Геометрия новых веков кратко

Обновлено: 05.07.2024

3. Свечников, А.А. Путешествие в историю математики или как люди научились считать / А.А. Свечников – М.: Просвещение, 1995.

В течение многих веков постепенно накапливали древние египтяне различные научные знания, в том числе знания по геометрии. Они сумели довольно точно определять площади фигур, объемы некоторых тел, решать некоторые другие геометрические задачи.

Но геометрии, как науки, у них не было. У них было много различных правил - рецептов, не соединенных между собой общей идеей, не приведенных в единую стройную систему. Этими рецептами владели чаще всего жрецы храмов, которые держали их в секрете.

Цари древнего Египта постоянно вели долгие изнурительные войны, которые ослабляли экономическую мощь страны. Были периоды, когда Египет завоевывался разными другими народами – это были периоды жестокой эксплуатации страны – наука и искусство пришли в упадок.

Но к северу от Египта, уже зародилось новое государство – Греция. Греческие купцы посещали Египет и, возвращаясь, много рассказывали об этой чудесной стране. Вместе с купцами Египет стали посещать ученые. И достижения египетской науки постепенно стали известны древним грекам.

Но Греки не просто усвоили достижения египтян. Они исправили их ошибки и развивали геометрию дальше. Именно в древней Греции около 2500 лет назад геометрия стала математической наукой.

В VII веке до н.э. центром математического творчества становится так называемая пифагорейская школа в южной Италии. Здесь были открыты несоизмеримые отрезки, создано учение о подобии, найдены способы построения некоторых правильных многоугольников и многогранников, доказана теорема Пифагора и т.д.

Продуманное и глубоко логическое изложение геометрии, данное в книге Евклида, привело к тому, что математики не мыслили возможности существования геометрии, отличной от евкли­довой. Немецкий философ-идеалист XVIII в. И. Кант и многие его последователи считали, что понятия и идеи евклидовой геометрии (единственно возможной, чуть ли не божественной) были заложены в человеческое сознание еще до того, как человек научился что-либо осознавать.

Большой вклад в дальнейшее исследование различных вопросов геометрии внесли Архимед (ок. 287 -212 гг. до н. э.), Апполоний (III в. до н. э.) и другие древнегреческие учёные.

Качественно новый этап в развитии геометрии начался лишь много веков спустя – в XVII в. н. э. – и были связаны с накопленными к этому времени достижениями алгебры. Французский математик и философ Р. Декарт (1596 – 1650) предложил новый подход к решению геометрических задач: ввёл метод координат, связав геометрию и алгебру, что позволило решать многие геометрические задачи алгебраическими методами.

В течение XVII века геометрические знания на Руси распространялись медленно.

В XVIII веке геометрия получила большое распространение. В России была открыты Академия наук, в Москве был открыт университет, во многих городах открывались школы и гимназии, появились учебники геометрии, как отечественные, так и переводные.

Открытие новой геометрии оказало огромное влияние на развитие науки. Геометрия Лобачевского широко используется в естествознании. Неизмеримо влияние новой геометрии на развитие самой геометрии. Наиболее ярко оно выразилось в дальнейшем углублении наших представлений о пространстве: до Лобачевского казалось, что геометрией окружающего нас мира может быть только евклидова геометрия.

Бурное развитие математики в XIX в. привело к ряду замечательных открытий. Так, выдающимся немецким математиком Б. Риманом (1826 – 1866) была создана новая геометрия, обобщающая и геометрию Евклида, и геометрию Лобачевского.

В настоящее время геометрия широко используется в самых разнообразных разделах естествознания: в физике, химии, биологии и т. д. Неоценимо её значение в прикладных науках: в машиностроении, геодезии, картографии. Методы геометрии широко применяются практически во всех разделах науке и техники и, конечно же, в самой математике.

Геометрия на Востоке. Греческая геометрия. Геометрия новых веков. Классическая геометрия XIX века. Неевклидовая геометрия. Геометрия XX века. Современная геометрия во многих своих дисциплинах выходит далеко за пределы классической геометрии.

Рубрика Математика
Вид реферат
Язык русский
Дата добавления 14.07.2004
Размер файла 32,3 K

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

1. Геометрия на Востоке.

2. Греческая геометрия.

3. Геометрия новых веков.

4. Классическая геометрия XIX века.

5. Неевклидовая геометрия.

6. Геометрия XX века.

Введение

Геометрия возникла очень давно, это одна из самых древних наук. Геометрия (греческое, от ge -- земля и metrein -- изме-рять)-- наука о пространстве, точнее -- наука о формах, размерах и границах тех частей пространства, которые в нем занимают вещественные тела. Таково классическое опреде-ление геометрии, или, вернее, таково действительное значе-ние классической геометрии. Однако современная геометрия во многих своих дисциплинах выходит далеко за пределы этого определения. Развитие геометрии принесло с собой глубоко идущую эволюцию понятия о пространстве. В том значении, в котором пространство как математический тер-мин широко употребляется современными геометрами, оно. уже не может служить первичным понятием, на котором покоится определение геометрии, а, напротив, само находит себе определение в ходе развития геометрических идей.

Важную роль играли и эстетические потребности людей: желание украсить свои жилища и одежду, рисовать картины окружающей жизни. Все это способствовало формированию и накоплению геометрических сведений. За несколько столетий до нашей эры в Вавилоне, Китае, Египте и Греции уже существовали начальные геометрические знания, которые добывались в основном опытным путем, но они не были еще систематизированы и передавались от поколения к поколению в виде правил и рецептов, например, правил нахождения площадей фигур, объемов тел, построение прямых углов и т.д. Не было еще доказательств этих правил, и их изложение не представляло собой научной теории.

1. Геометрия на Востоке

Родиной геометрии считают обыкновенно Вавилон и Египет. Греческие писатели единодушно сходятся па том, что геометрия возникла в Египте и оттуда перенесена в Элладу.

2. Греческая геометрия

Греческие авторы относят появление геометрии в Греции к концу VII в. до н. э. и связывают его с именем Фалеса Милетского (639--548), вся научная деятельность которого изображается греками в полумифическом свете, так что точно ее восстановить невозможно. Достоверно, по-види-мому, то, что Фалес в молодости много путешествовал по Египту, имел общение с египетскими жрецами и у них научился многому, в том числе геометрии. Возвратившись на родину, Фалес поселился в Милете, посвятив себя занятиям наукой, и окружил себя учениками, образовавшими так называемую Ионийскую школу. Фалесу приписывают открытие ряда основных геометрических теорем (например, теорем о равенстве углов при основании равнобедренного треугольника, равенстве вертикальных углов и т. п.). Важ-нее, по-видимому, другое. Трудно допустить, чтобы наука, "хотя бы в зачаточном своем состоянии, была перенесена на треческую почву одним чел овеком. Важио то, что в Элладе в иных условиях экономических отношений и социальной жизни образовался класс, для того времени несомненно про-грессивный, не только усвоивший восточную культуру, но и развивший ее до неузнаваемой высоты, создавший, таким образом, уже свою высокую эллинскую культуру. В условиях быстро развивавшейся архитектуры, мореплавания, гражданской и военной техники, в условиях развертывавшихся уже в связи с этим исследований в области астрономии, физики, механики, требовавших точных измерений, не только очень скоро обнаружились противоречия и неправильности египетской геометрии, но и в исправленном виде ее скудный материал перестал удовлетворять возросшим потребностям. Элементарные приемы непосредственного наблюдения вос-точной геометрии были бессильны перед новыми задачами. Чтобы их разрешить, было необходимо оторвать геометрию от непосредственных задач измерения полей и постройки пирамид, -- задач, узких при всей их важности, -- и поста-вить ей неизмеримо более широкие задания. Этой тенденции и положено было начало Фалесом. Ионийская школа пере-несла геометрию в область гораздо более широких представлений и задач, придала ей теоретический характер и сделала ее предметом тонкого исследования, в котором наряду с интуицией начинает играть видную роль и абстрактная ло-гика. Абстрактно-логический характер геометрии, который в Ионийской школе только намечался, подернулся, правда, несколько мистическим флером у пифагорейцев, принял у Платона и Аристотеля более здоровые формы и в Алексан-дрийской школе нашел свое завершение. Была создана наука, широкая по замыслу, богатая фактическим материалом и, несмотря на свой абстрактный характер, дающая ряд чрез-вычайно важных практических применений. Больше того, можно сказать, что именно в абстрактной структуре, кото-рую получила геометрия в трудах греческих ученых с VI по III в. до н. э., и коренится возможность ее многообразного конкретного использования.

Таким образом, творения Архимеда существенно отли-чаются от геометрии Евклида и по материалу и по методу; это -- огромный шаг вперед, это -- новая эпоха. В изложе-нии этих достижений, однако, выдержана система Евклида: аксиомы и постулаты в начале каждого сочинения, тонко продуманная цепь умозаключений, претендующая на совер-шенство сети силлогизмов. Но, как и система Евклида, гео-метрия Архимеда постоянно отдает щедрую дань интуиции, причем только рядом с геометрической интуицией здесь появляется интуиция механическая.

3. Геометрия новых веков

. Прокл был уже, по-види-мому, последним представителем греческой геометрии. Римляне не внесли в геометрию ничего существенного. Гибель античной культуры, как известно, привела к глубо-кому упадку научной мысли, продолжавшемуся около 1000 лет, до эпохи Возрождения. Это не значит, однако, что математика в этот период совершенно заглохла. Посредни-ками между эллинской и новой европейской наукой явились арабы. Когда несколько улегся ярый религиозный фана-тизм, царивший в эпоху арабских завоеваний, в условиях быстро развивавшейся торговли, мореплавания и городского строительства стала развертываться и арабская наука, в ко-торой математика играла очень важную роль. Евклид был впервые переведен на арабский язык, по-видимому, в IX в. За этим последовал перевод сочинений других греческих геометров, многие из которых только с этих переводах до нас и дошли. Однако математические интересы арабов были со-средоточены не столько на геометрии, сколько на арифметике и алгебре, на искусстве счета в широком смысле этого слова. Арабы усовершенствовали систему счисления и основы ал-гебры, заимствованные от индусов; но в области геометрии они не имели значительных достижений.

Книга Мопжа представляла собой учебник начертатель-ной геометрии для парижской Политехнической школы; печать этого сочинения и по сей день лежит на всех руковод-ствах по начертательной геометрии.

4. Классическая геометрия XIX века

. Могло казаться, что развитие, которое новая геометрия получила в трудах французских геометров конца XVIII в., привело к некоторому завершению ее и что для нового толчка остается ждать эпохи нового Возрождения. Этого, однако, не случи-лось: XIX век принес с собой новый глубокий переворот и в содержании геометрии, и в ее методах, и в самых взглядах на ее сущность. Наиболее характерной чертой новой гео-метрии была ее алгебраизация. Но из самых корней алге-браического метода росли противоречия, имевшие двоякий источник.

Во-первых, сама алгебра не так уж сильна. Границы классической геометрии определялись теми вопросами, ко-торые алгебраически сводятся к уравнениям 1-й и 2-й сте-пени. Эти уравнения в чрезвычайно простой форме разре-шаются в радикалах. В этом содержится ключ к исследо-ванию кривых линий и поверхностей 2-го порядка, источник простоты и изящества, с которыми геометрия древних пере-водится на алгебраический язык. Но при изучении более сложных кривых, хотя бы даже алгебраических, средства алгебры в общем исследовании утрачивают свою простоту. Формулы Кардано и Феррари, служащие для выражения корней уравнений 3-й и 4-й степени, с их мнимыми радика-лами, от которых нельзя избавиться, почти не находят себе применения. За пределами 4-й степени таких формул для общего решения уравнений не существует. Приходится опе-рировать такими свойствами алгебраических уравнений, широкой общности которых расплываются отдельные част-ные задачи. Именно эти общие вопросы алгебраической геометрии всё же получили разрешение, а для решения многих отдельных задач методы Декарта дали меньше, чем от них можно было ожидать.

Этот процесс развертывался в различных направлениях; наиболее плодотворный путь был связан с методами изобра-зительной геометрии. Его исходные пункты коренятся еще в исследованиях Менелая.

При всем том зна-чении, которое синтетические методы геометрии получили в XIX в., не следует думать, что они вытеснили аналитические приемы. Напротив, аналитическая геометрия продолжала широко развиваться в самых разнообразных направлениях. Прежде всего ответвляется алгебраическая геометрия, т. е. учение об алгебраических кривых, алгебраических поверхно-стях и их пересечениях. Чрезвычайно углубленные исследо-вания в этом направлении развертываются по трем путям.

Первый путь через развитие методов аналитической гео-метрии, применявшихся к исследованию кривых 2-го порядка, ведет к кривым 3, 4, 5, 6-го порядка как плоским, так и пространственным. По различным основаниям устанавли-вается их классификация, строятся их эпюры (в случае пространственных кривых), исследуется их форма. Относя-щиеся сюда результаты чрезвычайно многообразны и диф-ференцированы.

Второй путь ведет свое начало главным образом от Плюкера и характеризуется тем, что в нем ставится задача не исследовать отдельные алгебраические кривые и поверх-ности, а разыскать общие средства для геометрической интерпретации алгебраических уравнений.

Третий путь представляет собой наиболее тесное объеди-нение геометрии с алгеброй и теорией функций. Если алге-браическая кривая выражается уравнением f(x, у)=0 в ра-циональном виде, то у представляет собой то, что мы назы-ваем алгебраической функцией от х. Отсюда ясно, что общая теория алгебраических кривых и теория алгебраических, функций представляет собой одно целое: первая представ-ляет собой интерпретацию второй с точки зрения Плюкера, вторая представляет собой алгебраическое выражение пер-вой с точки зрения Штейнера. В дальнейшем этот плодо-творный путь ведет от Якоби, через Римапа и Гессе к совре-менной теории функций комплексного переменного; он дал те приложения геометрии к теории функций, которые Курант объединил под общим названием геометрической теории функций.

Во всех областях математики влияние геометрии XIX в. очень сильно. В работах Минковского оно проникло даже в такую область, как теория чисел, являвшуюся цитаделью арифметических и алгебраических методов. Некоторые ма-тематики, в особенности Шаль, утверждали, что алгебраи-зация геометрии XVIII в. сменилась в XIX в. геометризацией алгебры, но геометризацией несравненно более совершенной, нежели это имело место в эллинскую эпоху. Вряд ли, однако, это так. Справедливее сказать, что доминирующая роль, которую аналитическая геометрия играла в период от Де-карта до Монжа, уступила место тесному и глубокому объ-единению аналитических и геометрических методов.

5. Неевклидовая геометрия

Но многовековые попытки доказательства пятого постулата Евклида привели в конце концов к появлению новой геометрии, отличающейся от евклидовой тем, что в ней V постулат не выполняется. Эта геометрия теперь называется неевклидовой, а в России носит имя Лобачевского, который впервые опубликовал работу с ее изложением.

Исследования Гаусса по неевклидовой геометрии

Янош Бояи.

Независимо от Лобачевского и гаусса к открытию неевклидовой геометрии пришел венгерский математик Янош Бояи (1802-1860), сын Ф. Бояи.

Геометрия Лобачевского

6. Геометрия XX века

Истекшие годы первой четверти XX в. не только подводили итоги всему этому обширному циклу идей, но дали новое их развитие, новые применения, которые до-вели их до расцвета. Прежде всего XX век принес новую ветвь геометрии. Нельзя сказать, чтобы она в этом веке возникла. Но подобно тому, как проективная геометрия соз-далась из разрозненных материалов, скоплявшихся с Дезарга в течение двух веков, так из многообразных отрывочных идей, рассеянных по всей истории геометрии, в XX в. скла-дывается особая дисциплина -- топология

К началу XX века относится зарождение векторно-моторного метода в начертательной геометрии, применяющегося в строительной механике, машиностроении. Этот метод разработан Б. Майором и Р. Мизесом, Б.Н. Горбуновым.

Геометрия Эйнштейна -- Минковского

Геометрическая сторона построенной Эйнштейном теории относительности, особенно оттененная Минковским, заключается в том, что мироздание, не в его статическом состоянии в определенный момент, а во всей его извечной динамике, Эйнштейн и Минковский рассматривают как мно-гообразие, элемент которого определяется четырьмя коорди-натами.

Руководясь тем, что гравитационные силы в мире дейст-вуют всегда, тогда как другие силы (электрические, магнит-ные) в каждом месте то появляются, то исчезают, Эйнштейн поставил себе целью построить риманову геометрию этого четырехмерного многообразия так, чтобы охватить одной общей схемой как пространственные, так и гравитационные соотношения, царящие в мироздании. Задача заключалась, следовательно, в таком выборе основной дифференциальной формы, при которой система правильно отображает эти соотношения в бесконечно малом элементе мира и в порядке интегрирования дает возможность выразить процессы конеч-ные во времени и пространстве.

Роль геометрии в естествознании достигла в этом замысле своего кульминационного пункта. Был поставлен вопрос о геометризации физики. Самая, воз-можность такой постановки вопроса достаточно показательна. Более того, возможность и тех достижений, которые Эйнштейну удалось получить, основана, если можно так вы-разиться, на геометризации самой римановой геометрии.

Неевклидова геометрия сыграла огромную роль во всей современной математике, и фактически в теории геометризованной гравитации марселя Гросмана-Гильберта-Эйнштейна(1913-1915). Довольно неожиданно, еще раньше была установлена вязь кинематики Лоренца-Пуанкаре с геометрией Лобачевского. В 1909 году Зоммерфельд показал, что закон сложения скоростей данной кинематики связан с геометрией сферы мнимого радиуса (подобное соотношение уже отмечали Лобачевский и Бояйи). В 1910 году Варичак указал на аналогию данного закона сложения скоростей и сложения отрезков на плоскости Лобачевского.

Предположение Лобачевского, что реальные геометрические отношения зависят от физической структуры материи, нашло подтверждение не только в космических масштабах. Современная теория квант все с большей настоятельностью выдвигает необходимость применения геометрии, отличной от евклидовой, к проблемам микромира.

Геометрия претендует в качестве наиболее мощного ору-дия точного естествознания на овладение механикой и физи-кой, она стоит у вершины человеческого знания. Удастся ля ей действительно выполнить этот замысел, сохранит ли она это доминирующее место или в порядке иного преодоления разрастающихся противоречий она должна будет его усту-пить, -- это вопрос будущего, быть может, не столь дале-кого.

Геометрия изучает формы, размеры, взаимное расположение предметов независимо от их других свойств: массы, цвета и так далее. Геометрия не только дает представление о фигурах. их свойствах. взаимном расположении, но и учит рассуждать, ставить вопросы, анализировать, делать выводы, то есть логически мыслить.

Важную роль играли и эстетические потребности людей: желание украсить свои жилища и одежду, рисовать картины окружающей жизни. Все это способствовало формированию и накоплению геометрических сведений. За несколько столетий до нашей эры в Вавилоне, Китае, Египте и Греции уже существовали начальные геометрические знания, которые добывались в основном опытным путем, но они не были еще систематизированы и передавались от поколения к поколению в виде правил и рецептов, например, правил нахождения площадей фигур, объемов тел, построение прямых углов и т.д. Не было еще доказательств этих правил, и их изложение не представляло собой научной теории.

Содержание

Геометрия на Востоке.

Геометрия новых веков.

Классическая геометрия XIX века.

Геометрия XX века.

Работа содержит 1 файл

Доклад о геометрии.doc

Геометрия на Востоке.

Геометрия новых веков.

Классическая геометрия XIX века.

Геометрия XX века.

Геометрия возникла очень давно, это одна из самых древних наук. Геометрия (греческое, от ge — земля и metrein — измерять)— наука о пространстве, точнее — наука о формах, размерах и границах тех частей пространства, которые в нем занимают вещественные тела. Таково классическое определение геометрии, или, вернее, таково действительное значение классической геометрии. Однако современная геометрия во многих своих дисциплинах выходит далеко за пределы этого определения. Развитие геометрии принесло с собой глубоко идущую эволюцию понятия о пространстве. В том значении, в котором пространство как математический термин широко употребляется современными геометрами, оно уже не может служить первичным понятием, на котором покоится определение геометрии, а, напротив, само находит себе определение в ходе развития геометрических идей.

Важную роль играли и эстетические потребности людей: желание украсить свои жилища и одежду, рисовать картины окружающей жизни. Все это способствовало формированию и накоплению геометрических сведений. За несколько столетий до нашей эры в Вавилоне, Китае, Египте и Греции уже существовали начальные геометрические знания, которые добывались в основном опытным путем, но они не были еще систематизированы и передавались от поколения к поколению в виде правил и рецептов, например, правил нахождения площадей фигур, объемов тел, построение прямых углов и т.д. Не было еще доказательств этих правил, и их изложение не представляло собой научной теории.

Геометрия на Востоке

Родиной геометрии считают обыкновенно Вавилон и Египет. Греческие писатели единодушно сходятся па том, что геометрия возникла в Египте и оттуда перенесена в Элладу.

2. Греческая геометрия

Греческие авторы относят появление геометрии в Греции к концу VII в. до н. э. и связывают его с именем Фалеса Милетского (639—548), вся научная деятельность которого изображается греками в полумифическом свете, так что точно ее восстановить невозможно. Достоверно, по-видимому, то, что Фалес в молодости много путешествовал по Египту, имел общение с египетскими жрецами и у них научился многому, в том числе геометрии. Возвратившись на родину, Фалес поселился в Милете, посвятив себя занятиям наукой, и окружил себя учениками, образовавшими так называемую Ионийскую школу. Фалесу приписывают открытие ряда основных геометрических теорем (например, теорем о равенстве углов при основании равнобедренного треугольника, равенстве вертикальных углов и т. п.). Важнее, по-видимому, другое. Трудно допустить, чтобы наука, "хотя бы в зачаточном своем состоянии, была перенесена на треческую почву одним чел овеком. Важио то, что в Элладе в иных условиях экономических отношений и социальной жизни образовался класс, для того времени несомненно прогрессивный, не только усвоивший восточную культуру, но и развивший ее до неузнаваемой высоты, создавший, таким образом, уже свою высокую эллинскую культуру. В условиях быстро развивавшейся архитектуры, мореплавания, гражданской и военной техники, в условиях развертывавшихся уже в связи с этим исследований в области астрономии, физики, механики, требовавших точных измерений, не только очень скоро обнаружились противоречия и неправильности египетской геометрии, но и в исправленном виде ее скудный материал перестал удовлетворять возросшим потребностям. Элементарные приемы непосредственного наблюдения восточной геометрии были бессильны перед новыми задачами. Чтобы их разрешить, было необходимо оторвать геометрию от непосредственных задач измерения полей и постройки пирамид, — задач, узких при всей их важности, — и поставить ей неизмеримо более широкие задания. Этой тенденции и положено было начало Фалесом. Ионийская школа перенесла геометрию в область гораздо более широких представлений и задач, придала ей теоретический характер и сделала ее предметом тонкого исследования, в котором наряду с интуицией начинает играть видную роль и абстрактная логика. Абстрактно-логический характер геометрии, который в Ионийской школе только намечался, подернулся, правда, несколько мистическим флером у пифагорейцев, принял у Платона и Аристотеля более здоровые формы и в Александрийской школе нашел свое завершение. Была создана наука, широкая по замыслу, богатая фактическим материалом и, несмотря на свой абстрактный характер, дающая ряд чрезвычайно важных практических применений. Больше того, можно сказать, что именно в абстрактной структуре, которую получила геометрия в трудах греческих ученых с VI по III в. до н. э., и коренится возможность ее многообразного конкретного использования.

Таким образом, творения Архимеда существенно отличаются от геометрии Евклида и по материалу и по методу; это — огромный шаг вперед, это — новая эпоха. В изложении этих достижений, однако, выдержана система Евклида: аксиомы и постулаты в начале каждого сочинения, тонко продуманная цепь умозаключений, претендующая на совершенство сети силлогизмов. Но, как и система Евклида, геометрия Архимеда постоянно отдает щедрую дань интуиции, причем только рядом с геометрической интуицией здесь появляется интуиция механическая.

3. Геометрия новых веков

. Прокл был уже, по-видимому, последним представителем греческой геометрии. Римляне не внесли в геометрию ничего существенного. Гибель античной культуры, как известно, привела к глубокому упадку научной мысли, продолжавшемуся около 1000 лет, до эпохи Возрождения. Это не значит, однако, что математика в этот период совершенно заглохла. Посредниками между эллинской и новой европейской наукой явились арабы. Когда несколько улегся ярый религиозный фанатизм, царивший в эпоху арабских завоеваний, в условиях быстро развивавшейся торговли, мореплавания и городского строительства стала развертываться и арабская наука, в которой математика играла очень важную роль. Евклид был впервые переведен на арабский язык, по-видимому, в IX в. За этим последовал перевод сочинений других греческих геометров, многие из которых только с этих переводах до нас и дошли. Однако математические интересы арабов были сосредоточены не столько на геометрии, сколько на арифметике и алгебре, на искусстве счета в широком смысле этого слова. Арабы усовершенствовали систему счисления и основы алгебры, заимствованные от индусов; но в области геометрии они не имели значительных достижений.

Важную роль играли и эстетические потребности людей: желание украсить свои жилища и одежду, рисовать картины окружающей жизни. Все это способствовало формированию и накоплению геометрических сведений. За несколько столетий до нашей эры в Вавилоне, Китае, Египте и Греции уже существовали начальные геометрические знания, которые добывались в основном опытным путем, но они не были еще систематизированы и передавались от поколения к поколению в виде правил и рецептов, например, правил нахождения площадей фигур, объемов тел, построение прямых углов и т.д. Не было еще доказательств этих правил, и их изложение не представляло собой научной теории.

Содержание

6
7
7
9
10
10
13
13
16
18
23
Геометрия новых веков
3.1 Ферма и Декарт
3.2 Монж
29
31
32
Классическая геометрия XIX века.
35
Неевклидовая геометрия
5.1 Исследования Гаусса по неевклидовой геометрии
5.2 Янош Бояи
8.3 Геометрия Лобачевского
38
39
39
40
Геометрия ХХ века
6.1 Геометрия Эйнштейна — Минковского
42
42
Заключение
44
Литература

Прикрепленные файлы: 1 файл

Диплом по геометрии.docx

3.1 Ферма и Декарт

5.1 Исследования Гаусса по неевклидовой геометрии

8.3 Геометрия Лобачевского

6.1 Геометрия Эйнштейна — Минковского

Геометрия возникла очень давно, это одна из самых древних наук. Геометрия (греческое, от ge — земля и metrein — измерять)— наука о пространстве, точнее — наука о формах, размерах и границах тех частей пространства, которые в нем занимают вещественные тела. Таково классическое определение геометрии, или, вернее, таково действительное значение классической геометрии. Однако современная геометрия во многих своих дисциплинах выходит далеко за пределы этого определения. Развитие геометрии принесло с собой глубоко идущую эволюцию понятия о пространстве. В том значении, в котором пространство как математический термин широко употребляется современными геометрами, оно. уже не может служить первичным понятием, на котором покоится определение геометрии, а, напротив, само находит себе определение в ходе развития геометрических идей.

Важную роль играли и эстетические потребности людей: желание украсить свои жилища и одежду, рисовать картины окружающей жизни. Все это способствовало формированию и накоплению геометрических сведений. За несколько столетий до нашей эры в Вавилоне, Китае, Египте и Греции уже существовали начальные геометрические знания, которые добывались в основном опытным путем, но они не были еще систематизированы и передавались от поколения к поколению в виде правил и рецептов, например, правил нахождения площадей фигур, объемов тел, построение прямых углов и т.д. Не было еще доказательств этих правил, и их изложение не представляло собой научной теории.

Родиной геометрии считают обыкновенно Вавилон и Египет. Греческие писатели единодушно сходятся па том, что геометрия возникла в Египте и оттуда перенесена в Элладу.

2. Греческая геометрия

2.1 Фалес Милетский

Греческие авторы относят появление геометрии в Греции к концу VII в. до н. э. и связывают его с именем Фалеса Милетского (639—548), вся научная деятельность которого изображается греками в полумифическом свете, так что точно ее восстановить невозможно. Достоверно, по-видимому, то, что Фалес в молодости много путешествовал по Египту, имел общение с египетскими жрецами и у них научился многому, в том числе геометрии. Возвратившись на родину, Фалес поселился в Милете, посвятив себя занятиям наукой, и окружил себя учениками, образовавшими так называемую Ионийскую школу. Фалесу приписывают открытие ряда основных геометрических теорем (например, теорем о равенстве углов при основании равнобедренного треугольника, равенстве вертикальных углов и т. п.). Важнее, по-видимому, другое. Трудно допустить, чтобы наука, "хотя бы в зачаточном своем состоянии, была перенесена на треческую почву одним чел овеком. Важио то, что в Элладе в иных условиях экономических отношений и социальной жизни образовался класс, для того времени несомненно прогрессивный, не только усвоивший восточную культуру, но и развивший ее до неузнаваемой высоты, создавший, таким образом, уже свою высокую эллинскую культуру. В условиях быстро развивавшейся архитектуры, мореплавания, гражданской и военной техники, в условиях развертывавшихся уже в связи с этим исследований в области астрономии, физики, механики, требовавших точных измерений, не только очень скоро обнаружились противоречия и неправильности египетской геометрии, но и в исправленном виде ее скудный материал перестал удовлетворять возросшим потребностям. Элементарные приемы непосредственного наблюдения восточной геометрии были бессильны перед новыми задачами. Чтобы их разрешить, было необходимо оторвать геометрию от непосредственных задач измерения полей и постройки пирамид, — задач, узких при всей их важности, — и поставить ей неизмеримо более широкие задания. Этой тенденции и положено было начало Фалесом. Ионийская школа перенесла геометрию в область гораздо более широких представлений и задач, придала ей теоретический характер и сделала ее предметом тонкого исследования, в котором наряду с интуицией начинает играть видную роль и абстрактная логика.

2.2 Пифагор Самосский

Пифагор Самосский (род. 580 до Р. X.), ученик Фалеса, подобно ему, сперва отправился в Египет, а потом в Индию; возвратившись в Италию он основал здесь свою школу, которая сделалась гораздо знаменитее той, из которой он произошел сам. Этому философу, сделавшему из геометрии часть своей философии, и его ученикам преимущественно принадлежат первые открытия в геометрии; самые важные из них: теория несоизмеримости некоторых линий, напр. диагонали квадрата с его стороною, и теория правильных тел. Впрочем первые успехи науки о протяжении состояли только из нескольких простейших предложений о прямой линии и круге. Между ними наиболее замечательны: теорема о квадрате гипотенузы прямоугольного треугольника (за открытие которой, по сказанию истории, или басни, Пифагор принес в жертву гекатомбу) и то свойство круга и шара, что они из всех фигур одинакового периметра или одинаковой поверхности суть наибольшие; эта последняя теорема содержит в себе первый зачаток учения об изопериметрах.

2.3 Платонова школа

Геометрия оставалась в таком ограниченном виде до основания Платоновой школы, которое было эпохою более важных открытий.

Платон (430-347 до Р. X.). Чтобы изучить математику, Платон, подобно своим предшественникам, отправился сперва к египетским жрецам, а потом в Италию к пифагорейцам. Возвратившись в Афины, он стал во главе новой школы и ввел в геометрию аналитический метод, конические сечения и учение о геометрических местах. Эти замечательные открытия сделали из геометрии как бы новую науку в сравнении с существовавшей до этих пор элементарной геометрией, науку высшую, которая учениками Платона названа была трансцендентною геометрией.

С этого времени стали прилагать с замечательным искусством учение о геометрических местах к решению знаменитых задач об удвоении куба, о двух средних пропорциональных и о делении угла на три равные части.

Первая из этих задач, известная по своей трудности и по своему баснословному происхождению, занимала геометров еще прежде этого времени.

Гиппократ Хиосский (около 450 до Р.Х.), достаточно известный квадратурой своих луночек, привел задачу о удвоении куба к нахождению двух средних пропорциональных между стороной данного куба и удвоенной стороной его; по всей вероятности, это и было поводом к общей задаче о двух средних пропорциональных. Эта последняя задача была решена весьма различными способами, которые все делают честь геометрам древнего мира. Первое решение принадлежит Платону, который для этого изобрел особый снаряд, состоявший из прямого угла, на одной стороне которого двигалась прямая, оставаясь параллельною другой стороне: бесспорно это был первый пример механического решения геометрической задачи.

Менехм, ученик Платона, пользовался для той же цели геометрическими местами: двумя параболами, оси которых взаимно перпендикулярны, а также параболою и гиперболой между асимптотами.

Евдокс, другой ученик и друг Платона, прилагал другие кривые, нарочно для этой цели изобретенные им; к сожалению, его решение не дошло до нас и мы даже не знаем, какие это были кривые.

Решение знаменитого пифагорейца Архита са, чтения которого слушал Платон в Италии, было чисто умозрительное. Оно замечательно тем, что основывалось на употреблении кривой двоякой кривизны; это была первая кривая такого рода, рассмотренная геометрами; по крайней мере она самая древняя из известных нам

Четыре приведенные здесь решения задачи о двух средних пропорциональных, как мы видим, существенно различны между собою. Та же задача и после того в течение многих веков занимала геометров и потому число решений её значительно увеличилось. Евтоций, математик шестого столетия по Р. X., к своем комментарии ко второй книге о шаре и цилиндре Архимеда, приводит решения Эратосфена, Аполлония, Никомеда, Герона, Филона, Паппа, Диоклеса и Спора. О всех этих математиках мы упомянем далее в хронологическом порядке.

Превосходные методы, указанные Платоном и учениками его, ревностно разрабатывались их последователями и были предметом многих замечательных сочинений, в которых развиты были главнейшие свойства конических сечений, этих знаменитых кривых линий, которым 2000 лет спустя пришлось играть такую важную роль в небесной механике, когда Кеплер узнал в них истинные пути, описываемые планетами и спутниками, и Ньютон в их фокусах открыл средоточие силы, приводящей в движение все тела вселенной.

2.4. Квадратрикса Диностра.

К тому же почти времени относится открытие ква дратриксы Динострата. Главное свойство этой кривой дает способ делить угол на несколько частей, пропорциональных данным линиям, и вероятно она была изобретена для решения возбужденной в Платоновой школе задачи о делении угла на три равные части. Если бы эта кривая могла быть построена геометрически, то ею решалась бы также задача о квадратуре круга; вследствие этого она и получила от древних свое название — квадратрикса. Папп предполагает, что это свойство кривой было открыто Диностратом, братом Менехма, отчего новые геометры и назвали ее квадратриксой Динострата. Но из двух мест Прокла можно кажется заключить, что кривую эту открыл и обнаружил её свойства Гиппий, геометр и философ, живший во время Платона.

2.5. Открытие Персея

К этой же первой эпохе развития геометрии должно отнести Персея, который приобрел известность открытием улиткообразных линий (lignes spiriques). Он получал эти кривые, пересекая различными плоскостями кольцеобразную поверхность (tоrus), образуемую вращением круга около неподвижной оси, лежащей в той же плоскости.

Об этом предмете осталось только одно указание Прокла в его комментарии к первой книге Евклида, где он ясно описывает образование этих кривых на кольцеобразной поверхности и открытие их приписывает Персею. Спустя несколько строк]он прибавляет, что Гемин также писал об улиткообразных, и это замечание очень важно: оно доказывает, что Персей жил раньше Гемина, о котором известно, что он существовал около времени Гиппарха в двух первых столетиях до Р. X. Очень жаль, что сочинения Персея и Гемина не дошли до нас; было бы интересно узнать их геометрическую теорию улиткообразных, потому что это кривые четвертого порядка, исследование которых в настоящее время требует употребления уравнений поверхностей и довольно трудных вычислений.

Читайте также: