Фотонная теория света кратко

Обновлено: 02.07.2024

Роль школьного образования невозможно переоценить. Практически все базовые понятия и представления о природе и окружающем мире закладываются в школе. Высшие учебные заведения только углубляют знания, делают их более обоснованными и систематизированными. Но если в школе я представлял себе неделю, как разворот дневника, то и сейчас ничего не изменилось, несмотря на обилие разнообразных гаджетов. Ещё в школе мне доходчиво объяснили, что свет – это электромагнитная волна, распространяющаяся в пространстве со скоростью света. Чтобы было понятно, перед этим рассказали о механических волнах на поверхности воды и в твердых средах. На примере электрических цепей объяснили явления, происходящие в колебательном контуре. Поэтому картинка с двумя синусоидами электрического и магнитного полей прочно закрепилась в голове. И всякий раз, когда нужно представить фотон , неизменно из памяти всплывает эта картинка с синусоидами.

Затем уже в университете рассказали о теории Максвелла и его уравнениях, из которых следует, что свет – это поперечная электромагнитная волна . А опыты по фотоэффекту показали, что свет излучается и поглощается порциями, которые назвали фотонами или квантами . При этом энергия квантов определяется только частотой колебания электромагнитного поля. Поэтому, говоря о кванте света, имеют в виду электромагнитную волну с одним периодом колебаний. Кроме того, фотоны – это истинно нейтральные частицы , не имеющие заряда. Помимо этого, они не имеют массы покоя, но участвуют в гравитационном взаимодействии, что объясняется эквивалентностью энергии и массы в соответствии с ОТО. Следует отметить, что всё сказанное относится не только к свету, но и ко всем видам электромагнитного излучения. Такое представление о фотонах формирует современная физика.

Вопрос о том, какова длина фотона , кажется самым простым. Поскольку известна скорость света, то зная частоту излучения легко можно рассчитать длину волны фотона. Видимый свет имеет длину волны порядка половины микрона, рентгеновское излучение намного короче, а радиоволны могут быть от сантиметров до многих метров.

Но так ли всё просто? Меня всегда интересовало, а можно ли взять и разделить эту волну? Дело в том, что чисто технически это возможно реализовать. Например, при генерации радиоволны после того, как волна начала излучаться с антенны, генератор отключился. Что будет с этой частичкой волны, если квант является неделимой порцией энергии? Она продолжит распространяться или исчезнет? Как она узнает о том, что генератор отключился? Аналогично можно поступить со световой волной, имеющей определённую поляризацию. В момент времени, когда часть фотона пройдёт через поляризационный фильтр, изменяем положение фильтра на 90 градусов. Оставшаяся часть фотона не сможет через него пройти. Что случится с уже прошедшей частичкой фотона?

Эти рассуждения привели меня к убеждению, что такого просто не может и не должно быть. Поэтому фотон нельзя рассматривать, как протяженную субстанцию. Фотон может быть только точечной частицей . Он не имеет длины. Кроме того, если материальный объект имеет какую-либо длину и двигается со световой скоростью, то в соответствии с СТО его длина должна уменьшиться до нуля. Поэтому я рассматриваю фотон как точечную частицу, не имеющую длины .

Чем же характеризуется эта частица? Напряженностью электрического и магнитного полей. Но к изображению на первом рисунке осталось ещё несколько вопросов. Вектор напряженности электрического поля как-то очень странно зависает в пространстве. Из электродинамики известно, что источником электрического поля является заряд. При этом силовые линии обязательно должны выходить из заряда или входить в заряд. А вот силовые линии магнитного поля наоборот, должны быть только замкнутыми. Поэтому на схематичном изображении они не могут изображаться в виде векторов. В соответствии с этими требованиями я привожу своё схематичное изображение движения фотона в пространстве.

Читателей не должно смущать, что я изобразил точечную частицу в виде шарика. На рисунке приведен участок движения фотона, на котором происходит полный цикл колебания. В первой половине цикла силовые линии электрического поля выходят из фотона, постепенно увеличиваясь, а затем уменьшаясь. Во второй половине цикла силовые линии электрического поля приходят в фотон. Это означает, что фотон имеет заряд , который в первой половине цикла является положительным , а во второй половине цикла – отрицательным . Величина заряда в течение периода колебаний меняется по гармоническому закону. Силовые линии магнитного поля представляют собой окружности, плоскость которых расположена перпендикулярно направлению движения фотона. В первой половине цикла вектор магнитной индукции направлен по часовой стрелке, а во второй – против. В соответствии с теорией Максвелла это поперечная электромагнитная волна.

Таким образом, фотон является точечной частицей , двигающейся со скоростью света, при этом его заряд изменяется по гармоническому закону с определённой частотой. Это позволяет рассматривать свет как особый вид переменного тока . При этом переменность тока определяется не изменением направления движения заряженных частиц, а изменением величины и знака заряда самого фотона.

Вывод о наличии тока не должен смущать читателей. Из электродинамики известно, что изменяющееся магнитное поле вызывает электрический ток. Так что здесь нет никаких противоречий. Необычным является только то, что изменяется величина заряда фотона с течением времени. И что? Всё остальное в микромире кажется привычным? В целом фотон сохраняет свою нейтральность. А описанное свойство фотона позволяет экспериментально подтвердить или опровергнуть высказанную гипотезу.

В следующей публикации я приведу рассмотрение того, как высказанная гипотеза о свете позволяет объяснить некоторые физические явления. А также всё-таки отвечу на вопрос о поперечном размере и массе фотона.

Фотон - материальная, электрически нейтральная частица, квант электромагнитного поля (переносчик электромагнитного взаимодействия).

Основные свойства фотона

  1. Является частицей электромагнитного поля.
  2. Движется со скоростью света.
  3. Существует только в движении.
  4. Остановить фотон нельзя: он либо движется со скоростью, равной скорости света, либо не существует; следовательно, масса покоя фотона равна нулю.

Согласно теории относительности энергия всегда может быть вычислена как , Отсюда - масса фотона.

Импульс фотона . Импульс фотона направлен по световому пучку.

Наличие импульса подтверждается экспериментально: существованием светового давления.

Давление света

В 1873 г. Дж. Максвелл, исходя из представлений об электромагнитной природе света, пришел к выводу: свет должен оказывать давление на препятствие(благодаря действию силы Лоренца; на рисунке v - направление скорости электронов под действием электрической составляющей электромагнитной волны).

Квантовая теория света объясняет световое давление как результат передачи фотонами своего импульса атомам или молекулам вещества. Пусть на поверхность абсолютно черного тела площадью S перпендикулярно к ней ежесекундно падает N фотонов: . Каждый фотон обладает импульсом . Полный импульс, получаемый поверхностью тела, равен . Световое давление:

При падении света на зеркальную поверхность удар фотона считают абсолютно упругим, поэтому изменение импульса и давление в 2 раза больше, чем при падении на черную поверхность (удар неупругий).

Это давление оказалось ~4 . 10 -6 Па. Предсказание Дж. Максвеллом существования светового давления было экспериментально подтверждено П. Н.Лебедевым, который в 1900 г. измерил давление света на твердые тела, используя чувствительные крутильные весы. Теория и эксперимент совпали.

Опыты П. Н. Лебедева — экспериментальное доказательство факта: фотоны обладают импульсом

Эффект Комптона (1923)

А. Комптон на опыте подтвердил квантовую теорию света. С точки зрения волновой теории световые волны должны рассеиваться на малых частицах без какого-либо изменения частоты излучения, что опытом не подтверждается.

При исследовании законов рассеяния рентгеновских лучей А. Комптон установил, что при прохождении рентгеновских лучей через вещество происходит увеличение длины волны рассеянного излучения по сравнению с длиной волны падающего излучения. Чем больше угол рассеяния, тем больше потери энергии, а следовательно, и уменьшение частоты (увеличение длины волны). Если считать, что пучок рентгеновских лучей состоит из фотонов, которые летят со скоростью света, то результаты опытов А. Комптона можно объяснить следующим образом.

Законы сохранения энергии и импульса для системы фотон - электрон:

где m0c 2 - энергия неподвижного электрона; hv - энергия фотона до столкновения; hv' - энергия фотона после столкноВЕНИЯ, P и p' - импульсы фотона до и после столкновения; mv - импульс электрона после столкновения с фотоном.

Решение системы уравнений для энергии и импульса с учетом того, что дает формулу для измерения длины волны при рассеянии фотона на (неподвижных) электронах:

где - так называемая комптоновская длина волны.

Корпускулярно-волновой дуализм

Конец XIX в.: фотоэффект и эффект Комптона подтвердили теорию Ньютона, а явления дифракции, интерференции света подтвердили теорию Гюйгенса.

Таким образом, многие физики в начале XX в. пришли к выводу, что свет обладает двумя свойствами:

  1. При распространении он проявляет волновые свойства.
  2. При взаимодействии с веществом проявляет корпускулярные свойства. Его свойства не сводятся ни к волнам, ни к частицам.

Чем больше v, тем ярче выражены квантовые свойства света и менее - волновые.

Итак, всякому излучению присущи одновременно волновые и квантовые свойства. Поэтому то, как проявляет себя фотон - как волна или как частица,—зависит от характера проводимого над ним исследования.


Свет — очень полезная штука. Благодаря нему мы видим вообще все в этом мире, уличные фонари включаются вовремя, а у мыльных пузырей красивые разводы. Но вот из чего свет состоит — вопрос, конечно, интересный.

О чем эта статья:

11 класс, ЕГЭ/ОГЭ

Корпускулярно-волновой дуализм

В XVII веке Исаак Ньютон предложил модель, в которой свет — поток мельчайших корпускул (частиц). Это позволяло просто объяснить многие характерные свойства света. Например, прямолинейность световых лучей и закон отражения, согласно которому угол отражения света равен углу падения. Это соотносится с законом сохранения импульса, которому подчиняются частицы.

Но есть такие явления, как интерференция и дифракция. Они совсем не вписываются в корпускулярную теорию.

Осторожно: дальше много сложных терминов! Но на элективном курсе по физике за 10 класс можно разобраться даже в сложном материале вместе с опытным преподавателем.

Интерференция и дифракция


Интерференция света

В жизни вы это встречали, например, если видели разлитый бензин или пускали мыльные пузыри. Это все следствие интерференции света.

Дифракция неразрывно связана с явлением интерференции. Более того, само явление дифракции зачастую трактуют как случай интерференции ограниченных в пространстве волн.

Дифракция — это явление огибания препятствий, которые возникают перед волной. Благодаря дифракции свет может огибать препятствие и попадать туда, где с точки зрения геометрии должна быть тень.

В XIX веке появилась волновая теория света, которая объясняла дифракцию и интерференцию. Согласно этой теории, свет — частный случай электромагнитных волн, то есть процесса распространения электромагнитного поля в пространстве.

Волновая оптика вообще казалась в то время каким-то чудом, потому что она объясняла не только те явления, которые не объясняла корпускулярная теория, но и вообще все известные на то время световые эффекты. Даже законы геометрической оптики можно было доказать через волновую оптику.

Казалось бы, ну все тогда — у света волновая природа, никаких тебе частиц, расходимся. Но не тут-то было! Уже в начале XX века корпускулярная теория света снова набрала актуальность, так как ученые обнаружили явления, которые с помощью волновой теории объяснить не удавалось. Например, давление света и фотоэффект, о которых мы еще поговорим.

В рамках корпускулярной теории эти явления прекрасно объяснялись, и корпускулы (частицы) света даже получили название — фотоны.

Сложилась интересная ситуация — параллельно существовали две серьезные научные теории, каждая из которых объясняла одни свойства света, но не могла объяснить другие. Вместе же эти две теории идеально дополняют друг друга. Так мы подошли к понятию корпускулярно-волновой природы света.

Корпускулярно-волновой дуализм — это физический принцип, утверждающий, что любой объект природы может вести себя и как частица, и как волна.

Энергия и импульс фотона

Каждый фотон переносит некоторое количество энергии. Именно это количество называется энергией фотона.

Энергия фотона (соотношение Планка-Эйнштейна)

— энергия фотона [Дж]

= 6,6 · 10 −34 Дж · c

— частота фотона [Гц]

Импульс фотона связан с энергией следующим соотношением:

Соотношение импульса и энергии фотона

— импульс фотона [(кг · м)/с]

— энергия фотона [Дж]

— скорость света [м/с]

Подставляем вместо формулу энергии фотона:

А вместо частоты формулу :

Сокращаем скорость света и получаем формулу импульса.

Импульс фотона

— импульс фотона [(кг · м)/с]

= 6,6 · 10 −34 Дж · c

Давление света

Сила Лоренца — это сила, действующая на частицу, движущуюся в магнитном поле.

Если рассматривать свет как совокупность фотонов, то можно предположить, что свет может оказывать давление. Именно такое предположение сделал Джеймс Максвелл в 1873 году и не прогадал.

Пусть на поверхность абсолютно черного тела площадью перпендикулярно к ней ежесекундно падает фотонов. Каждый фотон обладает импульсом .

Полный импульс, получаемый поверхностью тела, равен .

Из механики известно, что давление — это отношение силы к площади, на которую эта сила воздействует: .

Не перепутайте: импульс и давление обозначаются одинаковой буквой, но величины разные!

Второй закон Ньютона в импульсной форме имеет вид , где — это импульс, а — промежуток времени, за которое импульс меняется на значение p.

Тогда световое давление определяется так: .

При падении света на зеркальную поверхность удар фотона считают абсолютно упругим, поэтому изменение импульса и давление в 2 раза больше, чем при падении на черную поверхность (в этом случае удар неупругий, так как черный цвет поглощает фотон).

Предсказанное Максвеллом существование светового давления было экспериментально подтверждено физиком П. Н. Лебедевым, который в 1900 г. измерил давление света на твердые тела, используя чувствительные крутильные весы. Теория и эксперимент совпали. Значение давления света составило ≈ 4.10 -6 Па.

Опыты Лебедева — экспериментальное доказательство факта: фотоны обладают импульсом.

Фотоэффект

Еще одно важное явление, подтверждающее корпускулярную природу света, — это фотоэффект. Пока разберем только принцип этого явления, а сложную математику оставим на другой раз. 😉

На рисунке представлена экспериментальная установка для исследования фотоэффекта.


Установка для исследования фотоэффекта

Установка представляет собой стеклянный вакуумный баллон с двумя металлическими электродами, к которым прикладывается напряжение. Один из электродов через кварцевое окошко освещается монохроматическим светом (монохроматический свет — это свет, длина волны которого неизменна). Под действием фотонов из отрицательно заряженного электрода выбиваются так называемые фотоэлектроны. Они притягиваются к положительному электроду и образуется фототок.

Многочисленные экспериментаторы установили основные закономерности фотоэффекта:

Максимальная кинетическая энергия фотоэлектронов линейно возрастает с увеличением частоты света и не зависит от его интенсивности.

Для каждого вещества существует так называемая красная граница фотоэффекта, т. е. наименьшая частота , при которой еще возможен внешний фотоэффект.

Число фотоэлектронов, вырываемых светом из катода за 1 с, прямо пропорционально интенсивности света.

Фотоэффект практически безынерционен, фототок возникает мгновенно после начала освещения катода при условии, что частота света .

Эйнштейн исследовал фотоэффект и пришел к выводу, что свет имеет прерывистую структуру, то есть состоит из фотонов.

Фотоэффект используется, например, в датчиках света. Уличные фонари, оборудованные датчиками света, включаются автоматически при определенном уровне естественного освещения.

Техническое применение фотонов

Важное техническое устройство, использующее фотоны — лазер. Лазеры применяют во многих областях технологии: с их помощью режут, варят и плавят металлы, получают сверхчистые металлы. На лазерах основаны многие точные физические приборы — например, сейсмографы. Ну а с лазерными принтерами и указками вы наверняка знакомы.

На определении местоположения фотонов основаны многие генераторы случайных чисел. Чтобы сгенерировать один бит случайной последовательности, фотон направляется на лучеделитель — штуку, которая разделяет свет на два потока.

Для любого фотона существует лишь две возможности, причем с одинаковой вероятностью: пройти лучеделитель или отразиться от его грани. В зависимости от того, прошел фотон через лучеделитель или нет, следующим битом в последовательность записывается 0 или 1.

Изучение свойств электромагнитных волн на рубеже 19 и 20 веков принесло множество наблюдений, которые не могли быть объяснены на основе волновой теории Максвелла. Среди дилемм физиков того времени был спектр излучения тепловых источников света (например, классической лампочки), явление излучения черного тела, внешний фотоэлектрический эффект, то есть эмиссия электронов из металлов под воздействием падающего электромагнитного излучения. Эти явления невозможно объяснить, рассматривая электромагнитное излучение как волну.

Свет как волна и как пучок фотонов

Рис. 1. Свет как волна и как пучок фотонов

Волновое описание света, утвердившееся в науке того времени и подтвержденное рядом экспериментов и теорий, должно было столкнуться с наблюдениями, показывающими, что свет ведет себя не только как волна, но и как совокупность частиц. Макс Планк, объясняя спектральное распределение излучения черного тела, ввел понятие порции энергии, которую он назвал квантом. Эта концепция была развита Альбертом Эйнштейном, когда он заявил, что, например, электромагнитная волна состоит из частиц (так называемых квантов) света.

Определение.

Фотон ( γ ) — это частица, несущая порцию энергии (квант энергии) электромагнитного излучения. Название было предложено американским физиком-химиком Гилбертом Ньютоном Льюисом. Она должна была описывать фотон как частицу, переносящую энергию излучения. По мнению ученого, фотон должен был поглощаться и испускаться материей.

Фотоны ( γ ) являются элементарными частицами. Они не имеют массы покоя и всегда движутся со скоростью света. Согласно текущему состоянию знаний, квантовая механика предлагает наилучшую модель, объясняющую фотоны. Это справедливо для всех элементарных частиц. Поэтому они демонстрируют дуализм волна-частица. Это означает, что они обладают свойствами волн и частиц.

Что такое фотон?

Фотоны ( γ ) являются частицами-носителями электромагнитного взаимодействия. Таким образом, они представляют свет, а также все другие электромагнитные волны и переносят электромагнитную силу. Квантовая электродинамика описывает фотон как так называемый бозон, элементарную частицу, свойства которой четко отличают ее от свойств электрона или подобных частиц. В большинстве случаев бозоны всегда являются также частицами-носителями сил, таких как электромагнитные, сильные и слабые силы.

Квантовая электродинамика — это область квантовой механики, которая адаптирует классическую электродинамику к современной квантовой механике. Одно из его важнейших свойств — отсутствие массы. Более того, его энергия, а также импульс пропорциональны его частоте.

Свойства фотона

Фотоны — это безмассовые, электрически нейтральные и стабильные элементарные частицы. Фотон является частицей-носителем электромагнитного взаимодействия и не подчиняется принципу Паули.

Электрический заряд0, нейтральный
Масса покоя0 кг
Спин1
Взаимодействиеэлектромагнитный
гравитация
Скорость движенияСкорость света c = 299 792 458 м / с

Масса и скорость фотонов

Согласно современному уровню знаний, фотон должен быть безмассовым. Если бы у него была масса, фотоны не двигались бы со скоростью света (c). Это означало бы, что скорость света перестала бы быть скоростью света, а стала бы теоретическим пределом скорости, которую объект может достичь в пространстве-времени. Кроме того, скорость фотона будет зависеть от его частоты, и многие законы природы, такие как закон Кулона, получат дополнительные факторы. Тогда многие современные устройства будут работать по-другому или вообще не будут работать.

Вывод: экспериментально доказано, что фотон не имеет массы.

Скорость света в вакууме является универсальной константой, равной точно = 299 792 458 м/с. Не странно ли, что, в отличие от других констант, здесь нет многочисленных десятичных цифр, которые мы обычно округляем в зависимости от приближения, которого хотим добиться? Точное значение скорости света просто выводится из определения метра, принятого в 1983 году. Согласно этому определению, 1 метр — это расстояние, которое свет проходит в вакууме за 1/299 792 458 с.

В астрономии используется другая единица длины, не входящая в систему СИ, связанная со скоростью света. Это световой год, определяемый как расстояние, проходимое светом за один год. При определении светового года используется юлианский год, продолжительность которого составляет 365,25 дня. Аналогично можно использовать такие единицы измерения длины, как световая секунда, световая минута и т.д.

Скорость фотонов в вакууме не зависит от частоты электромагнитного излучения. Она одинакова для всех диапазонов излучения — от гамма-излучения до радиоволн. Одним из доказательств является наблюдение за вспышками звезд. Радиоволны и свет, излучаемые во время вспышки звезды, достигают Земли одновременно. Их скорость равна в пределах 10 -7 .

Фотон в вакууме всегда движется с постоянной скоростью для каждого наблюдателя. Если объект, движущийся со скоростью v = 0,9c, испускает фотон в направлении, совпадающем с направлением его скорости (см. рисунок 2), то фотон будет удаляться от него со скоростью света c. Но для неподвижного наблюдателя скорость фотона также будет равна скорости света с.

Этот факт, не согласующийся с нашим повседневным опытом, является фундаментальным предположением специальной теории относительности Альберта Эйнштейна. Почему это кажется нам странным и противоречит нашему опыту? Просто в повседневной жизни мы не сталкиваемся со скоростями, сравнимыми со скоростью света. Такие скорости достижимы для тел с очень малой массой. Эксперименты с частицами, такими как электроны, протоны или атомные ядра, ускоренные в ускорителях до скоростей, близких к скорости света, подтверждают постоянство скорости света в любой системе отсчета.

Фотон посланный ракетой

Рис. 2. Фотон, испущенный ракетой, летящей со скоростью v = 0,9c, движется со скоростью c, как относительно ракеты, так и относительно неподвижного наблюдателя

Энергия фотона

Фотоны движутся в вакууме со скоростью света c. Поэтому для определения его энергии нужна теория относительности. Это следует из релятивистской взаимосвязи между массой, энергией и импульсом.

E 2 = p 2 * c 2 + m 2 * c 4

В этой формуле E означает энергию, p — импульс, m — массу, а c — скорость света. Если задать m = 0, то получится следующая взаимосвязь между импульсом и энергией E = p * c.

Поскольку фотон является квантом, то можно выразить его скорость и, следовательно, импульс через его частоту или длину волны. Это дает вам взаимосвязь между частотой и энергией: E = ħ * ω = h * f = h * c / λ .

В этой формуле f — частота фотона, ω = 2 * π * f — его угловая частота, h — обычная постоянная Планка, ħ = h / 2 * π — приведённая постоянная Планка и λ — длина волны фотона.

Энергия фотонов

Рис. 3. Фотоны фиолетового света имеют самую высокую энергию, а фотоны красного света — самую низкую. [источник: 彭家杰 [CC BY 2.5], через Wikimedia Commons].

Постоянная Планка, входящая в формулу, является физической константой, характерной для микромира. В соответствии с решением Генеральной конференции по мерам и весам (CGPM) от 16 ноября 2018 года, её величина определяется точно, т.е. без погрешности, и составляет: h = 6,62607015⋅10 −34 кг·м 2 ·с −1 (Дж·с).

Единицей энергии фотона является джоуль (Дж), но очень часто используется альтернативная единица — электронвольт (эВ). Один электрон-вольт — это энергия, полученная электроном, ускоренным напряжением в 1 вольт (В). Для перевода 1 эВ в джоули достаточно умножить величину элементарного заряда e, т.е. 1,602 * 10 -19 Кл, на один вольт, то есть 1 эВ = 1,602 * 10 -19 Дж.

Поэтому постоянная Планка может быть выражена в эВ. Она составляет 4,135 667 669 …. * 10 -15 эВ * с (для расчётов часто используют округленное значение h = 4,14 * 10 -15 эВ * с ).

Насколько велика энергия фотона? Определим, например, энергию фотонов, испускаемых гелий-неоновой лазерной указкой с длиной волны 633 нм.

E = 6,62607015⋅10 −34 * 3 * 10 8 / 633*10 -9 ≈ 3,14 * 10 -19 Дж .

Это значение можно хранить в гораздо более удобной форме в электронвольтах: E = 3,14 * 10 -19 / 1,602 * 10 -19 ≈ 1,96 эВ .

Типичные энергии в макромире — например, кинетическая энергия мяча, брошенного с высоты 1 м, непосредственно перед ударом об асфальт — порядка 1 Дж, то есть порядка 10 19 эВ. Энергии фотонов значительно меньше. Давайте сравним 1 Дж с энергией процесса, характерного для микромира, например, с энергией, выделяемой при полном сгорании одной молекулы метана в кислороде. Энергия сгорания метана составляет 891,6 кДж/моль, что после деления на постоянную Авогадра, составляет: E = ( 891,6 кДж/моль ) / ( 6,02214076⋅10 23 моль −1 ) = 14,8 * 10 -19 Дж = 9,2 эВ .

Полученное значение, как видно, того же порядка, что и энергия фотона, испускаемого гелий-неоновым лазером.

Следует помнить, что энергия фотонов зависит от частоты электромагнитного излучения, которая может принимать значения от единиц кГц для радиоволн до порядка 10 24 Гц для гамма-излучения. Поэтому энергия фотонов может составлять от 10 -12 эВ до 10 9 эВ.

Фотоны, принадлежащие к различным областям электромагнитного спектра, имеют энергию, отличающуюся друг от друга даже на несколько порядков.

Импульс фотона

Как уже упоминалось, теория относительности связывает импульс с энергией. Это важно для фотона, поскольку он движется со скоростью света, т.е. релятивистски.

Зная, что E = h * c / λ , и p = ħ * k , где k = 2 * π / λ — угловое волновое число, в итоге получаем: p = ħ * k = h * f / c = h / λ .

Возникновение фотона

Фотоны создаются различными способами. Наиболее распространенным способом наблюдения генерации фотонов является переход электронов в другие энергетические состояния. Это происходит, например, когда электрон в электронной оболочке атома переходит на более высокий уровень. Этот уровень нестабилен, и электрон через некоторое время возвращается обратно в исходное состояние.

Однако, на высоком уровне было больше энергии, чем на исходном. Эта избыточная энергия излучается в виде фотона. Но фотоны также могут испускаться в виде гамма-излучения во время ядерных переходов или реакций аннигиляции в частицах-античастицах. С помощью правильных измерительных приборов можно обнаружить присутствие таких фотонов.

Запутанные фотоны

Фотоны могут быть запутаны относительно их поляризации или направления полета. Поляризация дает вам информацию о направлении колебаний электромагнитной волны. Это означает, что если вы измеряете поляризацию одной из этих частиц, вы знаете поляризацию другой.

В случае направленного излучения, т.е. излучения, возникающего при встрече античастиц и частиц, образуются запутанные фотоны. Эти два фотона запутаны в своем направлении и поляризации. В медицине это свойство используется в позитронно-эмиссионной томографии (ПЭТ).

Применение фотонов

Фотоны используются во многих областях. Одним из самых распространенных и наиболее важных применений является лазер.

Одиночные фотоны могут быть обнаружены различными методами. Одним из старейших методов является использование фотоумножителя. При этом используется фотоэлектрический эффект. Фотон с достаточной энергией попадает на металлическую пластину. Там он выбивает электрон из связи, что запускает каскадный эффект.

Фотонный фотоэффект

Рис. 4. Внешний фотоэффект. В фотоэлектрическом явлении свет проявляет корпускулярную природу — фотон выбивает одиночный электрон из металла.

Читайте также: