Электронный микроскоп история создания кратко

Обновлено: 08.07.2024

ЭЛЕКТРО́ННЫЙ МИКРОСКО́П, при­бор для на­блю­де­ния и фо­то­гра­фи­ро­ва­ния мно­го­крат­но (до 10 6 раз) уве­ли­чен­но­го изо­бра­же­ния объ­ек­тов, в ко­то­ром ис­поль­зу­ют­ся элек­трон­ные пуч­ки с энер­ги­ей 30–1000 кэВ. Пер­вый маг­нит­ный про­све­чи­ваю­щий Э. м. (ПЭМ) по­строи­ли нем. фи­зик М. Кнолль и Э. Рус­ка . В 1931 они по­лу­чи­ли изо­бра­же­ние объ­ек­та, сфор­ми­ро­ван­ное пуч­ка­ми элек­тро­нов. В 1938 в Гер­ма­нии и в 1942 в США бы­ли по­строе­ны пер­вые рас­тро­вые Э. м. (РЭМ), по­сле­до­ва­тель­но ска­ни­рую­щие объ­ект тон­ким элек­трон­ным пуч­ком (зон­дом).

Биолог за микроскопом

Что ни говорите, а микроскоп является одним из важнейших инструментов ученых, одним из главных их оружий в познании окружающего мира. Как появился первый микроскоп, какая история микроскопа от средних веков и до наших дней, какое строение микроскопа и правила работы с ним, ответы на все эти вопросы Вы найдете в нашей статье. Итак, приступим.

История создания

Хотя первые увеличительные линзы, на основе которых собственно и работает световой микроскоп, археологи находили еще при раскопках древнего Вавилона, тем не менее, первые микроскопы появились в Средневековье. Что интересно, среди историков нет согласия по поводу того, кто первым изобрел микроскоп. Среди кандидатов на эту почтенную роль такие известные ученые и изобретатели как Галилео Галилей, Христиан Гюйгенс, Роберт Гук и Антонии ван Левенгук.

Стоит также упомянуть итальянского врача Г. Фракосторо, который еще в далеком 1538 году первым предложил совместить несколько линз, чтобы получить больший увеличительный эффект. Это еще не было созданием микроскопа, но стало предтечей его возникновения.

А в 1590 году некто Ханс Ясен, голландский мастер по созданию очков заявил, что его сын – Захарий Ясен – изобрел первый микроскоп, для людей Средневековья такое изобретение было сродни маленькому чуду. Однако, ряд историков сомневается в том, является ли Захарий Ясен истинным изобретателем микроскопа. Дело в том, что в его биографии немало темных пятен, в том числе пятен и на его репутации, так современники обвиняли Захарию в фальшивомонетчестве и краже чужой интеллектуальной собственности. Как бы там ни было, но точно узнать был ли Захарий Ясен изобретателем микроскопа или нет, мы, к сожалению, не можем.

Позднее, спустя 10 лет, голландский изобретатель Корнелиус Дреббель усовершенствовал микроскоп Галилея, добавив в него еще одну выпуклую линзу. Но настоящую революцию в развитии микроскопов совершил Христиан Гюйгенс, голландский физик, механик и астроном. Так он первым создал микроскоп с двухлинзовой системой окуляров, которые регулировались ахроматически. Стоит заметить, что окуляры Гюйгенса применяются и по сей день.

А вот знаменитый английский изобретатель и ученый Роберт Гук навеки вошел в историю науки, не только как создатель собственного оригинального микроскопа, но и как человек, сделавший при его помощи великое научное открытие. Именно он первым увидел через микроскоп органическую клетку, и предположил, что все живые организмы состоят из клеток, этих мельчайших единиц живой материи. Результаты своих наблюдений Роберт Гук опубликовал в своем фундаментальном труде – Микрографии.

Микрография

Опубликованная в 1665 году Лондонским королевским обществом, эта книга тут же стала научным бестселером тех времен и произвела подлинный фурор в научном сообществе. Еще бы, ведь в ней имелись гравюры с изображением увеличенной в микроскоп блохи, вши, мухи, комара, клетки растения. По сути, этот труд представлял собой удивительное описание возможностей микроскопа.

Микроскоп Гука

Виды микроскопов

Далее с развитием науки и техники стали появляться все более совершенные световые микроскопы, на смену первому световому микроскопу, работающему на основе увеличительных линз, пришел микроскоп электронный, а затем и микроскоп лазерный, микроскоп рентгеновский, дающие в разы более лучший увеличительный эффект и детализацию. Как же работают эти микроскопы? Об этом дальше.

Электронный микроскоп

История развития электронного микроскопа началась в 1931 году, когда некто Р. Руденберг получил патент на первый просвечивающий электронный микроскоп. Затем в 40-х годах прошлого века появились растровые электронные микроскопы, достигшие своего технического совершенства уже в 60-е годы прошлого века. Они формировали изображение объекта благодаря последовательному перемещению электронного зонда малого сечения по объекту.

Как работает электронный микроскоп? В основе его работы лежит направленный пучок электронов, ускоренный в электрическом поле и выводящий изображение на специальные магнитные линзы, этот электронный пучок намного меньше длины волн видимого света. Все это дает возможность увеличить мощность электронного микроскопа и его разрешающую способность в 1000-10 000 раз по сравнению с традиционным световым микроскопом. Это главное преимущество электронного микроскопа.

электронный микроскоп

Так выглядит современный электронный микроскоп.

Лазерный микроскоп

Лазерный микроскоп представляет собой усовершенствованную версию электронного микроскопа, в основе его работы лежит лазерный пучок, позволяющий взору ученого наблюдать живые ткани на еще большой глубине.

Рентгеновский микроскоп

Рентгеновские микроскопы используются для исследования очень маленьких объектов, имеющих размеры сопоставимые с размерами рентгеновской волны. В основе их работы лежит электромагнитное излучение с длиной волны от 0,01 до 1 нанометра.

Устройство микроскопа

Конструкция микроскопа зависит от его вида, разумеется, электронный микроскоп будет отличаться своим устройством от светового оптического микроскопа или от рентгеновского микроскопа. В нашей статье мы рассмотрим строение обычного современного оптического микроскопа, который является наиболее популярным как среди любителей, так и профессионалов, так как с их помощью можно решить множество простых исследовательских задач.

Итак, прежде всего в микроскопе можно выделить оптическую и механическую части. К оптической части относится:


Электро́нный микроско́п (ЭМ) — прибор, позволяющий получать изображение объектов с максимальным увеличением до 10 6 раз, благодаря использованию, в отличие от оптического микроскопа, вместо светового потока пучка электронов с энергиями 200 В ÷ 400 кэВ и более (например, просвечивающие электронные микроскопы высокого разрешения с ускоряющим напряжением 1 МВ).

Разрешающая способность электронного микроскопа в 1000÷10000 раз превосходит разрешение светового микроскопа и для лучших современных приборов может быть меньше одного ангстрема. Для получения изображения в электронном микроскопе используются специальные магнитные линзы, управляющие движением электронов в колонне прибора при помощи магнитного поля.

Содержание

История создания электронного микроскопа

В 1931 году Р. Руденберг получил патент на просвечивающий электронный микроскоп, а в 1932 году М. Кнолль и Э. Руска построили первый прототип современного прибора. Эта работа Э. Руски в 1986 году была отмечена Нобелевской премией по физике, которую присудили ему и изобретателям сканирующего зондового микроскопа Герду Карлу Биннигу и Генриху Рореру. Использование просвечивающего электронного микроскопа для научных исследований было начато в конце 1930-х годов и тогда же появился первый коммерческий прибор, построенный фирмой Siemens.

В конце 1930-х — начале 1940-х годов появились первые растровые электронные микроскопы, формирующие изображение объекта при последовательном перемещении электронного зонда малого сечения по объекту. Массовое применение этих приборов в научных исследованиях началось в 1960-х годах, когда они достигли значительного технического совершенства.

Значительным скачком (в 70-х гг) в развитии было использование вместо термоэмиссионных катодов - катодов Шоттки и катодов с холодной автоэмиссией, однако их применение требует значительно большего вакуума.

В конце 90х - начале 2000х компьютеризация и использование CCD-детекторов значительным образом увеличили стабильность и (относительно) простоту использования.

В последнее десятилетие в современных передовых просвечивающих электронных микроскопах используются корректоры сферических и хроматических аберраций (что вносят основное искажение в получаемое изображение), однако их применение порой значительно усложняет использование прибора.

Виды электронных микроскопов

Просвечивающая электронная микроскопия

Первоначальная вид электронного микроскопа. В просвечивающем электронном микроскопе используется высокоэнергетический электронный пучок для формирования изображения. Электронный пучок создается посредством катода (вольфрамового, LaB6, Шоттки или холодной полевой эмиссии). Полученный электронный пучок ускоряется обычно до +200 кэВ (используются различные напряжения от 20кэВ до 1мэВ), фокусируется системой электростатических линз, проходит через образец так, что часть его проходит рассеиваясь на образце, а часть — нет. Таким образом, прошедший через образец электронный пучок несет информацию о структуре образца. Далее пучок проходит через систему увеличивающих линз и формирует изображение на люминесцентном экране (как правило, из сульфида цинка), фото-пластинке или CCD-камере.

Разрешение ПЭМ лимитируется в основном сферической аберрацией. Некоторые современные ПЭМ имеют корректоры сферической аберрации.

Основными недостатками ПЭМ являются необходимость в очень тонком образце (порядка 100нм) и неустойчивость(разложение) образцов под пучком.ааааа

Просвечивающая растровая(сканирующая) электронная микроскопия (ПРЭМ)

Один из типов просвечивающей электронной микроскопии (ПЭМ), однако есть приборы работающие исключительно в режиме ПРЭМ. Пучок электронов пропускается через относительно тонкий образец, но, в отличие от обычной просвечивающей электронной микроскопии, электронный пучок фокусируется в точку, которая перемещается по образцу по растру.

Растровая (сканирующая) электронная микроскопия

В основе лежит телевизионный принцип развертки тонкого пучка электронов по поверхности образца.

Низковольтная электронная микроскопия

Сферы применения электронных микроскопов

Полупроводники и хранение данных

  • Редактирование схем
  • Метрология 3D
  • Анализ дефектов
  • Анализ неисправностей

Биология и биологические науки

  • Криобиология
  • Локализация белков
  • Электронная томография
  • Клеточная томография
  • Крио-электронная микроскопия
  • Токсикология
  • Биологическое производство и мониторинг загрузки вирусов
  • Анализ частиц
  • Фармацевтический контроль качества
  • 3D изображения тканей
  • Вирусология
  • Стеклование

Научные исследования

  • Квалификация материалов
  • Подготовка материалов и образцов
  • Создание нанопрототипов
  • Нанометрология
  • Тестирование и снятие характеристик устройств
  • Исследования микроструктуры металлов

Промышленность

  • Создание изображений высокого разрешения
  • Снятие микрохарактеристик 2D и 3D
  • Макрообразцы для нанометрической метрологии
  • Обнаружение и снятие параметров частиц
  • Конструирование прямого пучка
  • Эксперименты с динамическими материалами
  • Подготовка образцов
  • Судебная экспертиза
  • Добыча и анализ полезных ископаемых
  • Химия/Нефтехимия

Основные мировые производители электронных микроскопов

См. также

Примечания

Ссылки

  • Оптика
  • Микроскопы
  • Электронная оптика

Wikimedia Foundation . 2010 .

Полезное

Смотреть что такое "Электронный микроскоп" в других словарях:

ЭЛЕКТРОННЫЙ МИКРОСКОП — прибор для наблюдения и фотографирования многократно (до 106 раз) увеличенного изображения объекта, в к ром вместо световых лучей используются пучки электронов, ускоренных до больших энергий (30 1000 кэВ и более) в условиях глубокого вакуума. Физ … Физическая энциклопедия

ЭЛЕКТРОННЫЙ МИКРОСКОП — прибор для наблюдения и фотографирования многократно (до 106 раз) увеличенного изображения объектов, в к ром вместо световых лучей используются пучки эл нов, ускоренных до больших энергий (30 100 кэВ и более) в условиях глубокого вакуума. Физ.… … Физическая энциклопедия

Электронный микроскоп — (схема). ЭЛЕКТРОННЫЙ МИКРОСКОП, вакуумный электронно оптический прибор для наблюдения и фотографирования многократно (до 106 раз) увеличенного изображения объектов, полученного с помощью пучков электронов, ускоренных до больших энергий.… … Иллюстрированный энциклопедический словарь

электронный микроскоп — Микроскоп для наблюдения и фотографирования многократного (до 106 раз) увелич. изображения объекта, в к ром вместо световых лучей используются пучки эл нов, ускоренных до больших энергий (30—100 кэВ и более) в условиях глубокого вакуума (1… … Справочник технического переводчика

ЭЛЕКТРОННЫЙ МИКРОСКОП — прибор, в котором для получения увеличенного изображения используется электронный пучок. Разрешающая способность электронного микроскопа в сотни раз превышает разрешающую способность оптического микроскопа … Большой Энциклопедический словарь

ЭЛЕКТРОННЫЙ МИКРОСКОП — ЭЛЕКТРОННЫЙ МИКРОСКОП, вакуумный электронно оптический прибор для наблюдения и фотографирования многократно (до 106 раз) увеличенного изображения объектов, полученного с помощью пучков электронов, ускоренных до больших энергий. Разрешающая… … Современная энциклопедия

ЭЛЕКТРОННЫЙ МИКРОСКОП — прибор, который позволяет получать сильно увеличенное изображение объектов, используя для их освещения электроны. Электронный микроскоп (ЭМ) дает возможность видеть детали, слишком мелкие, чтобы их мог разрешить световой (оптический) микроскоп.… … Энциклопедия Кольера

Электронный микроскоп — прибор для наблюдения и фотографирования многократно (до 106 раз) увеличенного изображения объектов, в котором вместо световых лучей используются пучки электронов, ускоренных до больших энергий (30 100 кэв и более) в условиях глубокого… … Большая советская энциклопедия

электронный микроскоп — [electron microscope] микроскоп для наблюдения и фотографирования многократного (до 106 раз) увеличенного изображения объекта, в котором вместо световых лучей используются пучки электронов, ускоренных до больших энергий (30 100 кэВ и более) в… … Энциклопедический словарь по металлургии

200 нанометров — таков физический предел видимости самых совершенных оптических световых микроскопов. Объекты меньше этой величины по законам оптики огибаются световой волной и остаются невидимыми для человеческого глаза. Фундаментальный тупик? Выход в электронной и зондовой микроскопии.

Эта статья была опубликована в журнале OYLA №7(23). Оформить подписку на печатную и онлайн-версию можно здесь.

Содержание:


Микроскопы XVIII-XIX веков

Мысль о замене оптических микроскопов впервые появилась в 1873 году, но вот представления о механизмах микроскопии нового уровня были ещё весьма туманны. Революционные достижения физики начала XX века позволили учёным и инженерам в деле постижения тайн микромира взять на вооружение электрон. Очень кстати в 1924 году Луи де Бройль показал двойственную природу частиц — это значит, электроны ведут себя как частицы и волны одновременно.

И самое важное — если на пучок электронов воздействовать напряжением в несколько киловольт, то длина волны электрона станет в десятки тысяч раз короче световой. Это открытие де Бройля позволило поднять разрешающую способность электронной микроскопии на недосягаемую величину: чем короче волна электрона, тем более мелкие детали видны наблюдателю.


Первый электронный микроскоп Эрнста Руска

Устройство первенца было замысловатым: источником потока электронов был накаливаемый электрическим током катод — это термоэмиссионный способ получения частиц, которые проходили сквозь наблюдаемый объект, а затем фокусировались с помощью магнитного поля. Возникает вопрос: как человек увидит электроны? Для этого в микроскопе был предусмотрен флуоресцирующий экран, светящийся под ударами летящих электронов. Сложности такой конструкции добавляет необходимость полного вакуума в области движения пучка электронов, иначе изображение объекта исследования будет сильно искажённым из-за рассеивания частиц молекулами газов в воздухе. Вакуум не позволяет также подвергать электронному микроскопированию живые объекты — из них мгновенно испарится вода, клетки деформируются и гибнут.

В 1986 году исследователи из американской компании IBM Герд Карл Бинниг и Генрих Рорер получили Нобелевскую премию за создание сканирующего зондового микроскопа (SPM). Удивительно, что вручили её учёным всего через пять лет после их разработки — это редкое событие в истории самой престижной научной премии. В этом же году заслуженное признание Нобелевского комитета получил и упоминаемый ранее Эрнст Руска за создание в далёком 1931 году первого прототипа просвечивающего электронного микроскопа.

Возникает вопрос: а как научиться перемещать зонд по поверхности с такой малой скоростью в 1–2 атома в секунду? Конечно, механические приводы такого рода создать крайне затруднительно, поэтому инженеры решили использовать пьезокристаллы. Некоторые кристаллы обладают замечательной способностью изменять свои геометрические размеры прямо пропорционально от значения приложенного электрического напряжения. До тысячных долей нанометра можно изменить размер пьезокристалла, а это уже идеальный привод для перемещения зонда. Можно сместить его на половину атома влево или вправо!


Сканирующий туннельный микроскоп. Источник: Википедия. Автор фото — Royce Hunt.

Теперь о самом исследовательском острие. Создать такой является нетривиальной задачей, ведь радиус самого кончика зонда может быть менее 1 нм. Изготавливают зонды из вольфрама, нитрида кремния (Si3N4) или полимеров и процесс производства схож с вытравливанием кремниевого электронного оборудования. Существуют варианты изготовления на основе нанотрубки и затачивания заготовки ионным пучком. Технологии настолько отработаны, что стоимость зонда сейчас менее 20 долларов.

Оптическая микроскопия до сих пор не сдаёт свои позиции: многие процессы на клеточном уровне можно наблюдать только через световую технику, но предел их совершенства, похоже, достигнут. А вот электронная и зондовая микроскопия ещё только в начале своего пути. В мире существует огромное разно­образие их видов: атомно-силовая, сканирующая ёмкостная, магнитно-силовая, полевая ионная и много-много других микроскопий. Это ли не повод заняться увлекательным изучением мира микроскопов?

Вы здесь: Home Лекционные материалы по РЭМ Лекция 1. История развития и назначение растровой электронной микроскопии

Базовый курс по РЭМ is closed

Лекция 1. История развития и назначение растровой электронной микроскопии

1.3. ИСТОРИЯ РАЗВИТИЯ ЭЛЕКТРОННОЙ МИКРОСКОПИИ

Электронная микроскопия основывается на весьма важных открытиях современной теоретической физики. Эти открытия были сделаны в середине 20-х годов 20го столетия и послужили основанием для одного из разделов современной физики - электронной оптики.

Появление электронного микроскопа стало возможным после ряда физических открытий конца XIX — начала XX века. Это
- открытие в 1897 году электрона (Дж. Томсон),
- гипотеза де Бройля о корпускулярно-волновом дуализме всех видов материи,
- экспериментальное обнаружение в 1926 году волновых свойств электрона (К. Дэвиссон, Л. Джермер), - создание в 1926 году немецким физиком X. Бушем магнитной линзы, позволяющей фокусировать электронные лучи.

На основе этих работ Кнолл и Руска в 1931 году создали первый просвечивающий электронный микроскоп (в 1986 году работа была отмечена Нобелевской премией по физике) (рисунок 6).

В 1935 году Кнолл показал, что электроны, ускоренные напряжением от 500 до 4000 Вольт, фокусировались на поверхности образца, а система катушек обеспечивала их отклонение. Пучок сканировал поверхность образца со скоростью 50 изображений в секунду, а измерение тока, прошедшего через образец, позволяло восстановить изображение его поверхности (рисунок 7).

В 1938 году Манфред фон Арденне добавил сканирующую систему к просвечивающему электронному микроскопу. Кроме регистрации изображения на кинескопе, в приборе была реализована система фоторегистрации на пленку, расположенную на вращающемся барабане. Электронный пучок диаметром 0,01 мкм сканировал поверхность образца, а прошедшие электроны засвечивали фотопленку, которая перемещалась синхронно с электронным пучком. Первая микрофотография, полученная на СПЭМ, зафиксировала увеличенный в 8000 раз кристалл ZnO с разрешением от 50 до 100 нанометров. Изображение составлялось из растра 400х400 точек и для его накопления было необходимо 20 минут. Микроскоп имел две электростатические линзы, окруженные отклоняющими катушками.

Читайте также: