Эволюционное учение в свете достижений генетики кратко

Обновлено: 05.07.2024

Эволюционное учение (теория эволюции) — наука, изучающая историческое развитие жизни: причины, закономерности и механизмы. Различают микро- и макроэволюцию.

Микроэволюция — эволюционные процессы на уровне популяций, приводящие к образованию новых видов.

Макроэволюция — эволюция надвидовых таксонов, в результате которой формируются более крупные систематические группы. В их основе лежат одинаковые принципы и механизмы.

Развитие эволюционных идей

Учение Дарвина сводится к следующему:

  • каждая особь того или иного вида обладает индивидуальностью (изменчивость);
  • черты индивидуальности (хотя и не все) могут передаваться по наследству (наследственность);
  • особи производят б‚ольшее количество потомков, чем доживает до половой зрелости и начала размножения, то есть в природе существует борьба за существование;
  • преимущество в борьбе за существование остаётся за наиболее приспособленными особями, которые имеют больше шансов оставить после себя потомство (естественный отбор);
  • в результате естественного отбора происходит постепенное усложнение уровней организации жизни и возникновение видов.

Факторы эволюции по Ч. Дарвину — это

  • наследственность,
  • изменчивость,
  • борьба за существование,
  • естественный отбор.

На основе дарвинизма перестроились все биологические и многие другие естественные науки.
В настоящее время наиболее общепризнанной является синтетическая теория эволюции (СТЭ). Сравнительная характеристика основных положений эволюционного учения Ч. Дарвина и СТЭ дана в таблице.

Сравнительная характеристика основных положений эволюционного учения Ч. Дарвина и синтетической теории эволюции (СТЭ)

Признаки Эволюционная теория Ч. Дарвина Синтетическая теория эволюции (СТЭ)
Основные результаты эволюции 1) Повышение приспособленности организмов к условиям среды; 2) повышение уровня организации живых существ; 3) увеличение многообразия организмов
Единица эволюции Вид Популяция
Факторы эволюции Наследственность, изменчивость, борьба за существование, естественный отбор Мутационная и комбинативная изменчивость, популяционные волны и дрейф генов, изоляция, естественный отбор
Движущий фактор Естественный отбор
Трактовка термина естественный отбор Выживание более приспособленных и гибель менее приспособленных форм Избирательное воспроизводство генотипов
Формы естественного отбора Движущий (и половой как его разновидность) Движущий, стабилизирующий, дизруптивный

Возникновение приспособлений. Каждое приспособление вырабатывается на основе наследственной изменчивости в процессе борьбы за существование и отбора в ряду поколений. Естественный отбор поддерживает только целесообразные приспособления, которые помогают организму выживать и оставлять потомство.
Приспособленность организмов к среде не абсолютна, а относительна, так как условия среды обитания могут изменяться. Доказательством этого служат многие факты. Например, рыбы прекрасно приспособлены к водной среде обитания, но все эти адаптации совершенно непригодны для других сред обитания. Ночные бабочки собирают нектар со светлых цветков, хорошо заметных ночью, но часто летят на огонь и гибнут.

Элементарные факторы эволюции — факторы, изменяющие частоту аллелей и генотипов в популяции (генетическую структуру популяции).

Выделяют несколько основных элементарных факторов эволюции:
• мутационный процесс;
• популяционные волны и дрейф генов;
• изоляция;
• естественный отбор.

Мутационная и комбинативная изменчивость.

Мутационный процесс приводит к возникновению новых аллелей (или генов) и их сочетаний в результате мутаций. В результате мутации возможен переход гена из одного аллельного состояния в другое (А→а) или изменение гена вообще (А→С). Мутационный процесс, в силу случайности мутаций, не обладает направленностью и без участия других факторов эволюции не может направлять изменение природной популяции. Он лишь поставляет элементарный эволюционный материал для естественного отбора. Рецессивные мутации в гетерозиготном состоянии составляют скрытый резерв изменчивости, который может быть использован естественным отбором при изменении условий существования.
Комбинативная изменчивость возникает в результате образования у потомков новых комбинаций уже существующих генов, унаследованных от родителей. Источниками комбинативной изменчивости являются перекрёст хромосом (рекомбинация), случайное расхождение гомологичных хромосом в мейозе, случайное сочетание гамет при оплодотворении.

Популяционные волны и дрейф генов.

Популяционные волны (волны жизни) — периодические и непериодические колебания численности популяции как в сторону увеличения, так и в сторону уменьшения. Причинами популяционных волн могут быть периодические изменения экологических факторов среды (сезонные колебания температуры, влажности и т. д.), непериодические изменения (природные катастрофы), заселение видом новых территорий (сопровождается резкой вспышкой численности).
В качестве эволюционного фактора популяционные волны выступают в малочисленных популяциях, где возможно проявление дрейфа генов. Дрейф генов — случайное ненаправленное изменение частот аллелей и генотипов в популяциях. В малых популяциях действие случайных процессов приводит к заметным последствиям. Если популяция мала по численности, то в результате случайных событий некоторые особи независимо от своей генетической конституции могут оставить или не оставить потомство, вследствие этого частоты некоторых аллелей могут резко меняться за одно или несколько поколений. Так, при резком сокращении численности популяции (например, вследствие сезонных колебаний, сокращения кормовых ресурсов, пожара и т. д.) среди оставшихся в живых немногочисленных особей могут быть редкие генотипы. Если в дальнейшем численность восстановится за счёт этих особей, то это приведёт к случайному изменению частот аллелей в генофонде популяции. Таким образом, популяционные волны являются поставщиком эволюционного материала.
Изоляция обусловлена возникновением разнообразных факторов, препятствующих свободному скрещиванию. Между образовавшимися популяциями прекращается обмен генетической информацией, в результате чего начальные различия генофондов этих популяций увеличиваются и закрепляются. Изолированные популяции могут подвергаться различным эволюционным изменениям, постепенно превращаться в разные виды.
Различают пространственную и биологическую изоляцию. Пространственная (географическая) изоляция связана с географическими препятствиями (водные преграды, горы, пустыни и др.), а для малоподвижных популяций и просто с большими расстояниями. Биологическая изоляция обусловлена невозможностью спаривания и оплодотворения (в связи с изменением сроков размножения, строения или других факторов, препятствующих скрещиванию), гибелью зигот (вследствие биохимических различий гамет), стерильностью потомства (в результате нарушения конъюгации хромосом при гаметогенезе).
Эволюционное значение изоляции состоит в том, что она закрепляет и усиливает генетические различия между популяциями.
Естественный отбор. Изменения частот генов и генотипов, вызванные рассмотренными выше факторами эволюции, носят случайный, ненаправленный характер. Направляющим фактором эволюции является естественный отбор.

Естественный отбор — процесс, в результате которого выживают и оставляют после себя потомство преимущественно особи с полезными для популяции свойствами.

Отбор действует в популяциях, его объектами являются фенотипы отдельных особей. Однако отбор по фенотипам является отбором генотипов, так как потомкам передаются не признаки, а гены. В результате в популяции происходит увеличение относительного числа особей, обладающих определённым свойством или качеством. Таким образом, естественный отбор — это процесс дифференциального (выборочного) воспроизводства генотипов.
Действию отбора подвергаются не только свойства, повышающие вероятность оставления потомства, но и признаки, которые не имеют прямого отношения к воспроизводству. В ряде случаев отбор может быть направлен на создание взаимоприспособлений видов друг к другу (цветки растений и посещающие их насекомые). Также могут создаваться признаки, вредные для отдельной особи, но обеспечивающие выживание вида в целом (ужалившая пчела гибнет, но, нападая на врага, она сохраняет семью). В целом отбор играет творческую роль в природе, поскольку из ненаправленных наследственных изменений закрепляются те, которые могут привести к образованию новых групп особей, более совершенных в данных условиях существования.
Различают три основные формы естественного отбора: стабилизирующий, движущий и разрывающий (дизруптивный) (табл.).

Формы естественного отбора

Форма Характеристика Примеры Стабилизирующий Направлен на сохранение мутаций, ведущих к меньшей изменчивости средней величины признака. Действует при относительно постоянных условиях окружающей среды, то есть пока сохраняются условия, повлёкшие образование того или иного признака или свойства. Сохранение у насекомоопыляемых растений размеров и формы цветка, так как цветки должны соответствовать размерам тела насекомого-опылителя. Сохранение реликтовых видов. Движущий Направлен на сохранение мутаций, изменяющих среднюю величину признака. Возникает при изменении условий окружающей среды. Особи популяции имеют некоторые отличия по генотипу и фенотипу, и при длительном изменении внешней среды преимущество в жизнедеятельности и размножении может получить часть особей вида с некоторыми отклонениями от средней нормы. Вариационная кривая смещается в направлении приспособления к новым условиям существования. Возникновение у насекомых и грызунов устойчивости к ядохимикатам, у микроорганизмов — к антибиотикам. Потемнение окраски берёзовой пяденицы (бабочки) в развитых индустриальных районах Англии (индустриальный меланизм). В этих районах кора деревьев становится тёмной из-за исчезновения лишайников, чувствительных к загрязнению атмосферы, а тёмные бабочки менее заметны на стволах деревьев. Разрывающий (дизруптивный) Направлен на сохранение мутаций, ведущих к наибольшему отклонению от средней величины признака. Разрывающий отбор проявляется в том случае, если условия среды изменяются так, что преимущество приобретают особи с крайними отклонениями от средней нормы. В результате разрывающего отбора формируется полиморфизм популяции, то есть наличие нескольких, различающихся по какому-либо признаку групп. При частых сильных ветрах на океанических островах сохраняются насекомые либо с хорошо развитыми крыльями, либо с рудиментарными.

Краткая история эволюции органического мира

Возраст Земли около 4,6 млрд лет. Жизнь на Земле возникла в океане более 3,5 млрд лет назад.
Краткая история развития органического мира представлена в таблице. Филогенез основных групп организмов отражен на рисунке.
Историю развития жизни на Земле изучают по ископаемым останкам организмов или следам их жизнедеятельности. Они встречаются в горных породах разного возраста.
Геохронологическая шкала истории Земли разделена на эры и периоды.

Генетика изучает один из факторов эволюции - наследственную изменчивость, поэтому противопоставление генетики дарвинизму было искусственным. Открытие мутаций свидетельствовало о наличии материала для естественного отбора, а выявление материальных единиц наследственности - генов - доказывало возможность закрепления результатов действия отбора, сохранение и накопление полезных в данной среде мелких наследственных изменений.

Один из первых значительных шагов по объединению данных генетики и дарвинизма сделан отечественной наукой. Русский биолог С.С. Четвериков (1880-1959) впервые подвел генетическую основу под эволюционное учение Дарвина, в работе "О некоторых моментах эволюционного процесса с точки зрения современной генетики" (1926) показано, что в естественных условиях в природе внутри каждого вида существует огромное количество наследственных изменений, которые фенотипически не проявляются в силу рецессивности. Вид насыщен мутациями, составляющими неисчерпаемый материал для эволюции.

Итогом работы С.С. Четверикова и его последователей - советских ученых Н.В. Тимофеева-Ресовского, Н.К. Беляева, Б.Л. Астаурова, Н.П. Дубинина, Д.Д. Ромашова, английского исследователя Р.А. Фишера, американских ученых С. Райта и Ф. Г. Добржанского и многих других - явилось возникновение новой дисциплины - популяционной генетики.

Развитию популяционной генетики способствовал обмен многими идеями и методами между ведущими тогда генетическими школами - американской и советской. Многие работы советских генетиков печатались на европейских языках, среди них следует назвать Н.И. Вавилова, Н.В. Тимофеева- Ресовского, Г.К. Карпеченко, Н.К. Кольцова и др.

Основные положения синтетической теории эволюции в общих чертах можно выразить следующим образом:

· Материалом для эволюции служат наследственные изменения — мутации (как правило, генные) и их комбинации.

· Основным движущим фактором эволюции является естественный отбор, возникающий на основе борьбы за существование.

· Наименьшей единицей эволюции является популяция.

· Эволюция носит в большинстве случаев дивергентный характер, т. е. один таксон может стать предком нескольких дочерних таксонов.

· Эволюция носит постепенный и длительный характер. Видообразование как этап эволюционного процесса представляет собой последовательную смену одной временной популяции чередой последующих временных популяций.

· Вид состоит из множества соподчиненных, морфологически, физиологически, экологически, биохимически и генетически отличных, но репродуктивно не изолированных единиц — подвидов и популяций.

· Макроэволюция на более высоком уровне, чем вид (род, семейство, отряд, класс и др.), идет путем микроэволюции. Согласно синтетической теории эволюции, не существует закономерностей макроэволюции, отличных от микроэволюции. Иными словами, для эволюции групп видов живых организмов характерны те же предпосылки и движущие силы, что и для микроэволюции.

· Любой реальный (а не сборный) таксон имеет монофилети-ческое происхождение.

· Эволюция имеет ненаправленный характер, т. е. не идет в направлении какой-либо конечной цели.

Синтетическая теория эволюции вскрыла глубинные механизмы эволюционного процесса, накопила множество новых фактов и доказательств эволюции живых организмов, объединила данные многих биологических наук. Тем не менее синтетическая теория эволюции (или неодарвинизм) находится в русле тех идей и направлений, которые были заложены Ч. Дарвином.

Генетика изучает один из факторов эволюции - наследственную изменчивость, поэтому противопоставление генетики дарвинизму было искусственным. Открытие мутаций свидетельствовало о наличии материала для естественного отбора, а выявление материальных единиц наследственности - генов - доказывало возможность закрепления результатов действия отбора, сохранение и накопление полезных в данной среде мелких наследственных изменений.

Один из первых значительных шагов по объединению данных генетики и дарвинизма сделан отечественной наукой. Русский биолог С.С. Четвериков (1880-1959) впервые подвел генетическую основу под эволюционное учение Дарвина, в работе "О некоторых моментах эволюционного процесса с точки зрения современной генетики" (1926) показано, что в естественных условиях в природе внутри каждого вида существует огромное количество наследственных изменений, которые фенотипически не проявляются в силу рецессивности. Вид насыщен мутациями, составляющими неисчерпаемый материал для эволюции.

Итогом работы С.С. Четверикова и его последователей - советских ученых Н.В. Тимофеева-Ресовского, Н.К. Беляева, Б.Л. Астаурова, Н.П. Дубинина, Д.Д. Ромашова, английского исследователя Р.А. Фишера, американских ученых С. Райта и Ф. Г. Добржанского и многих других - явилось возникновение новой дисциплины - популяционной генетики.

Развитию популяционной генетики способствовал обмен многими идеями и методами между ведущими тогда генетическими школами - американской и советской. Многие работы советских генетиков печатались на европейских языках, среди них следует назвать Н.И. Вавилова, Н.В. Тимофеева- Ресовского, Г.К. Карпеченко, Н.К. Кольцова и др.

Основные положения синтетической теории эволюции в общих чертах можно выразить следующим образом:

· Материалом для эволюции служат наследственные изменения — мутации (как правило, генные) и их комбинации.

· Основным движущим фактором эволюции является естественный отбор, возникающий на основе борьбы за существование.

· Наименьшей единицей эволюции является популяция.

· Эволюция носит в большинстве случаев дивергентный характер, т. е. один таксон может стать предком нескольких дочерних таксонов.

· Эволюция носит постепенный и длительный характер. Видообразование как этап эволюционного процесса представляет собой последовательную смену одной временной популяции чередой последующих временных популяций.

· Вид состоит из множества соподчиненных, морфологически, физиологически, экологически, биохимически и генетически отличных, но репродуктивно не изолированных единиц — подвидов и популяций.

· Макроэволюция на более высоком уровне, чем вид (род, семейство, отряд, класс и др.), идет путем микроэволюции. Согласно синтетической теории эволюции, не существует закономерностей макроэволюции, отличных от микроэволюции. Иными словами, для эволюции групп видов живых организмов характерны те же предпосылки и движущие силы, что и для микроэволюции.

· Любой реальный (а не сборный) таксон имеет монофилети-ческое происхождение.

· Эволюция имеет ненаправленный характер, т. е. не идет в направлении какой-либо конечной цели.

Синтетическая теория эволюции вскрыла глубинные механизмы эволюционного процесса, накопила множество новых фактов и доказательств эволюции живых организмов, объединила данные многих биологических наук. Тем не менее синтетическая теория эволюции (или неодарвинизм) находится в русле тех идей и направлений, которые были заложены Ч. Дарвином.



Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰).


Опора деревянной одностоечной и способы укрепление угловых опор: Опоры ВЛ - конструкции, предназначен­ные для поддерживания проводов на необходимой высоте над землей, водой.

Генетика является научной дисциплиной, изучающей закономерности передачи наследственных признаков в ряде поколений.

Если говорить об онтогенетическом уровне развития, то генетика реализует собственные методы. Она занимается изучением закономерностей наследственности и изменчивости организма, а также методов, с помощью которых можно этими процессами управлять.

Г. Мендель — основоположник изучения генетических закономерностей. Благодаря ему стало понятно, что признаки организмов носят дискретный характер и определяются при помощи различных наследственных факторов. В своих работах ученый опирался на факты, глубоко анализировал проблемы и придерживался математической точности.

Также к заслугам ученого можно отнести описание существования доминантных признаков, проявляющихся у гибридов первого поколения, и рецессивных, подавляемых признаков. А еще ученый ввел в употребление понятия гомо- и гетерозиготности.

Под гомозиготными особями понимают особей, не дающих расщепление в первом поколении. Это так называемые чистые линии.

Определение 3Под гетерозиготными особями понимают особей, дающих расщепление в первом поколении.

Для упрощения процесса понимания специфики понятий гомозиготности и гетерозиготности в генетике появилось такое понятие как аллели или аллельные гены.

Аллели — гены, которые определяют развитие одного и того же признака и находятся на одинаковых участках гомологичных хромосом.

Расположение хромосом — ядра эукариотических клеток. Внутри хромосом есть молекулы ДНК, которые передают информацию вновь образованным клеткам. Участок молекулы ДНК — геном: он определяет возможность развития отдельного признака и синтеза отдельной молекулы.

Для любого диплоидного организма характерно содержание по две аллели любого гена в каждой клетке. Исключение — половые клетки или гаметы.

Помимо понятий гомо- и гетерозиготности Г. Мендель ввел понятия генотипа и фенотипа. В первом случае речь идет о совокупности всех генов организма, а во втором — всех внешних признаков организма. Формирование фенотипа организма происходит под воздействием окружающей среды и обусловлено генотипом.

В основе законов Г. Менделя — гибридологический метод, а также опыты по скрещиванию разных сортов гороха, исследованные строго математически. Скрещивание двух организмов получило название гибридизации. Соответственно, полученное в результате такого скрещивания потомство называется гибридным, а отдельная особь — гибридом.

Законы наследственности Г. Менделя

Собственные исследования позволили Г. Менделю вывести и сформулировать несколько законов наследственности:

  1. Первый закон или правило единообразия. Согласно этому закону, в случае моногрибридного скрещивания чистых линий гибриды первого поколения проявят доминантный признак фенотипа, который характерен одному из родителей.
  2. Второй закон или правило расщепления. В случае самоопыления гибридов первого поколения в потомстве будет присутствовать расщепление с образованием двух фенотипических групп в соотношении 3:1.
  3. Третий закон. Закон независимого наследования. Когда скрещиваются две отличающихся друг от друга особи (по 2 или более парам альтернативных признаков), происходит наследование генов и соответствующих им признаков независимо друг от друга. Также эти гены и признаки объединяются в самые разные комбинации — так же, как и в случае моногибридного скрещивания.

В развитии генетических представлений эти законы сыграли большую роль. Благодаря им сформировались прочные представления о принципах наследования в случае других живых организмов.

Эти законы пополнили знания о закономерностях изменчивости признаков, подняв генетику на новый уровень развития.

Влияние генетики на представления об эволюции

Очевидно влияние генетики как науки на процесс развития эволюционных представлений, а также на ряд вопросов, касающихся происхождения видов в природе. Данные генетики послужили основой для формулирования главных эволюционных аксиом, таких как:

  • у всех живых организмов есть программы, используемые для построения комплекса внутренних признаков (генотипа) и комплекса внешних признаков (фенотипа). В основе эволюционного процесса — наследование инструкции по производству генов и программы развития генетического аппарата, а также ненаправленных изменений, которые происходит внутри этого аппарата;
  • в процессе эволюции генетические программы не появляются заново. Происходит их редуцирование при помощи специализированного матричного способа. Жизнь в ходе эволюции формируется в виде процесса матричного копирования — позже происходит самосборка копий генов и белков;
  • генетические программы развития на протяжении эволюционного развития видов меняются не направленно. Случайно они становятся также полезными и приспособительными. Отбор случайных изменений — это не только фундамент эволюции жизни, но и одна из главных причин ее становления: без мутаций невозможно себе представить сам процесс отбора. В основе этой аксиомы лежат 2 принципа: статистической физики и неопределенности;
  • эволюцию предполагает процесс многократного увеличения силы случайных генетических изменений. Таким образом усиливается процесс влияния на организм внешней среды. По этой причине эволюционный процесс нередко бывает предсказуемым и легким для просчета.

Глядя на эти аксиомы можно сделать вывод о том, что эволюционный процесс является достаточно сложным, и что вполне допустимы различные теории касательно происхождения жизни на планете Земля.

На основе полученных генетических сведений формируется философская, естественнонаучная картина мира, которая носит комплексный и обоснованный характер.

Все это дает право говорить о взаимосвязи генетики и теории эволюции. При этом каждая область знания обладает уникальным значением для решения вопросов, которые относятся к базовым видам представления о бытие.

В начале XIX века французским ученым, Жаном Батистом Ламарком было создано эволюционное учение, в основе которого лежит внутреннее присущее организмам стремление к совершенству. Эта теория тесно переплелась с идеями креационизма, самозарождения жизни, поэтому ее трудно уложить в рамки современной науки.

Ламарк придавал большое значение так называемым "упражнениям" и "неупражнениям" органов, так как считал, что они передаются по наследству. То есть, говоря на ламаркистском языке: у жирафа длинная шея, потому что десятки поколений жирафов до него эту шею вытягивали - "упражняли".

Ламаркизм

Исходя из этой теории, органы, которыми животное усиленно пользуется, развиваются, а те, которые мало применяются, атрофируются и постепенно исчезают. Ламарк считал, что возникшие в органах изменения наследуются.

Если вы касались генетики, для вас должна быть очевидна ошибочность этих суждений. Разве могут изменения в соматических клетках наследоваться (на самом деле, у гидры при почковании могут, но у большинства животных это невозможно!). Только представьте: человек потерял на войне несколько пальцев руки, после войны у него рождается ребенок. Неужели можно предполагать, что и его ребенок родится без этих нескольких пальцев, которые отец потерял на войне?

Сейчас не вызывает сомнения, что потомству передается генетическая информация, лежащая в половых клетках (гаметах), но никак не в соматических.

Стремление к совершенству

Учение Дарвина

Возникновению учения Дарвина предшествовал ряд событий, о которых нельзя не упомянуть. Капитализм, начавшийся бурным развитием в первой половине XIX века в Англии, способствовал развитию промышленности и науки. Большие успехи делались естественными науками, учеными описывались новые виды животных и растений, селекционеры выводили новые породы и сорта.

И, конечно же, легендарное кругосветное путешествие Чарльза Дарвина на корабле "Бигль" c 1831 по 1836 год, во время которого он сделал очень важные наблюдения. Это путешествие сыграло решающую роль в возникновении учения.

Чарльз Дарвин

Во время путешествия Чарльз Дарвин заметил отличия между галапагосскими вьюрками, населяющими острова. У них имелись разнообразные формы клювов, что позволило им занять разные экологические ниши. Этот факт в дальнейшем позволит Чарльзу Дарвину сделать важнейший вывод о причинах расхождения признаков.

Свои эволюционные идеи Чарльз Дарвин сформулировал в труде "Происхождение видов путем естественного отбора", опубликованного в 1859 году.

Формы клюва у галапагосских вьюрков

  • Основа эволюционного процесса - наследственная изменчивость
  • Каждый вид способен к неограниченному размножению, однако ограниченность жизненных ресурсов препятствует этой способности
  • Главные движущие силы эволюции - борьба за существование и естественный отбор, материал для которых поставляет наследственная изменчивость (новые признаки у особей). В результате выживают наиболее приспособленные особи.
  • В результате естественного отбора приспособленные особи выживают, размножаются и таким образом накапливают приспособительные признаки

Именно в результате накопления особями таких различий, возникают новые виды, отличающиеся друг от друга по строению, физиологии и пр. Этим можно объяснить разнообразие форм клювов у вьюрков, на которые обратил внимание Дарвин.

Форма клюва вьюрков

Многие ошибочно приписывают фразу "Человек произошел от обезьяны" Дарвину, это не совсем верно. Лучше всего в этом вопросе дать слово самому Дарвину: "Так как человек, с генеалогической точки зрения, принадлежит к узконосым обезьянам Старого Света, то мы должны заключить, сколько бы ни протестовала наша гордость против подобного вывода, что наши древние родоначальники должны быть отнесены к этому семейству. Мы не должны, однако, впасть в другую ошибку, предполагая, что древний родоначальник всего обезьяньего рода, не исключая и человека, был тождественен или даже близко сходен с какой-либо из ныне существующих обезьян."

Очевидно, Дарвин не считал, что человек произошел от обезьяны. В его словах мы видим лишь указание на общего предка человека и обезьяны, не более. Дарвин - уникальный гений своего времени, сумевший собрать разрозненные факты и привести их к общей концепции. Его теория постепенно была принята большинством ученых, даже католическая церковь не решилась предать его анафеме.

Эволюция человека

Синтетическая теория эволюции (СТЭ)

Какая же из многих теорий эволюции принята на сегодняшний день в научном сообществе? Как вы уже догадались, это - синтетическая теория эволюции, которая включает не только дарвинизм, но и генетику, систематику, палеонтологию.

Я должен предупредить вас, что некоторые термины, скорее всего, окажутся новыми. Обязательно вернитесь к эволюционным теориям, когда тщательно освоите генетику и научитесь решать генетические задачи, тогда вам откроются эти теории во всей своей красе.

  • Элементарная единица эволюции - популяция
  • Мутации и рекомбинативная изменчивость служат основным материалом для эволюции
  • Ненаправленными, случайными факторами эволюции являются мутации, волны численности
  • Единственный направленный фактор эволюции - естественный отбор
  • Эволюция носит дивергентный характер: от одного таксона может произойти несколько дочерних, при этом каждый вид имеет одну единственную предковую популяцию
  • Эволюция носит постепенный характер. Видообразование представляет собой последовательное превращение одной популяции в другую

В СТЭ авторы стремились обобщить все открытые генетикой факты и связать их с дарвинизмом. Большой вклад в создание СТЭ внесли Северцов А.Н. и Шмальгаузен И.И.

Северцов А.Н. и Шмальгаузен И.И.

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.

Эволюцио́нное уче́ние (также эволюционизм и эволюционистика) — система идей и концепций в биологии, утверждающих историческое прогрессивное развитие биосферы Земли, составляющих её биогеоценозов, а также отдельных таксонов и видов, которое может быть вписано в глобальный процесс эволюции вселенной. Первые эволюционные идеи выдвигались уже в античности, но только труды Чарльза Дарвина сделали эволюционизм фундаментальной концепцией биологии. Хотя единой и общепризнанной теории биологической эволюции до сих пор не создано, сам факт эволюции сомнению ученых не подвергается, так как имеется огромное число подтверждающих научных фактов и теорий.

Содержание

История эволюционного учения

Эволюционные идеи в античности

По мнению некоторых исследователей, источник эволюционных идей проистекает из космогоний древних религий. [1] Идеи творения и развития вселенной и жизни идут в них параллельно друг другу, иногда тесно переплетаясь. Но мифический способ мышления мешает выкристаллизовать из них стройные концепции. Первую же такую концепцию из дошедших до нас разработал ученик Фалеса Милетского Анаксимандр. О схеме Анаксимандра мы знаем от историка I века до н. э. Диодора Сицилийского. В его изложении, когда молодая Земля осветилась Солнцем, её поверхность сначала затвердела, а потом забродила, возникли гниения, покрытые тонкими оболочками. В этих оболочках и зародились всевозможные породы животных. [2] Человек же будто бы возник из рыбы или похожего на рыбу животного. [3] Несмотря на оригинальность, рассуждения Анаксимандра чисто умозрительны и не подкреплены наблюдениями. Другой античный мыслитель, Ксенофан, уделял наблюдениям больше внимания. Так, он отождествлял окаменелости, что находил в горах, с отпечатками древних растений и животных: лавра, раковин моллюсков, рыб, тюленей. Из этого он заключал, что суша некогда опускалась в море, неся гибель наземным животным и людям, и превращалась в грязь, а когда поднималась, отпечатки засыхали. [3] Гераклит, несмотря на пропитанность его метафизики идеей постоянного развития и вечного становления, не создал никаких эволюционных концепций. [1] Хотя некоторые авторы все же относят его к первым эволюционистам. [4]

Средневековье и возрождение

Эволюционные идеи Нового времени

Теория Ламарка

Катастрофизм и трансформизм

Эволюционисты — современники Дарвина

Таким образом, ещё до выхода знаменитого труда в свет, всем ходом развития естествознания уже была подготовлена почва для восприятия учения об изменяемости видов и отборе.

Труды Дарвина



Единственная иллюстрация к книге Чарльза Дарвина On the Origin of Species… (1859): схема дивергенции видов.



Развитие идей Дарвина

В поддержку Дарвина начинают выступать такие ученые, как американский ботаник Аза Грэй (1810—1888); Альфред Уоллес, Томас Генри Гексли (Хаксли; 1825—1895) — в Англии; классик сравнительной анатомии Карл Гегенбаур (1826—1903), Эрнст Геккель (1834—1919), зоолог Фриц Мюллер (1821—1897) — в Германии. С критикой идей Дарвина выступают не менее заслуженные ученые: учитель Дарвина, профессор геологии Адам Седжвик (1785—1873), известнейший палеонтолог Ричард Оуэн, крупный зоолог, палеонтолог и геолог Луи Агассис (1807—1873), немецкий профессор Генрих Георг Бронн (1800—1862).



Один из символов эволюционизма: схема, помещённая на фронтисписе к работе Томаса Хаксли Man’s place in Nature (1863), демонстрирующая сходство скелетов человекообразных обезьян и человека.

Интересен факт того, что книгу Дарвина на немецкий язык перевел именно Бронн, не разделявший его взглядов, но считающий, что новая идея имеет право на существование (современный эволюционист и популяризатор Н. Н. Воронцов отдает в этом должное Бронну, как истинному ученому). Рассматривая взгляды другого противника Дарвина — Агассиса, заметим, что этот ученый говорил о важности сочетания методов эмбриологии, анатомии и палеонтологии для определения положения вида или иного таксона в классификационной схеме. Таким образом, вид получает свое место в естественном порядке мироздания.

Если в середине XVIII века казалось непреодолимым противоречие между трансформизмом (непрерывным изменением) и дискретностью таксономических единиц систематики, то в XIX веке думалось, что градуалистические древа, построенные на основе родства, вошли в противоречие с дискретностью наследственного материала. Эволюция путем визуально различимых крупных мутаций не могла быть принята градуализмом дарвинистов.

В свете новейших биологических идей происходит отдаление от закона непрерывности, теперь уже не генетиков, а самих эволюционистов. Так известный эволюционист С.Дж. Гулд поднял вопрос о пунктуализме (прерывистом равновесии), в противовес градуализму.

Современные теории биологической эволюции

В середине XX века на основе теории Дарвина сформировалась синтетическая теория эволюции (сокращённо СТЭ). СТЭ является в настоящее время наиболее разработанной системой представлений о процессах видообразования. Основой для эволюции по СТЭ является динамика генетической структуры популяций. Основным движущим фактором эволюции считается естественный отбор. Однако, наука не стоит на месте и, достигнутые передовыми теоретическими разработками современнейшие положения отличаются от первоначальных постулатов синтетической теории эволюции. Существует также группа эволюционных представлений, согласно которым видообразование (ключевой момент биологической эволюции) происходит быстро — за несколько поколений. При этом влияние каких-либо длительно действующих эволюционных факторов исключается (кроме отсекающего отбора). Подобные эволюционные воззрения называются сальтационизмом. Сальтационизм является слабо разработанным направлением в теории эволюции. Показано, что видообразование у растений на основе полиплоидии носит сальтационный характер.

Синтетическая теория эволюции

Синтетическая теория в её нынешнем виде образовалась в результате переосмысления ряда положений классического дарвинизма с позиций генетики начала XX века. После переоткрытия законов Менделя (в 1901 г.), доказательства дискретной природы наследственности и особенно после создания теоретической популяционной генетики трудами Р. Фишера (1918—1930), Дж. Б. С. Холдейна-младшего (1924), С. Райта (1931; 1932), учение Дарвина приобрело прочный генетический фундамент.

Толчок к развитию синтетической теории дала гипотеза о рецессивности новых генов. Говоря языком генетики второй половины XX века, эта гипотеза предполагала, что в каждой воспроизводящейся группе организмов во время созревания гамет в результате ошибок при репликации ДНК постоянно возникают мутации — новые варианты генов.

Нейтральная теория молекулярной эволюции

Теория нейтральной эволюции, основным разработчиком которой является Мотоо Кимура, предполагает, что в эволюции важную роль играют случайные мутации, не имеющие приспособительного значения. В частности, в небольших популяциях естественный отбор, как правило, не играет решающей роли. Теория нейтральной эволюции хорошо согласуется с фактом постоянной скорости закрепления мутаций на молекулярном уровне, что позволяет, к примеру, оценивать время расхождения видов.

Теория нейтральной эволюции не оспаривает решающей роли естественного отбора в развитии жизни на Земле. Дискуссия ведётся касательно доли мутаций, имеющих приспособительное значение. Большинство биологов признают ряд результатов теории нейтральной эволюции, хотя и не разделяют некоторые сильные утверждения, первоначально высказанные М. Кимурой. Теория нейтральной эволюции объясняет процессы молекулярной эволюции живых организмов на уровнях не выше организменных. Но для обьяснения синтетической эволюции она не подходит по математическим соображениям. Исходя из статистики для эволюции, мутации могут как возникать случайно, вызывая приспособления, так и те изменения, которые возникают постепенно. Теория нейтральной эволюции не противоречит теории естественного отбора, она лишь объясняет механизмы проходящие на клеточном, надклеточном и органном уровнях.

Эволюционное учение и религия

Некоторые верующие разных религий не находят эволюционное учение противоречащим их вере. [13] Теория биологической эволюции (наряду со многими другими науками — от астрофизики до геологии и радиохимии) противоречит только буквальному прочтению сакральных текстов, повествующих о сотворении мира, и для некоторых верующих это является причиной отвержения практически всех выводов естественных наук, изучающих прошлое материального мира (буквалистский креационизм).

Признание Эволюции Католической церковью

Читайте также: