспроизводит трехмерный контент без помощи специальных очков, а также контент для виртуальной и дополненной реальностей.

Голограммы из будущего

Уже к 2020 году японские инженеры обещают представить первые модели голографических телевизоров на основе технологии, разработанной Дэниэлом Смолли из MIT. А с помощью технологии псевдоголографии TeleHuman люди смогут разговаривать с голографическими образами.

Свою лепту внесла Microsoft, разработав технологию голопортации. Она предполагает передачу объемного отсканированного изображения собеседника в режиме онлайн и создания его трехмерной модели.


Специалисты лаборатории Digital Nature Group из Японии научились с помощью фемтосекундных лазеров создавать голограммы, которые к тому же можно потрогать руками, не опасаясь нежелательных последствий. Это стало возможным за счет сокращения длительности лазерных импульсов с нано- до фемтосекунд.

Читайте также: