Электрическое поле в веществе кратко

Обновлено: 05.07.2024

Электрическое поле — одна из составляющих электромагнитного поля, особый вид материи, существующий вокруг тел или частиц, обладающих электрическим зарядом, а также в свободном виде при изменении магнитного поля (например, в электромагнитных волнах). Электрическое поле непосредственно невидимо, но может наблюдаться благодаря его силовому воздействию на заряженные тела.

Для количественного определения электрического поля вводится силовая характеристика - напряженность электрического поля. Напряженностью электрического поля называют векторную физическую величину, равную отношению силы, с которой поле действует на положительный пробный заряд, помещённый в данную точку пространства, к величине этого заряда. Направление вектора совпадает в каждой точке пространства с направлением силы, действующей на положительный пробный заряд.

В классической физике, применимой при рассмотрении крупномасштабных (больше размера атома) взаимодействий, электрическое поле рассматривается как одна из составляющих единого электромагнитного поля и проявление электромагнитного взаимодействия. В квантовой электродинамике — это компонент электрослабого взаимодействия.

В классической физике система уравнений Максвелла описывает взаимодействие электрического поля, магнитного поля и воздействие зарядов на эту систему полей.

Сила Лоренца описывает воздействие электромагнитного поля на частицу.

Эффект поля заключается в том, что при воздействии электрического поля на поверхность электропроводящей среды в её приповерхностном слое изменяется концентрация свободных носителей заряда. Этот эффект лежит в основе работы полевых транзисторов.

Основным действием электрического поля является силовое воздействие на неподвижные (относительно наблюдателя) электрически заряженные тела или частицы. Если заряженное тело фиксировано в пространстве, то оно под действием силы не ускоряется. На движущиеся заряды силовое воздействие оказывает и магнитное поле (вторая составляющая силы Лоренца).

В качестве проводников электрического тока могут быть использованы как твердые тела, так и жидкости, а при соответствующих условиях и газы. К проводниковым материалам в электротехнике относятся металлы, их сплавы, контактные металлокерамические композиции и электротехнический уголь. Важнейшими практически применяемыми в электротехнике твердыми проводниковыми материалами являются металлы и их сплавы, характеризующиеся электронной проводимостью; основной параметр для них – удельное электрическое сопротивление в функции температуры.

Диапазон удельных сопротивлений металлических проводников весьма узок и составляет от 0,016 мкОм٠м для серебра до 1,6 мкОм٠м для жаростойких железохромоалюминиевых сплавов. Электрическое сопротивление графита с увеличением температуры проходит через минимум с последующим постепенным повышением.

По роду применения проводниковые материалы подразделяются на группы:

проводники с высокой проводимостью – металлы для проводов линий электропередачи и для изготовления кабелей, обмоточных и монтажных проводов для обмоток трансформаторов, электрических машин, аппаратуры и пр.;

конструкционные материалы – бронзы, латуни, алюминиевые сплавы и т.д., применяемые для изготовления различных токоведущих частей;

сплавы высокого сопротивления – предназначаемые для изготовления дополнительных сопротивлений к измерительным приборам, образцовых сопротивлений и магазинов сопротивлений, реостатов и элементов нагревательных приборов, а также сплавы для термопар, компенсационных проводов и т.п.;

контактные материалы – применяемые для пар неразъемных, разрывных и скользящих контактов;

материалы для пайки всех видов проводниковых материалов.

Механизм прохождения тока в металлах обусловлен движением (дрейфом) свободных электронов под воздействием электрического поля; поэтому металлы называют проводниками с электронной электропроводностью или проводниками первого рода.

Пример проводящих жидкостей при нормальных условиях — ртуть, электролиты, при высоких температурах — расплавы металлов. Пример проводящих газов — ионизированный газ (плазма).

Основная особенность проводников – наличие свободных зарядов (электронов), которые участвуют в тепловом движении и могут перемещаться по всему объему проводника. Типичные проводники – металлы.

В отсутствие внешнего поля в любом элементе объема проводника отрицательный свободный заряд компенсируется положительным зарядом ионной решетки. В проводнике, внесенном в электрическое поле, происходит перераспределение свободных зарядов, в результате чего на поверхности проводника возникают нескомпенсированные положительные и отрицательные заряды (рис. 1.1). Этот процесс называют электростатической индукцией, а появившиеся на поверхности проводника заряды – индукционными зарядами.

Индукционные заряды создают свое собственное поле которое компенсирует внешнее поле во всем объеме проводника: (внутри проводника).

Полное электростатическое поле внутри проводника равно нулю, а потенциалы во всех точках одинаковы и равны потенциалу на поверхности проводника.

Все внутренние области проводника, внесенного в электрическое поле, остаются электронейтральными. Если удалить некоторый объем, выделенный внутри проводника, и образовать пустую полость, то электрическое поле внутри полости будет равно нулю. На этом основана электростатическая защита – чувствительные к электрическому полю приборы для исключения влияния поля помещают в металлические ящики

Электростатическая защита. Поле в металлической полости равно нулю

(Так как поверхность проводника является эквипотенциальной, силовые линии у поверхности должны быть перпендикулярны к ней).

Похожие страницы:

Расчет электрического поля в диэлектрике

. Расчет электрического поля в диэлектрике 1. Поле в диэлектрике. Теорема Остроградского-Гаусса для электрического поля в веществе. 2. Электрическое . Остроградского-Гаусса для электрического поля в веществе. Если в электрическое поле, созданное свободными .

Электрическое поле (2)

Электрическое поле (3)

. разновидностью вещества; правильнее сказать, это чрезвычайно полезная концепция… Вопрос о „реальности“ и существовании электрического поля .

Диэлектрики в электростатическом поле

. создают свое электрическое поле. Поэтому если вещество внести во внешнее поле, то электрическое поле в веществе будет представлять .

Электрический ток в различных средах (2)

. . В результате образуется двойной электрический слой, и возникает контактное электрическое поле, которое препятствует дальнейшей диффузии . в расплавленном состоянии, а также некоторые твердые вещества. Однако основными представителями электролитов, широко .

Электрический диполь.Диполем называется система из двух одинаковых по величине, но разных по знаку электрических зарядов q, находящихся на расстоянии друг от друга. Дипольный момент (или электрический момент диполя) - вектор; его направление - от отрицательного заряда к положительному. Электрическое поле диполя в каждой точке пространства определяется суперпозицией полей двух точечных зарядов, схематично представлено на рисунке и равно: .

θ - угол между дипольным моментом и направлением на точку пространства, в которой вычисляется поле. Формула применима для расстояний r >> . Поле диполя с расстоянием r спадает быстрее (~ ), чем поле точечного заряда (~ ) . На продолжении оси диполя (θ=0 0 или 180 0 ): . На перпендикуляре, проведенном к середине оси диполя (θ=90 0 ),: .


Диполь в электрическом поле На диполь, находящийся в однородном электрическом поле, действует момент пары сил: . Это приводит к повороту диполя и установлению его в поле таким образом, что векторы напряженности поля и дипольного момента оказываются направлены в одну сторону.

Энергия диполя в электрическом поле. Имеется в виду потенциальная энергия диполя в однородном электрическом поле, которая, если диполь "отпустить", произведёт работу, поворачивая диполь. Работа при вращательном движении соответствует убыли потенциальной энергии диполя . Отсюда потенциальная энергия диполя: .

Диэлектрики Диэлектрики (или изоляторы) не проводят электрический ток, так как в них, в отличие от проводников, нет свободных зарядов, способных двигаться по объёму диэлектрика под действием электрического поля, а есть только связанные заряды, входящие в состав молекул и перемещающиеся в пределах молекул.

Молекулы диэлектрика бывают двух видов:

– полярные, то есть такие, в которых центры положительных и отрицательных зарядов не совпадают; эти молекулы представляют собой готовые диполи;

– неполярные, то есть не диполи.

Полярные молекулы-диполи во внешнем электрическом поле стремятся выстроиться так, что бы их моменты были направлены вдоль поля. Полного выстраивания не происходит, этому мешает тепловое движение молекул (чем выше поле и ниже температура, тем сильнее выстраивание).

Неполярные молекулы под действием внешнего поля превращаются в диполи, то есть под действием поля положительные и отрицательные заряды в молекулах смещаются в разные стороны; дипольный момент таких молекул всегда направлен вдоль поля. Чем сильнее поле, тем больше дипольный момент; от температуры наведённый таким образом дипольный момент не зависит.

В обоих случаях происходит поляризация диэлектрика – появление результирующего дипольного момента в направлении внешнего поля , причём в первом случае (полярные молекулы) поляризация называется ориентационной, во втором - электронной (так как под действием поля электроны в молекулах смещаются эффективнее, они легче, чем ядра). Стремление молекул-диполей выстроиться своими моментами вдоль поля приводит к тому, что на поверхности диэлектрика появляются наведённые заряды q', и сам диэлектрик становится большим диполем. Внутри диэлектрика создаётся дополнительное поле , эквивалентное полю конденсатора и направленное противоположно внешнему полю . Результирующее поле в диэлектрике оказывается ослабленным по сравнению с внешним полем : E = E0 – E'. Зарядыq' , наведенные на сторонах диэлектрика, перпендикулярных к направлению внешнего поля, называют поляризационными.

Степень поляризации характеризуется вектором поляризации или поляризованностью – дипольным моментом единицы объема диэлектрика: , где V=S·d – объем , S – площадь поверхности и d – толщина диэлектрика. Поляризованность (по абсолютной величине) диэлектрика равна его дипольному моменту, делённому на его объём:

То есть величина поляризованности просто равна поверхностной плотности наведённых зарядов σ' . Как в случае плоского конденсатора, для поля Е', созданного этими зарядами, можно записать: .

Из опыта известно, что поляризованность пропорциональна электрическому полю, ее вызвавшему, т.е., , где безразмерный коэффициент пропорциональности κ ("каппа") называется диэлектрической восприимчивостью. Теорему Гаусса для поля в веществе можно записать как: , т.е. поле создается как свободными зарядами q, так и наведенными q'.




Так как , то получим :

. Вспомогательный вектор называется электрическим смещением и определяется только свободными зарядами q. В отсутствие поляризации (в вакууме или воздухе) k=0 и . Из отношения двух последних выражений получаем: , где ε - диэлектрическая проницаемость, показывающая во сколько раз электрическое поле в вакууме больше поля в данной среде, и т.о., . (Значения ε для различных веществ в постоянном электрическом поле приводятся в справочниках).

Ёмкость Разные проводники, несущие одинаковые электрические заряды, в общем случае, имеют разные потенциалы, и, наоборот, проводники с одинаковыми у поверхности потенциалами имеют, в общем случае, разные заряды. Это указывает на то, что они отличаются друг от друга некоторым физическим свойством, которое получило название электрической емкости. Электрической ёмкостью или просто ёмкостью уединенного проводника называется отношение заряда проводника к его потенциалу: C=q / φ . Поскольку потенциал проводника пропорционален его заряду (например, для заряженного шара радиуса R в среде с диэлектрической проницаемостью ε, потенциал у его поверхности ), то ёмкость шара равна: . Ёмкость от заряда не зависит и является геометрической характеристикой проводника. Ёмкость конденсатора определяется как отношение заряда конденсатора к разности потенциалов между его обкладками: C=q / Δφ и получается как коэффициент пропорциональности между зарядом и разностью потенциалов при расчете последней. Например, для ёмкости плоского конденсатора с диэлектриком между пластинами (d - расстояние между пластинами, S - площадь одной пластины) получим:

Расчет ёмкостей других конденсаторов проводится аналогично. Шаровой (сферический) конденсатор; внутренний радиус- R1, внешний - R2.

. Цилиндрический конденсатор высотой h; радиус внутреннего цилиндра - R1, внешнего - R2. .

Электрический диполь.Диполем называется система из двух одинаковых по величине, но разных по знаку электрических зарядов q, находящихся на расстоянии друг от друга. Дипольный момент (или электрический момент диполя) - вектор; его направление - от отрицательного заряда к положительному. Электрическое поле диполя в каждой точке пространства определяется суперпозицией полей двух точечных зарядов, схематично представлено на рисунке и равно: .

θ - угол между дипольным моментом и направлением на точку пространства, в которой вычисляется поле. Формула применима для расстояний r >> . Поле диполя с расстоянием r спадает быстрее (~ ), чем поле точечного заряда (~ ) . На продолжении оси диполя (θ=0 0 или 180 0 ): . На перпендикуляре, проведенном к середине оси диполя (θ=90 0 ),: .


Диполь в электрическом поле На диполь, находящийся в однородном электрическом поле, действует момент пары сил: . Это приводит к повороту диполя и установлению его в поле таким образом, что векторы напряженности поля и дипольного момента оказываются направлены в одну сторону.

Энергия диполя в электрическом поле. Имеется в виду потенциальная энергия диполя в однородном электрическом поле, которая, если диполь "отпустить", произведёт работу, поворачивая диполь. Работа при вращательном движении соответствует убыли потенциальной энергии диполя . Отсюда потенциальная энергия диполя: .

Диэлектрики Диэлектрики (или изоляторы) не проводят электрический ток, так как в них, в отличие от проводников, нет свободных зарядов, способных двигаться по объёму диэлектрика под действием электрического поля, а есть только связанные заряды, входящие в состав молекул и перемещающиеся в пределах молекул.

Молекулы диэлектрика бывают двух видов:

– полярные, то есть такие, в которых центры положительных и отрицательных зарядов не совпадают; эти молекулы представляют собой готовые диполи;

– неполярные, то есть не диполи.

Полярные молекулы-диполи во внешнем электрическом поле стремятся выстроиться так, что бы их моменты были направлены вдоль поля. Полного выстраивания не происходит, этому мешает тепловое движение молекул (чем выше поле и ниже температура, тем сильнее выстраивание).

Неполярные молекулы под действием внешнего поля превращаются в диполи, то есть под действием поля положительные и отрицательные заряды в молекулах смещаются в разные стороны; дипольный момент таких молекул всегда направлен вдоль поля. Чем сильнее поле, тем больше дипольный момент; от температуры наведённый таким образом дипольный момент не зависит.

В обоих случаях происходит поляризация диэлектрика – появление результирующего дипольного момента в направлении внешнего поля , причём в первом случае (полярные молекулы) поляризация называется ориентационной, во втором - электронной (так как под действием поля электроны в молекулах смещаются эффективнее, они легче, чем ядра). Стремление молекул-диполей выстроиться своими моментами вдоль поля приводит к тому, что на поверхности диэлектрика появляются наведённые заряды q', и сам диэлектрик становится большим диполем. Внутри диэлектрика создаётся дополнительное поле , эквивалентное полю конденсатора и направленное противоположно внешнему полю . Результирующее поле в диэлектрике оказывается ослабленным по сравнению с внешним полем : E = E0 – E'. Зарядыq' , наведенные на сторонах диэлектрика, перпендикулярных к направлению внешнего поля, называют поляризационными.

Степень поляризации характеризуется вектором поляризации или поляризованностью – дипольным моментом единицы объема диэлектрика: , где V=S·d – объем , S – площадь поверхности и d – толщина диэлектрика. Поляризованность (по абсолютной величине) диэлектрика равна его дипольному моменту, делённому на его объём:

То есть величина поляризованности просто равна поверхностной плотности наведённых зарядов σ' . Как в случае плоского конденсатора, для поля Е', созданного этими зарядами, можно записать: .

Из опыта известно, что поляризованность пропорциональна электрическому полю, ее вызвавшему, т.е., , где безразмерный коэффициент пропорциональности κ ("каппа") называется диэлектрической восприимчивостью. Теорему Гаусса для поля в веществе можно записать как: , т.е. поле создается как свободными зарядами q, так и наведенными q'.

Так как , то получим :

. Вспомогательный вектор называется электрическим смещением и определяется только свободными зарядами q. В отсутствие поляризации (в вакууме или воздухе) k=0 и . Из отношения двух последних выражений получаем: , где ε - диэлектрическая проницаемость, показывающая во сколько раз электрическое поле в вакууме больше поля в данной среде, и т.о., . (Значения ε для различных веществ в постоянном электрическом поле приводятся в справочниках).

Ёмкость Разные проводники, несущие одинаковые электрические заряды, в общем случае, имеют разные потенциалы, и, наоборот, проводники с одинаковыми у поверхности потенциалами имеют, в общем случае, разные заряды. Это указывает на то, что они отличаются друг от друга некоторым физическим свойством, которое получило название электрической емкости. Электрической ёмкостью или просто ёмкостью уединенного проводника называется отношение заряда проводника к его потенциалу: C=q / φ . Поскольку потенциал проводника пропорционален его заряду (например, для заряженного шара радиуса R в среде с диэлектрической проницаемостью ε, потенциал у его поверхности ), то ёмкость шара равна: . Ёмкость от заряда не зависит и является геометрической характеристикой проводника. Ёмкость конденсатора определяется как отношение заряда конденсатора к разности потенциалов между его обкладками: C=q / Δφ и получается как коэффициент пропорциональности между зарядом и разностью потенциалов при расчете последней. Например, для ёмкости плоского конденсатора с диэлектриком между пластинами (d - расстояние между пластинами, S - площадь одной пластины) получим:

Расчет ёмкостей других конденсаторов проводится аналогично. Шаровой (сферический) конденсатор; внутренний радиус- R1, внешний - R2.

. Цилиндрический конденсатор высотой h; радиус внутреннего цилиндра - R1, внешнего - R2. .

Внесение некоторого вещества в электрическое поле может привести к существенному его изменению; это обусловлено тем, что вещество составляют заряженные частицы. Если внешнее поле отсутствует, распределение частиц вещества происходит таким образом, что электрическое поле, которое они создают, в среднем по объемам, включающим большое число атомов или молекул, равно нулю. Если внешнее поле присутствует, заряженные частицы перераспределяются, и в веществе возникает собственное электрическое поле. Полное электрическое поле E → включает в себя (согласно принципу суперпозиции) внешнее поле E 0 → и внутреннее поле E ' → которое создается заряженными частицами вещества.

Электрические свойства веществ обуславливают их многообразие. Самые широкие классы веществ – это проводники и диэлектрики.

Проводники

Отличительная черта проводников заключается в наличии свободных зарядов (электронов), принимающих участие в тепловом движении и способных осуществлять перемещение по всему объему проводника. Типичным примером проводников служат металлы.

Если внешнее поле отсутствует, то в любом элементе объема проводника отрицательный свободный заряд будет компенсироваться положительным зарядом ионной решетки. В проводнике, который внесен в электрическое поле, произойдет перераспределение свободных зарядов, следствием чего будет возникновение на поверхности проводника нескомпенсированных положительных и отрицательных зарядов (рис. 1 . 5 . 1 ). Описанный процесс носит название электростатической индукции, а возникающие на поверхности проводника заряды называют индукционными зарядами.

Индукционными зарядами создается свое собственное поле E ' → и оно компенсирует внешнее поле E 0 → во всем объеме проводника: E → = E 0 → + E ' → = 0 (внутри проводника).

Полное электростатическое поле внутри проводника есть нуль, а потенциалы во всех точках являются одинаковыми и равными потенциалу на поверхности проводника.

Рисунок 1 . 5 . 1 . Электростатическая индукция.

Все внутренние области проводника, который внесен в электрическое поле, остаются электронейтральными. Удаление некоторого объема, выделенного внутри проводника, а соответственно образование пустой полости, приведет к тому, что электрическое поле внутри полости станет равным нулю. На этом основана электростатическая защита – приборы, имеющие чувствительность к электрическому полю в целях исключения влияния поля помещают в металлические ящики (рис. 1.5.2).

Рисунок 1 . 5 . 2 . Схема электростатической защиты. Поле в металлической полости равно нулю.

Поскольку поверхность проводника эквипотенциальна, необходимо, чтобы силовые линии у поверхности являлись перпендикуляром к ней.

Диэлектрики

Диэлектрики (изоляторы) отличаются от проводников тем, что не имеют свободных электрических зарядов. Диэлектрики включают в себя нейтральные атомы или молекулы. Заряженные частицы в нейтральном атоме являются связанными друг с другом и не имеют способности к перемещению под действием электрического поля по всему объему диэлектрика.

Внесение диэлектрика во внешнее электрическое поле E 0 → вызовет возникновение в нем некоторого перераспределения зарядов, которые входят в состав атомов или молекул. Следствием этого перераспределения является появление на поверхности диэлектрического образца избыточных нескомпенсированных связанных зарядов. Все заряженные частицы, которые образуют макроскопические связанные заряды, все так же входят в состав своих атомов.

Связанные заряды образуют электрическое поле E ' → направленное внутри диэлектрика противоположно вектору напряженности E 0 → внешнего поля: данный процесс носит название поляризации диэлектрика.

Вследствие поляризации полное электрическое поле E → = E 0 → + E ' → = 0 внутри диэлектрика становится по модулю меньше внешнего поля E 0 → .

Диэлектрическая проницаемость вещества – это физическая величина, которая есть отношение модуля напряженности E 0 → внешнего электрического поля, создаваемого в вакууме, к модулю напряженности E → полного поля в однородном диэлектрике.

Известно несколько механизмов поляризации диэлектриков: основные - это ориентационная и электронная поляризации. Проявление этих механизмов происходит в основном при поляризации газообразных и жидких диэлектриков.

Ориентационная или дипольная поляризация появляется, когда полярные диэлектрики состоят из молекул, у которых имеет место несовпадение центов распределения положительных и отрицательных зарядов. Такие молекулы представляют собой микроскопические электрические диполи.

Микроскопические электрические диполи – это нейтральная совокупность двух зарядов, являющихся равными по модулю и противоположными по знаку, расположенных на расстоянии друг от друга.

К примеру, дипольный момент имеет молекула воды, а также молекулы некоторых прочих диэлектриков ( H 2 S , N O 2 и т. д.).

Когда внешнее электрическое поле отсутствует, оси молекулярных диполей по причине теплового движения имеют хаотичную ориентацию, в связи с чем на поверхности диэлектрика и в любом элементе объема электрический заряд в среднем является равным нулю.

Если внести диэлектрик во внешнее поле E 0 → , возникнет частичная ориентация молекулярных диполей. Вследствие этого поверхность диэлектрика получит нескомпенсированные макроскопические связанные заряды, создающие поле E ' → направленное навстречу внешнему полю E 0 → (рис. 1 . 5 . 3 ).

Рисунок 1 . 5 . 3 . Ориентационный механизм поляризации полярного диэлектрика.

Поляризация полярных диэлектриков обладает сильной зависимостью от температуры, поскольку тепловое движение молекул выступает в качестве дезориентирующего фактора.

Электронный или упругий механизм возникает при поляризации неполярных диэлектриков, молекулы которых не имеют при отсутствии внешнего поля дипольного момента. Электрическое поле, воздействуя на молекулы неполярных диэлектриков, вызывает их деформацию – положительные заряды смещаются в направлении вектора E 0 → а отрицательные – в противоположном направлении. В итоге каждая молекула становится электрическим диполем, ось которого имеет направление вдоль внешнего поля. Поверхность диэлектрика получает нескомпенсированные связанные заряды, которые создают свое поле E ' → имеющее направление навстречу внешнему полю E 0 → Таким образом происходит поляризация неполярного диэлектрика (рис. 1 . 5 . 4 ).

Деформация неполярных молекул, испытывающих влияние внешнего электрического поля, не имеет зависимости от теплового движения, т.е. поляризация неполярного диэлектрика не зависит от температуры.

В качестве примера неполярной молекулы можно рассмотреть молекулу метана C H 4 , в которой четырехкратно ионизированный ион углерода C 4 – расположен в центре правильной пирамиды; в вершинах этой пирамиды - ионы водорода H + . Наложение внешнего электрического поля вызовет смещение иона углерода из центра пирамиды: в этом случае у молекулы возникнет дипольный момент, пропорциональный внешнему полю.

Рисунок 1 . 5 . 4 . Поляризация неполярного диэлектрика.

В электрическом поле E ' → связанных зарядов, которое возникает при поляризации полярных и неполярных диэлектриков, происходит его изменение по модулю прямо пропорционально модулю внешнего поля E 0 → . В электрических полях значительной силы указанная закономерность может нарушаться: в таком случае получают проявление различные нелинейные эффекты. Для полярных диэлектриков в сильных полях возможно наблюдать эффект насыщения.

Эффект насыщения – это выстраивание всех молекулярных диполей вдоль силовых линий.

Когда диэлектрики неполярны, сильное внешнее поле, которое можно сравнить по модулю с внутриатомным полем, имеет возможность значимо деформировать атомы или молекулы вещества с изменением их электрических свойств. Но подобные явления почти никогда не наблюдаются, поскольку для этого необходимы поля, имеющие напряженность порядка 10 10 – 10 12 В / м . При этом гораздо раньше наступает электрический пробой диэлектрика.

Электронная поляризация – это процесс поляризации, при котором непарные молекулы получают деформацию электронных оболочек.

Этот механизм универсален, так как деформация электронных оболочек под влиянием внешнего поля происходит в атомах, молекулах и ионах любого диэлектрика.

Ионная поляризация – это поляризация твердых кристаллических диэлектриков, следствием которой является смещение ионов различных знаков, составляющих кристаллическую решетку, в противоположных направлениях при воздействии внешнего поля. В результате смещения на гранях кристалла образуются связанные (нескомпенсированные) заряды.

В качестве примера описанного механизма, можно рассмотреть поляризацию кристалла N a C l , в котором ионы N a + и C l – составляют две подрешетки, вложенные друг в друга. При отсутствии внешнего поля каждая элементарная ячейка кристалла N a C l является электронейтральной и не обладающей дипольным моментом. Во внешнем электрическом поле обе подрешетки сместятся в противоположных направлениях, т. е. кристалл подвергнется процессу поляризации.

Когда происходит процесс поляризации неоднородного диэлектрика, связанные заряды могут появиться не только на поверхности, но и в объеме диэлектрика. В таком случае электрическое поле E ' → связанных зарядов и полное поле E → будут обладать сложной структурой, зависящей от геометрии диэлектрика. Утверждение о том, что электрическое поле _formula_ в диэлектрике в ε раз меньше по модулю по сравнению с внешним полем E → точно верно лишь, когда речь идет об однородном диэлектрике, который заполняет все пространство, где создано внешнее поле. В частности:

В случае, когда в однородном диэлектрике с диэлектрической проницаемостью ε находится точечный заряд Q , напряженность электрического поля E → этого точечного заряда и потенциал φ в ε раз меньше, чем в вакууме. Запишем данное утверждение в виде формул:

Основным является сессионный cookie, обычно называемый MoodleSession. Вы должны разрешить использование этого файла cookie в своем браузере, чтобы обеспечить непрерывность и оставаться в системе при просмотре сайта. Когда вы выходите из системы или закрываете браузер, этот файл cookie уничтожается (в вашем браузере и на сервере).

Другой файл cookie предназначен исключительно для удобства, его обычно называют MOODLEID или аналогичным. Он просто запоминает ваше имя пользователя в браузере. Это означает, что когда вы возвращаетесь на этот сайт, поле имени пользователя на странице входа в систему уже заполнено для вас. Отказ от этого файла cookie безопасен - вам нужно будет просто вводить свое имя пользователя при каждом входе в систему.

Читайте также: