Энергетический обмен видеоурок кратко

Обновлено: 04.07.2024

Метаболизм состоит из двух взаимно противоположных, но взаимосвязанных процессов пластического и энергетического обмена.

Энергетический обмен необходим организму для образования энергии, которая, в свою очередь, будет израсходована на важные биологические процессы, происходящие в клетках, тканях, органах, в том числе и на пластический обмен.

Все наши движения, мыслительные и физиологические процессы (пищеварение, кровообращение, выделение), любое проявление жизнедеятельности требуют затрат энергии.

Энергетический обмен также называют катаболизм или диссимиляцией. Это достаточно длительный процесс, который происходит вплоть до того момента, пока все питательные вещества, поступившие в организм, не расщепятся до углекислого газа, воды или других простых соединений, которые организм уже не сможет использовать.

Этот процесс аналогичен горению, при котором выделяется вода, углекислый газ и огромное количество энергии.

Катаболизм- это прежде всего многоступенчатый процесс, он не нуждается в высоких температурах, а выделившаяся энергия по большей части не переходит в тепловую, чтобы безвозвратно рассеяться, а запасается для дальнейших нужд в виде молекул АТФ.

Все это делает этот процесс невероятно эффективным и уникальным!


Первый этап энергетического обмена (подготовительный)

Энергетический обмен- это совокупность химических реакций постепенного распада органических соединений, сопровождающихся высвобождением энергии, часть которой расходуется на синтез АТФ.

Каким же образом энергия реакции расщепления используется клеткой?

Ученые обнаружили, что любая деятельность клетки всегда точно совпадает во времени с распадом молекул АТФ.

К примеру, при синтезе белков, углеводов, жиров в клетке идет активный распад АТФ.

В результате опытов было обнаружено, что любая работа мышц сопровождается активным расщеплением АТФ в их клетках.

Ученые сделали вывод, что именно АТФ является непосредственным источником энергии, необходимой для сокращения мышц и для синтеза сложных соединений.

Известно, что в среднем содержание АТФ в клетках составляет от 0,05% до 0,5% ее массы, то есть запас молекул АТФ в организме ограничен, и после распада АТФ должно произойти его восстановление.

Многоуровневый процесс энергетического обмена- это последовательные реакции восстановления молекул АТФ, которые происходят при участии ферментов.

Это можно сравнить с аккумулятором для телефона- когда его заряд садится, то устройство необходимо вновь зарядить.

Если в клетке постоянно измерять содержание АТФ, то его количество существенно не изменяется, но количество углеводов, белков, жиров будет уменьшаться. Это объясняется тем, что реакции расщепления углеводов, белков, жиров и других веществ обеспечивают быстрое и полное восстановление израсходованной АТФ.

В каждой клетке нашего организма в течение суток АТФ примерно 10 тысяч раз распадается и вновь заново образуется.

Таким образом, АТФ- это единый и универсальный источник энергии для функциональной деятельности клетки.

Следует отметить, что возможна передача энергии из одних частей клетки в другие.

Синтез АТФ может происходить в одном месте и в одно время, а использоваться может в другом месте и в другое время.

Синтез АТФ в основном происходит в митохондриях, образовавшаяся здесь АТФ по каналам эндоплазматической сети направляется в те места клетки, где возникает потребность в энергии.


Это одно из проявлений высочайшей организованности и упорядоченности всех химических реакций, протекающих в клетке.

Растения могут преобразовывать энергию солнечных лучей в АТФ на первом этапе фотосинтеза; хемосинтезирующие бактерии способны запасать энергию в форме АТФ, получаемую при реакциях окисления различных неорганических соединений.

Следует отметить, что фотосинтезирующие и хемосинтезирующие организмы также способны получать энергию благодаря окислению органических веществ, синтезированных в собственных клетках из неорганических соединений.

У гетеротрофов (животных, грибов) образование АТФ идет в клетках при помощи реакций окисления органических веществ, поступающих вместе с пищей.

В клетках растений:

Крахмал →глюкоза → АТФ

В клетках животных:

гликоген → глюкоза → АТФ

Энергетический обмен делится на три последовательных этапа:

  • подготовительный этап
  • бескислородный этап
  • кислородный этап

Подготовительный этап

Вся пища, которая поступает в наш организм, подвергается ферментативному расщеплению, при котором:

  • белки расщепляются до аминокислот
  • липиды расщепляются до глицерина и жирных кислот
  • сложные углеводы (крахмал) расщепляются до глюкозы

На этом этапе вся выделившаяся при расщеплении веществ энергия рассеивается в виде тепла.


У одноклеточных животных подготовительный этап протекает в клетках, где и происходит расщепление сложных органических веществ на простые вещества под действием ферментов лизосом.

У многоклеточных организмов расщепление веществ начинает происходить в пищеварительном канале, а далее в клетках под действием лизосом.

У меня есть дополнительная информация к этой части урока!


В ротовой полости человека фермент α-амилаза расщепляет полисахариды (крахмал, гликоген) до мальтозы (дисахарида).

Фермент мальтаза, которая входит в состав слюны, действует на мальтозу и расщепляет ее до глюкозы.

Если долго пережевывать крахмалистую пищу, то можно почувствовать сладковатый привкус, это означает, что небольшая часть крахмала расщепилась до глюкозы (сладкий вкус возникает при пережевывании хлеба).

В желудке идет начальная стадия расщепления белков, гидролиз, под влиянием фермента пепсина.

В желудке небольшая часть жиров гидролизуется под действием липазы, а их переваривание происходит в тонком кишечнике.

Общим местом окончательного переваривания всех пищевых макроэлементов (белки, жиры, углеводы) является верхний отдел тонкой кишки - двенадцатиперстная кишка. Именно здесь происходит образование простых соединений- глюкозы, аминокислот и жирных кислот

Вывод: на первом этапе энергетического обмена происходит распад сложных органических веществ на простые с выделением энергии, которая вся рассеивается в виде тепла.

Пройти тест и получить оценку можно после входа или регистрации

Второй этап энергетического обмена (гликолиз)

Ключевое место в метаболизме всех типов клеток занимают реакции с участием сахаров, например, глюкозы, потому что процесс расщепления глюкозы идет наиболее быстро и легче, ведь организму необходимо достаточно быстро восстанавливать энергетические затраты.

Аминокислоты и белки использовать для образования энергии слишком не выгодно, так как большая их часть является структурными компонентами клеток. В этом случае организм разрушал бы сам себя.

Жиры могут использоваться для получения энергии, но главным образом после того, как израсходовались запасы углеводов, ведь жиры из-за своей гидрофобности очень медленно окисляются и малоподвижны в клетках. При этом из жиров в отсутствие кислорода АТФ получить нельзя, а из глюкозы можно.

Поэтому организм выбирает наиболее выгодный путь получения энергии в виде молекул АТФ за счет расщепления, в первую очередь, глюкозы.

Второй этап энергетического обмена называют бескислородным, так как процесс расщепления глюкозы и образования молекул АТФ идет без участия кислорода.

Гликолиз идет в цитоплазме клеток без участия кислорода. Он состоит из последовательных реакций, каждая из которых катализируется общим ферментом.

В ходе реакций гликолиза молекула глюкозы С6Н12О6 распадается на две трехуглеродные молекулы пировиноградной кислоты (ПВК)- С3Н4О3, при этом суммарно образуются две молекулы АТФ и вода.

НАД+ (никотинамидадениндинуклеотид) - кофермент, имеющийся во всех живых клетках.

НАД+ переносит электроны из одной реакции в другую.

НАД+ является окислителем и забирает электрон от другой молекулы и один водород, восстанавливаясь в НАД H, который далее служит восстановителем и уже отдаёт электроны.

Уравнение реакции гликолиза:


У меня есть дополнительная информация к этой части урока!


Клетка кроме аккумулятора АТФ использует и другие вещества, например, аккумуляторы водорода.

Существуют приемщики (акцепторы) водорода- ферменты, которые могут брать у одних веществ водород и переносить его к другим веществам.

Таких переносчиков три типа:

Еще существует переносчик остатков карбоновых кислот, который называется КоА (КоэнзимА).

НАДФ (никотинамидадениндинуклеотидфосфат)- отличается от НАД содержанием ещё одного остатка фосфорной кислоты.

НАДФ принимает на себя водород и электроны окисляемого соединения и передаёт их на другие вещества.

В хлоропластах растительных клеток НАДФ восстанавливается при световых реакциях фотосинтеза и затем обеспечивает водородом синтез углеводов при темновых реакциях.

ФАД+ присоединяет к себе сразу два атома водорода и превращается ФАД Н2.

Все эти вещества активно участвуют в процессах образования молекул АТФ

Дальнейшая судьба ПВК может быть различной и зависит от того, какой тип извлечения энергии предпочитают организмы: анаэробный (бескислородный) или аэробный (кислородный).

Например, паразитические черви, живущие в кишечнике организмов хозяев, выбирают бескислородный путь преобразования ПВК, так как они мало подвижны и их клеткам хватает энергии, которая образуется при гликолизе глюкозы.

Эти виды паразитов выбирают именно такой путь преобразования энергии еще и потому, что при распаде глюкозы образуются ядовитые вещества (ацетон, уксусная кислота и этиловый спирт), которые действуют угнетающе на организм хозяина и ослабляют его иммунитет, что, в свою очередь, помогает паразиту существовать в агрессивной для него среде.


У меня есть дополнительная информация к этой части урока!


Есть такое заболевание (гиполактазия), при котором человек не может усваивать лактозу, которая является основным сахаром, содержащимся в молоке и молочных продуктах.

Если человек употребил пищу с содержанием лактозы, то это может привести к тому, что кишечная палочка (бактерия нашего кишечника) всю поступившую лактозу начинает перерабатывать сама, в результате чего активно размножается и выделяет много ядовитых веществ, которые образовались в ходе гликолиза (распада сахара).

Организм пытается вывести из себя все эти вредные вещества, усиливается работа кишечника, происходит резь и вздутие живота из-за ядовитых веществ и активного размножения бактерий.

Но в целом кишечная палочка помогает человеку расщепить те вещества, которые не способен расщепить он сам (к примеру, клетчатку) и получить витамины группы В

Образовавшаяся в результате гликолиза пировиноградная кислота подвергается дальнейшему преобразованию уже на внутренней мембране митохондрий, то есть переходит на третий этап энергетического обмена.

Вывод: на втором этапе энергетического обмена, гликолизе, из 1 молекулы глюкозы образуется 2 молекулы ПВК и 2 молекулы АТФ.


Если в клетку прекратилась подача кислорода, то ПВК подвергается брожению, к примеру, в клетках растений, которые были затоплены во время весенних паводков.

В зависимости от того, какие конечные продукты образуются, выделяют несколько видов брожения.

Рассмотрим основные виды:

1. Спиртовое брожение

Встречается в основном у дрожжей и растений.

Конечными продуктами являются этанол и углекислый газ.


При доступе кислорода процесс брожения ослабевает, на смену ему приходит дыхание.

Подавление спиртового брожения кислородом называется эффектом Пастера.

Спиртовое брожение используется в пищевой промышленности: хлебопекарной, виноделии.

При этом типе брожения сначала происходит образование уксусного альдегида, а затем этилового спирта:


2. Молочнокислое брожение

Осуществляется с помощью лактобактерий, бифидобактерий, стрептококков.

Из ПВК они образуют молочную кислоту, ацетон, янтарную и уксусную кислоту.

Молочнокислые бактерии широко используются в молочной промышленности для получения молочнокислых продуктов, а также в создании пробиотиков.


У меня есть дополнительная информация к этой части урока!


Пробиотики- класс микроорганизмов и веществ микробного и иного происхождения, использующихся в терапевтических целях, а также пищевые продукты и биологически активные добавки, содержащие живые микрокультуры.

Пробиотики обеспечивают при систематическом употреблении в пищу благоприятное воздействие на организм человека в результате нормализации состава и (или) повышения биологической активности нормальной микрофлоры кишечника

У животных и человека при недостатке кислорода также может происходить молочнокислое брожение с образованием молочной кислоты.

В мышцах есть запасы углеводов в виде гликогена. При долгой и усиленной работе, кровь не успевает снабдить мышцы достаточным количеством кислорода, в результате чего мышечные клетки вынуждены переходить на бескислородный способ получения АТФ.

При этом образуется молочная кислота, вызывающая боли в мышцах.


Квашение- разновидность молочнокислого брожения, в процессе которого образуется молочная кислота, оказывающая на продукты (наряду с добавляемой поваренной солью) консервирующее и размягчающее действие.

Квашение применяется при консервировании овощей и в кожевенном производстве.

У меня есть дополнительная информация к этой части урока!


Скелетные мышцы человека неоднородны. Мышца может состоять из нескольких типов волокон в разных пропорциях.

  • красные мышечные волокна (медленные, аэробные)
  • белые мышечные волокна (быстрые, анаэробные).

Красные волокна содержат много митохондрий и обладают высокой способностью к аэробному окислению глюкозы и жирных кислот. Они хорошо снабжаются кровью и приспособлены к продолжительной работе.

В белых мышечных волокнах мало митохондрий, но много запасов гликогена, в них с большой скоростью происходит анаэробный (бескислородный) распад гликогена с образованием молочной кислоты.

Мышцы с большой долей белых волокон быстрее переходят от состояния покоя к максимальной активности, сокращаются энергично, но в них быстрее наступает утомление: запасы гликогена в мышечных клетках быстро истощаются, а поступление глюкозы из крови и ее использование происходят медленно.

1

3. Маслянокислое брожение

Масляная кислота, бутанол, ацетон, уксусная и ряд других органических кислот являются продуктами сбраживания углеводов бактериями- сахаролитическими анаэробами.

Благодаря определению наличия тех или иных кислот в клетке можно установить, какие бактерии образовали эти кислоты.

Знание механизмов брожения имеет большое практическое значение не только для живых организмов, но и для человека:

  • для разработки методов диагностики инфекционных заболеваний, по набору ферментов или кислот, которые образовались во время брожения
  • для создания современных биотехнологий молочнокислых продуктов, сыра, хлеба, вина и многих других продуктов питания

Недостатком процессов брожения является извлечение незначительной доли той энергии, которая заключена в связях органических молекул.

Для бактерий, паразитических видов, живущих в бескислородной среде, энергии, образующейся в результате брожения или гликолиза, достаточно для существования, поэтому они, в отличие от человека, не нуждаются в кислороде.

Также брожение является жизненно важным процессом для хвойных растений. В зимний период устьица хвои закупориваются смолой и газообмен с окружающей средой практически прекращается, в этом случае для получения энергии в клетках активно идет процесс спиртового брожения.

Организму для построения новых структур и получения энергии постоянно необходимы питательные вещества, вода, кислород и минеральные соли. В процессе жизнедеятельности образуются конечные продукты метаболизма, которые зачастую оказываются токсичными и удаляются из организма. Совокупность всех этих химических реакций называется обменом веществ. Он состоит из двух взаимосвязанных одновременно протекающих процессов: пластического и энергетического обмена.

В ходе пластического обмена, или ассимиляции в организм поступают вещества, из которых образуются новые структуры, то есть происходит биосинтез. При энергетическом обмене, или диссимиляции происходит распад и окисление органических веществ, получение из них энергии. Энергия частично рассеивается по организму в виде тепла, но основная часть идёт на синтез АТФ. Если клетка нуждается в энергии, АТФ разрушается и высвободившаяся энергия расходуется на протекание процессов жизнедеятельности.

Суточные затраты энергии каждого человека индивидуальны и зависят от характера деятельности, массы, возраста, условий жизни и т.д. Энергия расходуется даже при полном физиологическом покое, а при мышечных нагрузках расход повышается.

Для получения энергии все питательные вещества должны расщепиться до более простых соединений: белки — до аминокислот, углеводы — до глюкозы, жиры — до глицерина и жирных кислот. Эти процессы происходят под действием ферментов и определяют подготовительный этап обмена веществ.

Белки под действием пищеварительных ферментов распадаются до аминокислот, которые всасываются в тонком кишечнике и с током крови разносятся по всему организму. В особых структурах клетки — рибосомах, происходит синтез новых белков, необходимых организму.

При распаде аминокислоты образуют воду, углекислый газ и аммиак, который в печени превращается в мочевину, а затем выводится из организма в составе мочи. Углекислый газ выводится в процессе дыхания.

Углеводы под действием ферментов желудочно-кишечного тракта распадаются до глюкозы, которая, всосавшись через ворсинки тонкого кишечника, с током крови разносится по всему организму. При распаде глюкозы образуются углекислый газ и вода, а также выделяется энергия. Пройдя через печень, глюкоза откладывается там в виде гликогена. Когда в организме наблюдается нехватка глюкозы, гликоген снова превращается в глюкозу, тем самым восполняя её недостаток.

Жиры в кишечнике расщепляются до глицерина и жирных кислот и всасываются в лимфатические капилляры ворсинок тонкой кишки и далее с током лимфы поступают в кровь. В виде мельчайших капелек жиры разносятся по всему организму и откладываются в подкожной жировой клетчатке и прослойке между органами, а часть служит для получения энергии. Так, большая часть энергетических потребностей мышц, печени, почек покрывается за счёт окисления жиров. Продукты распада жиров (углекислый газ и вода) выводятся таким же путём, как продукты расщепления углеводов.

Расщепление жиров

Организму нужны не только белки, жиры и углеводы, но и минеральные соли, микроэлементы, содержащиеся в организме в ничтожно малых количествах (долях миллиграмма). В теле человека содержатся почти все элементы периодической системы, но, к сожалению, роль многих из них до сих пор не изучена. В организме находятся разные макроэлементы. В сутки в организм должно поступать: 4,4 г натрия, 5 г хлора, 2 г калия, 1 г кальция, 1 г фосфора, 0,2 г железа.

Попадая в организм, минеральные вещества не расщепляются в кишечнике, а сразу всасываются и разносятся с кровью к различным органам и тканям.

Важнейшее место в обмене веществ организма занимает вода. Взрослый человек на 65 % состоит из воды, а человеческий зародыш содержит около 90 % воды. Без воды человек в состоянии прожить 5-6 дней, в то время как без еды люди могут обходиться около 50 дней. В результате обмена веществ в сутки расходуется 2 — 2,5 л воды. Часть этого объёма человек восполняет пищей, но около 1,5 л организм должен получать в виде жидкости.

Итак, в нашем организме непрерывно происходят сложные биохимические процессы, сопровождающиеся превращением энергии. Эти процессы и составляют обмен веществ.

Минпросвещения России
Российское образование
Рособрнадзор
Русское географическое общество
Российское военно-историческое общество
Президентская бибилиотека

Энергетический обмен (ЭО) – это совместная деятельность химических реакций вследствие распада органических сцеплений с целью освобождения энергии для расхода на синтезирование аденозинтрифосфорную кислоту ( АТФ).

Что такое АТФ

Постоянным источником энергии для существующих клеток живых организмов является АТФ. Она начинает свою деятельность после реакции фосфорилирования – добавления атомов фосфорного соединения к молекулам аденозиндифосфата (АДФ) (рис.1).

Рис. 1.Строение молекулы АТФ

  • Подготовительная
  • Бескислородная
  • Кислородная

Рис. 2. Этапы энергетического обмена

Рис. 2. Этапы энергетического обмена Организмы, живущие без воздуха и не нуждающиеся в поступлении воздуха для энергетического запаса, при нехватке кислорода проходят ассимиляцию в две фазы, без кислородного участия.

Важно! В двухэтапном случае выделяется на порядок меньше силы, нежели при трехэтапной модели энергетического процесса.

Этапы энергетического обмена

Подготовительный

На этой стадии происходит распад крупных пищевых полимеров на мелкие элементы. В желудочно-кишечном тракте (ЖКТ) многоклеточных существ происходит ферментативный пищеварительный распад, а у одноклеточных – он осуществляется лизосомами (мембранными ограноидами, основной функцией которых является расщепление биополимеров). Полисахариды в свою очередь подвергаются распаду на дисахариды и моносахариды. Далее цепочка продолжается: белки преобразуются в аминокислоты, а жиры – в чистый глицерин и другие жирные соединения. В результате вышеописанных реакций выделяется небольшая часть силы, расходуемая в виде тепла, вследствие чего не может образоваться АТФ. Полученные мономеры имеют возможность участвовать в метаболизме для синтезирования нужных веществ с целью получения силы. Живой материей первоочередно используются углеводы, а вот жиры – источник энергии первого резерва, исчерпываются по окончании углеродного запаса. В виде исключения выступают скелетные мышцы, в которых предпочтение отдается наличию жиров, а не глюкозе. При этом белки расходуются намного позже, после исчерпания запаса углеводов и жиров.

Рис. 3. Гликолиз глюкозы

Бескислородный

Второй этап ЭО называют гликолизом. Осуществляется он в цитоплазме материи. Глюкоза - главный источник освобожденной энергии. Анаэробный гликолиз происходит вследствие бескислородного распада той самой глюкозы с целью превращения ее в лактат. Уставшие спортсмены чувствуют накопление данного вещества в мышцах после усиленной тренировки или соревнования. Для этого этапа характерно ферментативное деление органических частиц после работы первого этапа. В силу того, что глюкоза считается самым примитивным наполнением для живой ткани в виде продукта распада полисахаридов, вторую стадию можно увидеть на примере ее гликолиза (рис.3). Гликолиз – многоуровневый процесс бескислородного распада микрочастиц глюкозы, которая содержит шесть элементов водорода и две единицы пировиноградного соединения (пируват). В процессе гликолиза в случае распадения 1 моля глюкозы выделится приблизительно 200 кДж энергии, где 60% освободится в виде тепла, а 40% – остается для синтезирования нескольких частиц АТФ из нескольких частиц АДФ.

Если в окружении пировиноградного соединения есть кислород, то он переходит из цитоплазмы в важную часть составляющей клетки – митохондрию, где и происходит ее участие в 3 этапе метаболизма. А вот при отсутствии воздуха в организме, СН3 (СО)СОО Н может быть преобразовано только лишь в C3H 6 O 3 . Для микроорганизмов, спокойно живущих без воздуха, характерно поступление силы в процессе брожения. В этом случае первая стадия совпадает с гликолизом: преобразование C 6 H12O6 до СН3 (СО)СООН , и далее зависимость ее от ферментов, присутствующих в материи. Так, например, СН2 (СО)СООН может образовать C 2 H 5 OH, CH 3 COOH или же C 3 H 6 O 3 кислоты. Этот процесс называется молочным брожением. Благодаря брожению, получаются продукты, используемые человеком, например, спирт, пиво, винный напиток и кисломолочные продукты.

Важно! В результате процесса брожения, как и в случае с гликолизом, выделяются только два элемента АТФ.

Рис. 4. Кислородный этап в живой материи

Кислородный

Как только в атмосфере накапливается достаточное количество O 2 начинается процесс в митохондрии живой материи. Он имеет сложную структуру, и в отличие от гликолиза, является многоуровневым процессом при участии большого скопления ферментов. В окончании третьего этапа формирования энергии из двух частиц СН 3 (СО)СООН получается CO2 , Н 2 О и 36 элементов АТФ (Рис.4). Для АТФ создается запас в процессе бескислородного распада C 6 H 12 O 6 .

Важно! Эти данные показывают то, что в случае трехэтапного варианта ЭО выходит больший объем полезной энергии. Разница, выведенная на примере, значительна: 36 АТФ элементов против 2.

Читайте также: