Электрическое поле земли кратко

Обновлено: 18.05.2024

Естественное электрическое поле Земли как планеты, связано с процессами, протекающими в нижних слоях атмосферы, в ионосфере, магнитосфере, а так же в ближнем межпланетном пространстве и на Солнце.

Существование электрического поля Земли в атмосфере связано в основном с процессами ионизации воздуха и пространственным разделением возникающих при ионизации положительных и отрицательных электрических зарядов. Ионизация воздуха происходит под действием космических лучей: ультрафиолетового излучения Солнца; излучения радиоактивных веществ, имеющихся на поверхности Земли и в воздухе; электрических разрядов в атмосфере и т.д. Многие атмосферные процессы: конвекция, образование облаков, осадки и другие – приводят к частичному разделению разноименных электрических зарядов и возникновению атмосферных электрических полей. Относительно атмосферы поверхность Земли заряжена отрицательно. Существование электрического поля атмосферы приводит к возникновению токов, разряжающих электрический "конденсатор" Атмосфера – Земля.

В обмене зарядами между поверхностью Земли и атмосферой значительную роль играют осадки. В среднем осадки приносят положительных зарядов в 1,1 ÷ 1,4 раза больше, чем отрицательных. Утечка зарядов их атмосферы восполняется также за счёт токов, связанных с молниями и стеканием зарядов с естественных остроконечных предметов (острий). Баланс электрических зарядов, приносимых на земную поверхность площадью 1 км2 за год, можно характеризовать следующими данными:

На значительной части земной поверхности – над океанами – токи с остриёв исключаются, и здесь будет положительный баланс. Существование отрицательного статического заряда на поверхности Земли (около 5,7 х 105к) говорит о том, что эти токи в среднем сбалансированы.

Электрические поля в ионосфере обусловлены процессами, протекающими как в верхних слоях атмосферы, так и в магнитосфере. Приливные движения воздушных масс, ветры, турбулентность – всё это является источником генерации электрического поля в ионосфере благодаря эффекту гидромагнитного динамо. Примером может служить солнечно – суточная электрическая токовая система, которая вызывает на поверхности Земли суточные вариации магнитного поля. Величина напряженности электрического поля в ионосфере зависит от местоположения точки наблюдения, времени суток, общего состояния магнитосферы и ионосферы, от активности Солнца. Она колеблется от нескольких единиц до десятков мВ/м, а в высокоширотной ионосфере достигает ста и более мВ/м. При этом сила тока доходит до сотен тысяч Ампер.

Одним из непосредственных источников электрического поля в магнитосфере является солнечный ветер. При обтекании магнитосферы солнечным ветром возникает Э.Д.С., которая вызывает электрические токи. Величина напряженности электрического поля в магнитосфере достигает 1 мВ/м. Разность потенциалов поперек полярной шапки составляет 20 ÷ 100 кВ.

В периоды магнитных бурь и полярных сияний электрические поля и токи в магнитосфере и ионосфере испытывают значительные изменения. Помимо квазистатических электрических полей магнитосфере и ионосфере существуют переменные электрические поля, связанные с различного типа плазменными колебаниями. На поверхности Земли эти колебания регистрируются в зависимости от частоты колебаний либо как магнитные пульсации (10 -2 – 10 Гц), либо как низкочастотные электромагнитные волны (колебания с частотой 10 2 – 10 4 Гц).

Переменное магнитное поле Земли, источники которого локализованы в ионосфере и магнитосфере, индуцирует электрическое поле в земной коре. Напряженность электрического поля в приповерхностном слое коры колеблется в зависимости от места и электрического сопротивления пород в пределах от нескольких единиц до нескольких сотен мВ/км, а во время магнитных бурь усиливается до единиц и даже десятков В/км.

Определенный вклад в электрическое поле Земли вносит контактная разность потенциалов между породами различной электропроводности (термоэлектрический, электрохимический, пьезоэлектрический эффекты). Особую роль при этом играют вулканические и сейсмические процессы.

Электрические поля в морях индуцируются переменным магнитным полем Земли, а также возникают при движении проводящей морской воды (морских волн и течений) в магнитном поле. Плотность электрических токов в морях достигает 10 -6 а/м 2 .

Вопрос об электрическом заряде Земли как источнике электрического поля в межпланетном пространстве окончательно пока не решён. Считается, что Земля как планета электрически нейтральна. Однако эта гипотеза проходит экспериментальную проверку. Экспериментальные измерения, во время космических полетов научно-исследовательских ракет, показывают, что напряженность электрического поля в околоземном межпланетном пространстве колеблется в пределах от десятых долей до нескольких десятков мВ/м.

Магнитное поле Земли

Существование магнитного поля земли связано с геофизическими процессами происходящими в Земле и верхней её атмосфере. Магнитное поле обусловлено действием постоянных источников, расположенных внутри Земли и испытывающих лишь медленные вековые изменения (вариации), и внешних (переменных) источников, расположенных в магнитосфере Земли и ионосфере.

Для объяснения происхождения основного (постоянного) геомагнитного поля существует много различных гипотез, однако современные данные о вековых вариациях и многократных изменениях полярности геомагнитного поля удовлетворительно объясняются только гипотезой о гидромагнитном динамо (ГД). Согласно этой гипотезе, в жидком электропроводящем ядре Земли происходят сложные и интенсивные движения, приводящие к самовозбуждению магнитного поля, аналогичного тому, как происходит генерация тока и магнитного поля в динамо-машине с самовозбуждением. Действие ГД основано на электромагнитной индукции в движущейся среде, которая в своём движении пересекает силовые линии магнитного поля.

Полная напряженность магнитного поля от экватора к полюсу растет с 33,4 до 55,7 А/м (от 0,42 до 0,70 э). Координаты северного магнитного полюса: долгота 101,50° западная долгота, широта 75,70° северная широта; южного магнитного полюса: долгота 140,30° восточная долгота, широта 65,50° южная широта.

Геомагнитное поле имеет различные магнитные аномалии (отклонения от нормального распределения геомагнитного поля), например, Восточно-Сибирскую, Бразильскую и др., которые вызваны неравномерным распределением в земной коре ферромагнитных минералов. Влияние мировых аномалий сказывается до высот ~ 0,5 R3 над поверхностью Земли (R3 – радиус Земли). Магнитное поле Земли простирается до высот ~ 3Rз. Оно испытывает вековые вариации, неодинаковые на всём земном шаре. В местах наиболее интенсивного векового хода вариации достигают 150 g в год (1g = 10 -5 э).

Наблюдается также систематический дрейф магнитных аномалий к западу со скоростью около 0,2° в год и изменение величины и направления магнитного момента Земли со скоростью ~ 20γ в год, что заставляет часто проводить мировые магнитные съёмки для уточнения магнитной карты Земли.

Переменное геомагнитное поле возникает при обтекании магнитосферы плазмой солнечного ветра с переменной плотностью и скоростью заряженных частиц, а также прорыва в магнитосферу. Эти процессы вначале приводят к изменению интенсивности систем электрических токов в магнитосфере и ионосфере Земли.

Токовые системы в свою очередь вызывают в околоземном космическом пространстве и на поверхности Земли колебания геомагнитного поля в широком диапазоне частот (от 10 -5 до 10 2 Гц) и амплитуду (от 10 -3 до 10 -7 э).

В "спокойное" время в низких и средних широтах наблюдаются периодические солнечно-суточные и лунно-суточные магнитные вариации с амплитудой 30 ÷ 70 γ и 1 ÷ 5 γ соответственно. Другие наблюдаемые неправильные колебания геомагнитного поля различной формы и амплитуды называют магнитными возмущениями.

Магнитные возмущения, охватывающие всю Землю и продолжающиеся от одного до нескольких дней, называются мировыми магнитными бурями, во время которых амплитуда может превзойти 1000g. Магнитная буря – одно из проявлений сильных возмущений магнитосферы, возникающих при изменении параметров солнечного ветра, особенно скорости его частиц и нормальной составляющей межпланетного магнитного поля относительно плоскости эклиптики. Сильные возмущения магнитосферы сопровождаются появлением в верхней атмосфере Земли полярных сияний, ионосферных возмущений, рентгеновского и низкочастотного излучений.

В обычный день над пустынной равниной или над морем электрический потенциал по мере подъема возрастает с каждым метром примерно на 100 в. В воздухе имеется вертикальное электрическое поле Е величиной 100 в/м. Знак поля отвечает отрицательному заряду земной поверхности.
Цитата 2.
Рассмотрев способы измерения электрического поля в атмосфере, продолжим теперь его описание. Измерения прежде всего показывают, что с увеличением высоты поле продолжает существовать, только становится слабее. На высоте примерно 50 км поле уже еле-еле заметно, так что большая часть изменения потенциала (интеграла от Е) приходится на малые высоты. Вся разность потенциалов между поверхностью земли и верхом атмосферы равна почти
400 000 в.
Прошло каких-то 30 лет, какую же количественную характеристику сегодня дает физика электрическому полю Земли. Заглянем в Интернет, наберем в Google комбинацию слов. На первой странице (что косвенно соответствует самой распространенной точке зрения) находим:
Цитата
Электрическое поле Земли

Электричество и магнетизм. - Электрическое поле.

Опыт показывает, что электрометр, соединенный с зондом, дает заметное отклонение даже и в том случае, когда поблизости нет специально заряженных тел. При этом отклонение электрометра тем больше, чем выше точка над поверхностью Земли. Это значит, что между различными точками атмосферы, находящимися на разной высоте, имеется разность потенциалов, т. е. околоземной поверхности существует электрическое поле. Изменение потенциала с высотой различно в разное время года и для разных местностей и имеет в среднем вблизи земной поверхности значение около 130 В/м. По мере подъема над Землей поле это быстро ослабевает, и уже на высоте 1 км напряженность его равна только 40 В/м, а на высоте 10 км оно становится ничтожно слабым. Знак этого изменения соответствует отрицательному заряду Земли. Таким образом, мы все время живем и работаем в заметном электрическом поле (см. упражнение 29.1).

Экспериментальное исследование этого поля и соответствующие расчеты показывают, что Земля в целом обладает отрицательным зарядом, среднее значение которого оценивается в полмиллиона кулонов. Этот заряд поддерживается приблизительно неизменным благодаря ряду процессов в атмосфере Земли и вне ее (в мировом пространстве), которые еще далеко не полностью выяснены.

Естественное электрическое поле Земли как планеты, связано с процессами, протекающими в нижних слоях атмосферы, в ионосфере, магнитосфере, а так же в ближнем межпланетном пространстве и на Солнце.

Существование электрического поля Земли в атмосфере связано в основном с процессами ионизации воздуха и пространственным разделением возникающих при ионизации положительных и отрицательных электрических зарядов. Ионизация воздуха происходит под действием космических лучей: ультрафиолетового излучения Солнца; излучения радиоактивных веществ, имеющихся на поверхности Земли и в воздухе; электрических разрядов в атмосфере и т.д. Многие атмосферные процессы: конвекция, образование облаков, осадки и другие – приводят к частичному разделению разноименных электрических зарядов и возникновению атмосферных электрических полей. Относительно атмосферы поверхность Земли заряжена отрицательно. Существование электрического поля атмосферы приводит к возникновению токов, разряжающих электрический "конденсатор" Атмосфера – Земля.

В обмене зарядами между поверхностью Земли и атмосферой значительную роль играют осадки. В среднем осадки приносят положительных зарядов в 1,1 ÷ 1,4 раза больше, чем отрицательных. Утечка зарядов их атмосферы восполняется также за счёт токов, связанных с молниями и стеканием зарядов с естественных остроконечных предметов (острий). Баланс электрических зарядов, приносимых на земную поверхность площадью 1 км2 за год, можно характеризовать следующими данными:

На значительной части земной поверхности – над океанами – токи с остриёв исключаются, и здесь будет положительный баланс. Существование отрицательного статического заряда на поверхности Земли (около 5,7 х 105к) говорит о том, что эти токи в среднем сбалансированы.

Электрические поля в ионосфере обусловлены процессами, протекающими как в верхних слоях атмосферы, так и в магнитосфере. Приливные движения воздушных масс, ветры, турбулентность – всё это является источником генерации электрического поля в ионосфере благодаря эффекту гидромагнитного динамо. Примером может служить солнечно – суточная электрическая токовая система, которая вызывает на поверхности Земли суточные вариации магнитного поля. Величина напряженности электрического поля в ионосфере зависит от местоположения точки наблюдения, времени суток, общего состояния магнитосферы и ионосферы, от активности Солнца. Она колеблется от нескольких единиц до десятков мВ/м, а в высокоширотной ионосфере достигает ста и более мВ/м. При этом сила тока доходит до сотен тысяч Ампер.

Одним из непосредственных источников электрического поля в магнитосфере является солнечный ветер. При обтекании магнитосферы солнечным ветром возникает Э.Д.С., которая вызывает электрические токи. Величина напряженности электрического поля в магнитосфере достигает 1 мВ/м. Разность потенциалов поперек полярной шапки составляет 20 ÷ 100 кВ.

В периоды магнитных бурь и полярных сияний электрические поля и токи в магнитосфере и ионосфере испытывают значительные изменения. Помимо квазистатических электрических полей магнитосфере и ионосфере существуют переменные электрические поля, связанные с различного типа плазменными колебаниями. На поверхности Земли эти колебания регистрируются в зависимости от частоты колебаний либо как магнитные пульсации (10 -2 – 10 Гц), либо как низкочастотные электромагнитные волны (колебания с частотой 10 2 – 10 4 Гц).

Переменное магнитное поле Земли, источники которого локализованы в ионосфере и магнитосфере, индуцирует электрическое поле в земной коре. Напряженность электрического поля в приповерхностном слое коры колеблется в зависимости от места и электрического сопротивления пород в пределах от нескольких единиц до нескольких сотен мВ/км, а во время магнитных бурь усиливается до единиц и даже десятков В/км.

Определенный вклад в электрическое поле Земли вносит контактная разность потенциалов между породами различной электропроводности (термоэлектрический, электрохимический, пьезоэлектрический эффекты). Особую роль при этом играют вулканические и сейсмические процессы.

Электрические поля в морях индуцируются переменным магнитным полем Земли, а также возникают при движении проводящей морской воды (морских волн и течений) в магнитном поле. Плотность электрических токов в морях достигает 10 -6 а/м 2 .

Вопрос об электрическом заряде Земли как источнике электрического поля в межпланетном пространстве окончательно пока не решён. Считается, что Земля как планета электрически нейтральна. Однако эта гипотеза проходит экспериментальную проверку. Экспериментальные измерения, во время космических полетов научно-исследовательских ракет, показывают, что напряженность электрического поля в околоземном межпланетном пространстве колеблется в пределах от десятых долей до нескольких десятков мВ/м.

Магнитное поле Земли

Существование магнитного поля земли связано с геофизическими процессами происходящими в Земле и верхней её атмосфере. Магнитное поле обусловлено действием постоянных источников, расположенных внутри Земли и испытывающих лишь медленные вековые изменения (вариации), и внешних (переменных) источников, расположенных в магнитосфере Земли и ионосфере.

Для объяснения происхождения основного (постоянного) геомагнитного поля существует много различных гипотез, однако современные данные о вековых вариациях и многократных изменениях полярности геомагнитного поля удовлетворительно объясняются только гипотезой о гидромагнитном динамо (ГД). Согласно этой гипотезе, в жидком электропроводящем ядре Земли происходят сложные и интенсивные движения, приводящие к самовозбуждению магнитного поля, аналогичного тому, как происходит генерация тока и магнитного поля в динамо-машине с самовозбуждением. Действие ГД основано на электромагнитной индукции в движущейся среде, которая в своём движении пересекает силовые линии магнитного поля.

Полная напряженность магнитного поля от экватора к полюсу растет с 33,4 до 55,7 А/м (от 0,42 до 0,70 э). Координаты северного магнитного полюса: долгота 101,50° западная долгота, широта 75,70° северная широта; южного магнитного полюса: долгота 140,30° восточная долгота, широта 65,50° южная широта.

Геомагнитное поле имеет различные магнитные аномалии (отклонения от нормального распределения геомагнитного поля), например, Восточно-Сибирскую, Бразильскую и др., которые вызваны неравномерным распределением в земной коре ферромагнитных минералов. Влияние мировых аномалий сказывается до высот ~ 0,5 R3 над поверхностью Земли (R3 – радиус Земли). Магнитное поле Земли простирается до высот ~ 3Rз. Оно испытывает вековые вариации, неодинаковые на всём земном шаре. В местах наиболее интенсивного векового хода вариации достигают 150 g в год (1g = 10 -5 э).

Наблюдается также систематический дрейф магнитных аномалий к западу со скоростью около 0,2° в год и изменение величины и направления магнитного момента Земли со скоростью ~ 20γ в год, что заставляет часто проводить мировые магнитные съёмки для уточнения магнитной карты Земли.

Переменное геомагнитное поле возникает при обтекании магнитосферы плазмой солнечного ветра с переменной плотностью и скоростью заряженных частиц, а также прорыва в магнитосферу. Эти процессы вначале приводят к изменению интенсивности систем электрических токов в магнитосфере и ионосфере Земли.

Токовые системы в свою очередь вызывают в околоземном космическом пространстве и на поверхности Земли колебания геомагнитного поля в широком диапазоне частот (от 10 -5 до 10 2 Гц) и амплитуду (от 10 -3 до 10 -7 э).

В "спокойное" время в низких и средних широтах наблюдаются периодические солнечно-суточные и лунно-суточные магнитные вариации с амплитудой 30 ÷ 70 γ и 1 ÷ 5 γ соответственно. Другие наблюдаемые неправильные колебания геомагнитного поля различной формы и амплитуды называют магнитными возмущениями.

Магнитные возмущения, охватывающие всю Землю и продолжающиеся от одного до нескольких дней, называются мировыми магнитными бурями, во время которых амплитуда может превзойти 1000g. Магнитная буря – одно из проявлений сильных возмущений магнитосферы, возникающих при изменении параметров солнечного ветра, особенно скорости его частиц и нормальной составляющей межпланетного магнитного поля относительно плоскости эклиптики. Сильные возмущения магнитосферы сопровождаются появлением в верхней атмосфере Земли полярных сияний, ионосферных возмущений, рентгеновского и низкочастотного излучений.

Электрическое поле Земли — электрическое поле, генерируемое электрическими зарядами, расположенными на поверхности Земли, в атмосфере и в околоземном космическом пространстве. На поверхности Земли находится отрицательный электрический заряд в полмиллиона кулонов. Он создает у поверхности Земли электрическое поле напряжённостью в среднем около 130 Вольт на метр. По мере подъёма над поверхностью Земли напряжённость этого поля уменьшается и становится ничтожно слабой на высоте 10 км. Этот заряд поддерживается приблизительно неизменным вследствие ряда процессов в атмосфере Земли и космическом пространстве. На высоте несколько десятков километров над поверхностью Земли находится слой положительно заряженных ионизированных молекул, полностью компенсирующий отрицательный заряд поверхности Земли [1]

Автономное энергоснабжение. Свободная и альтернативная энергия будущего. Бестопливные генераторы и "вечные двигатели" в каждый дом!

В природе существует совершенно уникальный альтернативный источник энергии, экологически чистый, возобновляемый, простой в использовании, который до сих пор нигде не используется. Источник этот — атмосферный электрический потенциал.

Консультации кардиолога

Наша планета в электрическом отношении представляет собой подобие сферического конденсатора, заряженного примерно до 300 000 вольт. Внутренняя сфера — поверхность Земли — заряжена отрицательно, внешняя сфера — ионосфера — положительно. Изолятором служит атмосфера Земли (Рис.1).

Через атмосферу постоянно протекают ионные и конвективные токи утечки конденсатора, которые достигают многих тысяч ампер. Но несмотря на это разность потенциалов между обкладками конденсатора не уменьшается.

А это значит, что в природе существует генератор (G), который постоянно восполняет утечку зарядов с обкладок конденсатора. Таким генератором является магнитное поле Земли, которое вращается вместе с нашей планетой в потоке солнечного ветра.

Чтобы воспользоваться энергией этого генератора, нужно каким то образом подключит к нему потребитель энергии.

Подключиться к отрицательному полюсу — Земле — просто. Для этого достаточно сделать надежное заземление. Подключение к положительному полюсу генератора — ионосфере — является сложной технической задачей, решением которой мы и займемся.

Как и в любом заряженном конденсаторе, в нашем глобальном конденсаторе существует электрическое поле. Напряженность этого поля распределяется очень неравномерно по высоте: она максимальна у поверхности Земли и составляет примерно 150 В/м. С высотой она уменьшается приблизительно по закону экспоненты и на высоте 10 км составляет около 3% от значения у поверхности Земли.

Таким образом, почти всё электрическое поле сосредоточено в нижнем слое атмосферы, у поверхности Земли. Вектор напряженности эл. поля Земли E направлен в общем случае вниз. В своих рассуждениях мы будем использовать только вертикальную составляющую этого вектора. Электрическое поле Земли, как и любое электрическое поле, действует на заряды с определенной силой F, которая называется кулоновской силой. Если умножить величину заряда на напряженность эл. поля в этой точке, то получим как раз величину кулоновской силы Fкул.. Эта кулоновская сила толкает положительные заряды вниз, к земле, а отрицательные — вверх, в облака.

Проводник в электрическом поле

Установим на поверхности Земли металлическую мачту и заземлим ее. Внешнее электрическое поле моментально начнет двигать отрицательные заряды (электроны проводимости) вверх, к верхушке мачты, создавая там избыток отрицательных зарядов. А избыток отрицательных зарядов на верхушке мачты создаст свое электрическое поле, направленное навстречу внешнему полю. Наступает момент, когда эти поля сравняются по величине, и движение электронов прекращается. Это значит, что в проводнике, из которого сделана мачта, электрическое поле равно нулю.

Так работают законы электростатики.



Теперь нетрудно подсчитать разность потенциалов между Землей и верхушкой мачты, наведенную внешним электрическим полем (Рис.2.).

Положим высота мачты h = 100 м., средняя напряженность по высоте мачты Еср. = 100 В/м.

Тогда разность потенциалов (э.д.с.) между Землей и верхушкой мачты будет численно равна: U = h * Eср. = 100 м * 100 В/м = 10 000 вольт. (1)

Это — совершенно реальная разность потенциалов, которую можно измерить. Правда, обычным вольтметром с проводами измерить ее не удастся — в проводах возникнет точно такая же э.д.с., как и в мачте, и вольтметр покажет 0. Эта разность потенциалов направлена противоположно вектору напряженности Е электрического поля Земли и стремится вытолкнуть электроны проводимости из верхушки мачты вверх, в атмосферу. Но этого не происходит, электроны не могут покинуть проводник. У электронов недостаточно энергии для того, чтобы покинуть проводник, из которого сделана мачта. Эта энергия называется работой выхода электрона из проводника и для большинства металлов она составляет менее 5 электронвольт — величина весьма незначительная. Но электрон в металле не может приобрести такую энергию между столкновениями с кристаллической решеткой металла и поэтому остается на поверхности проводника.

Возникает вопрос: что произойдет с проводником, если мы поможем избыточным зарядам на верхушке мачты покинуть этот проводник?

Ответ простой: отрицательный заряд на верхушке мачты уменьшится, внешнее электрическое поле внутри мачты уже не будет скомпенсировано и начнет снова двигать электроны проводимости вверх к верхнему концу мачты. Значит, по мачте потечет ток. И если нам удастся постоянно удалять избыточные заряды с верхушки мачты, в ней постоянно будет течь ток. Теперь нам достаточно разрезать мачту в любом, удобном нам месте и включить туда нагрузку (потребитель энергии) — и электростанция готова.



На рис.3 показана принципиальная схема такой электростанции. Под действием электрического поля Земли электроны проводимости из земли движутся по мачте через нагрузку и далее вверх по мачте к эмиттеру, который освобождает их из поверхности металла верхушки мачты и отправляет их в виде ионов в свободное плавание по атмосфере. Электрическое поле Земли в полном соответствии с законом Кулона поднимает их вверх до тех пор, пока они на своем пути не будут нейтрализованы положительными ионами, которые всегда опускаются вниз из ионосферы под действием того же поля.

Таким образом, мы замкнули электрическую цепь между обкладками глобального электрического конденсатора, который в свою очередь подключен к генератору G, и включили в эту цепь потребитель энергии (нагрузку). Остается решить один важный вопрос: каким образом удалять избыточные заряды с верхушки мачты?

При вращении диска набегающий влажный воздух срывает электроны с его иголок и таким образом освобождает их из металла.

Безусловно, возможны и другие конструкции эмиттеров, более эффективные, сложные, основанные на разных принципах и физических эффектах см. рис. 4-5.

Эмиттера в виде готового изделия сейчас не существует. Каждый заинтересованный в этой идее вынужден самостоятельно сконструировать себе свой эмиттер.

В помощь таким творческим людям автор приводит ниже свои соображения по конструкции эмиттера.

Наиболее перспективными представляются следующие конструкции эмиттеров.

Первый вариант исполнения эмиттера



Молекула воды имеет хорошо выраженную полярность и может легко захватить свободный электрон. Если обдувать паром заряженную отрицательно металлическую пластину, то пар будет захватывать с поверхности пластины свободные электроны и уносить их с собой. Эмиттер представляет собой щелевое сопло, вдоль которого помещен изолированный электрод А и на который подается положительный потенциал от источника И. Электрод А и острые края сопла образуют небольшую заряженную емкость. Свободные электроны собираются на острых краях сопла под воздействием положительного изолированного электрода А. Проходящий через сопло пар срывает электроны с краев сопла и уносит их в атмосферу. На рис. 4 изображено продольное сечение этой конструкции. Поскольку электрод А изолирован от внешней среды, тока в цепи источника э.д.с. нет. И этот электрод нужен здесь только для того, чтобы вместе с острыми краями сопла создать в этом промежутке сильное электрическое поле и концентрировать электроны проводимости на краях сопла. Таким образом, электрод А с положительным потенциалом является своего рода активирующим электродом. Меняя на нем потенциал, можно добиться нужной величины силы тока эмиттера.

Возникает очень важный вопрос — сколько пара нужно подавать через сопло и не получится ли так, что всю энергию станции придется израсходовать на превращение воды в пар? Проведем небольшой подсчет.

В одной граммолекуле воды (18 мл) содержится 6,02 * 1023 молекул воды (число Авогадро). Заряд одного электрона равен 1,6 * 10 (- 19) Кулона. Перемножив эти величины, получим, что на 18 мл воды можно разместить 96 000 Кулонов электрического заряда, а на 1 литре воды — более 5 000 000 Кулонов. А это значит, что при токе 100 А одного литра воды хватит для работы установки в течение 14 часов. Для превращения в пар такого количества воды потребуется совсем небольшой процент вырабатываемой энергии.

Конечно, прицепить к каждой молекуле воды электрон — задача вряд ли выполнимая, но мы здесь определили предел, к которому можно постоянно приближаться, совершенствуя конструкцию устройства и технологии.

Кроме того, расчеты показывают, что энергетически выгоднее продувать через сопло не пар, а влажный воздух, регулируя его влажность в нужных пределах.

Второй вариант исполнения эмиттера

На вершине мачты установлен металлический сосуд с водой. Сосуд соединен с металлом мачты надежным контактом. В середине сосуда установлена стеклянная капиллярная трубка. Уровень воды в трубке выше, чем в сосуде. Это создает электростатический эффект острия — в верхней части капиллярной трубки создается максимальная концентрация зарядов и максимальная напряженность электрического поля.

Под действием электрического поля вода в капиллярной трубке поднимется и будет распыляться на мелкие капельки, унося с собой отрицательный заряд. При определенной небольшой силе тока вода в капиллярной трубке закипит, и уже пар будет уносить заряды. А это должно увеличить ток эмиттера.

В таком сосуде можно установить несколько капиллярных трубок. Сколько потребуется воды — расчеты см. выше.

Третий вариант исполнения эмиттера. Искровой эмиттер.

При пробое искрового промежутка вместе с искрой из металла выскакивает облако электронов проводимости.



На рис.5 показана принципиальная схема искрового эмиттера. От генератора высоковольтных импульсов отрицательные импульсы поступают на мачту, положительные — на на электрод, который образует искровой промежуток с верхушкой мачты. Получается нечто подобное автомобильной свече зажигания, но по устройству значительно проще.
Генератор высоковольтных импульсов принципиально мало чем отличается от обычной бытовой газовой зажигалки китайского производства с питанием от одной пальчиковой батарейки.

Главное достоинство такого устройства — возможность регулировать ток эмиттера с помощью частоты разрядов, величины искрового промежутка, можно сделать несколько искровых промежутков и пр.

Генератор импульсов можно установить в любом удобном месте, совсем не обязательно на верхушке мачты.

Но существует один недостаток — искровые разряды создают радиопомехи. Поэтому верхушку мачты с искровыми промежутками нужно экранировать цилиндрической сеткой, обязательно изолированной от мачты.

Четвертый вариант исполнения эмиттера

Еще одна возможность — создать эмиттер на принципе прямой эмиссии электронов из материала эмиттера. Для этого нужен материал с очень низкой работой выхода электрона. Такие материалы существуют давно, например, паста из оксида бария-0,99 эв. Возможно, сейчас есть что-либо получше.

Достаточно поместить на верхушку мачты кусок КТСП — и эмиттер готов. Проходя по сверхпроводнику, электрон не встречает сопротивления и очень быстро приобретает энергию, необходимую для выхода из металла (около 5 эв.)

И еще одно важное замечание. По законам электростатики иапряженность электрического поля Земли наиболее высока на возвышенностях — на вершинах холмов, сопок, гор и т. п. В низинах, впадинах и углублениях она минимальна. Поэтому такие устройства лучше строить на самых высоких местах и подальше от высоких строений или же устанавливать их на крышах самых высоких строений.

Еще хорошая идея — поднять проводник с помощью аэростата. Эмиттер, конечно, нужно устанавливать на верху аэростата. В таком случае можно получить достаточно большой потенциал для самопроизвольной эмиссии электронов из металла, придав ему форму отрия, и, значит, никаких сложных эмиттеров в этом случае не потребуется.

Существует еще одна хорошая возможность получить эмиттер. В промышленности применяется электростатическая окраска металла. Распыленная краска, вылетая из распылителя, несет на себе электрический заряд, в силу чего и оседает на окрашиваемый металл, на который подается заряд противоположного знака. Технология отработана.

Такое устройство, которое заряжает распыленную краску, как раз и является настоящим эмиттером эл. зарядов. Остается только приспособить его к описанной выше установке и заменить краску водой, если возникнет необходимомть в воде.

Вполне возможно, что влаги, всегда содержащейся в воздухе, будет достаточно для работы эмиттера.

Не исключено, что в промышленности существуют и другие подобные устройства, которые легко можно превратить в эмиттер.

В результате наших действий мы подключили потребитель энергии к глобальному генератору электрической энергии. К отрицательному полюсу — Земле — мы подключились с помощью обычного металлического проводника (заземления), а к положительному полюсу — ионосфере — с помощью весьма специфического проводника — конвективного тока. Конвективные токи — это электрические токи, обусловленные упорядоченным переносом заряженных частиц. В природе они встречаются часто. Это и обычные конвективные восходящие струи, которые несут отрицательные заряды в облака, это и смерчи (торнадо). которые тащат к земле сильно заряженную положительными зарядами облачную массу, это и восходящие потоки воздуха во внутритропической зоне конвергенции, которые уносят огромное количество отрицательных зарядов в верхние слои тропосферы. И такие токи достигают очень больших значений.

Если мы создадим достаточно эффективный эмиттер, который сможет освобождать из верхушки мачты (или нескольких мачт), положим, 100 кулонов зарядов в секунду (100 ампер.), то мощность построенной нами электростанции будет равна 1000 000 ватт или 1 мегаватт. Вполне достойная мощность!

Такая установка незаменима в отдаленных поселениях, на метеостанциях и других удаленных от цивилизации местах.

• Из вышесказанного можно сделать следующие выводы:

• Источник энергии является исключительно простым и удобным в использовании.

• На выходе получаем самый удобный вид энергии — электроэнергию.

• Источник экологически чист: никаких выбросов, никакого шума и т.п.

• Установка исключительно проста в изготовлении и эксплуатации.

• Исключительная дешевизна получаемой энергии и еще масса других достоинств.

Электрическое поле Земли подвержено колебаниям: зимой оно сильнее, чем летом, ежедневно оно достигает максимума в 19 часов по Гринвичу, также зависит от состояния погоды. Но эти колебания не превышают 20% от его среднего значения.

В некоторых редких случаях при определенных погодных условиях напряженность этого поля может увеличиться в несколько раз.

Во время грозы эл.поле изменяется в больших пределах и может изменить направление на противоположное, но это происходит на небольшой площади непосредственно под грозовой ячейкой.

Читайте также: