Электрический ток в вакууме кратко

Обновлено: 04.07.2024

Вакуум - пространство, свободное от вещества. В наиболее общем смысле, вакуум - это пустота. В физике и технике под вакуумом подразумевается газообразная среда при давлении в сотни раз ниже атмосферного.

Электрический ток в физике - это направленное движение носителей заряда. Вакуум - диэлектрик, и ток не может возникнуть в нем сам по себе. Условие протекания электрического тока в вакууме - наличие в нем достаточного количества свободных заряженных частиц. Например, электронов.

Термоэлектронная эмиссия

Как свободные электроны могут появиться в вакууме? Благодаря явлению термоэлектронной эмиссии, открытому Томасом Эдисоном в 1879 году.

Определение. Термоэлектронная эмиссия

Термоэлектронная эмиссия - испускание электронов из металла при его нагревании.

Металлы являются наилучшими проводниками, так как имеют свободные электроны, которые иногда еще называют электронным газом. При нагревании металла энергия электронов (измеряется в электронвольтах) увеличивается и они могут "вырваться" из металла. Для того, чтобы вылететь из металла, электрон должен обладать энергией, превышающей работу выхода электронов для этого металла.

A в ы х = E 0 - μ

Здесь A в ы х - работа выхода, которую нужно преодолеть электрону, E 0 - его энергия, μ - энергия Ферми.

Термоэлектронный ток

Испущенные металлом свободные электроны образуют у поверхности металла электронное облако. Если создать в данной области электрическое поле, электроны начинают двигаться под действием сил поля. Иными совами, возникает электрический ток, называемый термоэлектронным.

Определение. Термоэлектронный ток

Термоэлектронный ток - ток, возникающий при испускании (эмиссии) электронов накаленными телами в вакуумных приборах.

Так, если в вакууме поместить две металлические пластины и создать между ними разность потенциалов и условия для термоэлектронной эмиссии, возникнет термоэлектронный ток.

Электрический ток в вакууме широко используется в вакуумных приборах. Самый простой пример - электронная лампа, или вакуумный диод.

Вакуумный диод представляет собой баллон с откачанным воздухом, содержащий электроды: катод и анод. Электроны выбиваются из катода и летят к аноду.

Для вакуумного диода не выполняется закон Ома. При небольших значениях напряжения на аноде имеет место формула зависимости силы электрического тока от напряжения:

где B - коэффициент пропорциональности, который зависит от формы, расположения и размеров электродов.

При увеличении разности потенциалов между электродами сила тока будет расти. Однако, для термоэлектронного тока существует понятие тока насыщения. Это ток такой силы, при котором все электроны из электронного облака достигают другой анода. При достижении силы тока насыщения и дальнейшем росте разности потенциалов, сила тока насыщения не меняется.

Эмиссионную способность материала катода характеризует плотность тока насыщения, которая определяется по формуле Ричардсона-Дешмана:

j = 1 - h R i A · T 2 · e - q φ k T .

Здесь h - постоянная Планка, h R i - усредненное значение коэффициента отражения электронов от потенциального порога, A - термоэлектрическая постоянная, равная 120 , 4 A К 2 · с м 2 , T - температура, q - заряд электрона, q φ - работа выхода, k - постоянная Больцмана.

Американский изобретатель Эдисон в 1879 г., экспериментируя с лампой накаливания добавил в нее металлический электрод(анод) и обнаружил, что при нагревании нити накала(катод) до высокой температуры в вакууме образуется электрический ток. Но электрический ток существует, если анод подключен к положительному полюсу источника тока.

опыт эдисона

Проблема : как объяснить природу тока в вакууме и почему электрический ток в анодной цепи появляется, если на анод подан положительный потенциал.

Вакуум – это такая степень разряжения газа, при которой вероятность столкновения молекул очень мала.

Вакуум не пропускает электрический ток, т.к. нет носителя заряда.

Источником заряженных частиц в вакууме может являться нагретая до высокой температуры металлическая спираль (электрод). При этом вокруг спирали образуется электронное “облачко”.

Явление выхода электронов с поверхности металла при его нагревании называется термоэлектронной эмиссией .

Работу, которую необходимо совершить электрону для вылета из металла в вакуум, называют работой выхода .


– условие, при котором электрон покидает металл.

При подключении электродов двухэлектродной электронной лампы к источнику тока появляется электрическое поле под действием которого электроны покидают электронное облако и движутся к аноду. В электрической цепи устанавливается электрический ток.

Таким образом ток в вакууме осуществляется за счет термоэлектронной эмиссии и представляет собой поток электронов от катода к аноду.

! Если на анод подать отрицательный потенциал, то электрическое поле отталкивает электроны облака назад к аноду. Тока в цепи нет.

Основное свойство вакуумного диода: пропускать ток в одном направлении . Это свойство используется для преобразования переменного тока в постоянный.

Если в аноде электронной лампы сделать отверстие, то часть электронов, ускоренная электрическим полем, пролетит в отверстие, образуя за анодом электронный пучок. Электронным пучком можно управлять, поместив между катодом и анодом дополнительный электрод и изменяя его потенциал.

  1. Электронный пучок в месте падения нагревает металл. Это свойство используется для электронной плавки сверхчистых металлов в вакууме и для резки металлов электронным лучом.
  2. Электрическое и магнитное поля оказывают действие на движущиеся электроны, изменяя направление их движения. Это свойство используется для управления электронным пучком в вакуумных приборах.
  3. При попадании на вещество происходит торможение быстрых электронов, что приводит к возникновению рентгеновского излучения.
  4. Некоторые вещества (люминофоры) при бомбардировке электронами светятся.

Экспериментальным доказательством является создание приборов, в основе работы которых лежит теория электрического тока в вакууме.

Электронно-лучевая трубка (ЭЛТ) является основным элементом осциллографа – прибора для исследования быстропеременных процессов в электрических цепях. Трубка представляет собой вакуумный баллон, одна из стенок которого является экраном. В узкой части трубки находится электронная пушка, состоящая из нити накала, катода и анода в виде цилиндра с отверстием.

схема электронно-лучевой трубки

Такая конструкция позволяет получить узкий электронный пучок, который на пути к экрану проходит последовательно между двумя парами пластин, расположенных вертикально и горизонтально. При подаче напряжения на пластины пучок отклоняется в электрическом поле, что позволяет перемещать светящуюся точку по экрану в любом направлении.

кинескоп

Электронно-лучевая трубка также используется в телевизионных приемниках и мониторах ЭВМ. В такой ЭЛТ (кинескопе) управление электронным пучком(1) осуществляется магнитным полем катушки(2) на горловине кинескопа(3).

Вакуумный диод , обладая односторонней проводимостью, находит применение в выпрямителях переменного тока.

вакуумный диод

Вакуумный триод (трехэлектродная электронная лампа) имеет дополнительный электрод – сетку. Изменяя потенциал сетки можно управлять потоком электронов, идущих от катода к аноду, т.е. управлять анодным током в цепи. Используется как усилитель тока в радиоэлектронных устройствах.

Свободное пространство от вещества называют вакуумом. Электрический ток, являясь упорядоченным движением носителей зарядов, самостоятельно в нём появиться не может. Но существуют радиоэлектронные приборы, чаще всего усилительные, работа которых построена именно на пропускании электричества через вакуумную среду. Появление таких устройств стало возможным после открытия термоэлектронной эмиссии, фундаментального физического явления.

Электрический ток в вакууме

Общие сведения

Резервуар с вакуумом

Поэтому в физике существует особый термин — физический вакуум. Под ним понимают замкнутое пространство, в котором давление в несколько раз меньше по сравнению с газовой средой. То есть его величина не оказывает никакого влияния и ей можно пренебречь. Так как электричество образуется при перемещении элементарных носителей зарядов, которые в вакууме практически отсутствуют, при простом воздействии на среду его получить не удастся. Поэтому единственной возможностью пропустить ток через пустоту является добавление в неё заряженных частиц.

В 1879 году Эдисон, изучая причину перегорания нитей в лампах накаливания, обнаружил образование тёмного налёта около анодного вывода. Этот эффект изобретатель объяснял тем, что внутри колбы возникает разряд, вследствие которого заряженные частицы угольной пыли выбиваются с проводника. Он предположил, что если в лампу ввести дополнительный электрод с положительным зарядом, то эти частицы будут им притягиваться.

Так был открыт эффект термоэлектронной эмиссии. Другими словами, испускание заряженных частиц при нагреве проводника до температур 1500 — 2500 о С. При таких величинах электроны разрывают связи и высвобождаются. Это явление сродни испарению молекул с поверхности жидкости. Оно нашло своё применение в вакуумных электронных приборах. Например, используется в электронно-лучевых трубках, ламповых диодах.

Физика процесса

Электрический ток в вакууме может образовываться только направленным движением электронов. Ввести их, возможно, с помощью помещения в среду металла. Для того чтобы частицы покинули поверхность проводника нужно им отдать энергию. Этот процесс называется работой выхода электронов из вещества.

Её значение для разных материалов было установлено экспериментально. Так, для наиболее популярных веществ работа выхода равна:

  • вольфрама — 4,5 эВ;
  • кадмия — 2,2 эВ;
  • цинка — 4,2 эВ;
  • оксида бария — 1 эВ.

То есть для того чтобы извлечь электрон, нужно сообщить ему определённую энергию. Только тогда он сможет вылететь с поверхности. В обычном состоянии энергия электрона в металле составляет 3,2 KT (тепловая). При комнатной температуре (T = 300 K) KT = 0,026 эВ. Этой величины будет явно недостаточно, чтобы появилась электропроводность в вакууме.

Энергия электрона в металле

Если же нагреть тело до 3 тыс. градусов по кельвину (многие металлы начинают расплавляться), то KT = 0,26 эВ. Этого значения всё равно мало для того, чтобы выбить электроны. Но на самом деле носители имеют определённое распределение по энергиям. Найденное значение показывает среднюю величину. Поэтому в теле из-за высокой плотности заряженных частиц обязательно будут такие электроны, которые имеют энергию превышающую работу выхода.

Над поверхностью проводника появляется электронное облако. При этом чем выше температура, тем плотнее оно будет. Вылетевший электрон приводит к изменению заряда металла. В итоге он начинает втягиваться обратно. Устанавливается равновесие. Какое число электронов вылетает, такое же их количество возвращается.

Для того чтобы образовался поток зарядов нужно ввести вспомогательную цепь. Другими словами, сообщить электронам дополнительную энергию. Зависимость между током и напряжением в рассматриваемом случае не будет соответствовать закону Ома. Ведь образованное электронное облако задерживает вновь вылетающие электроны. Но если увеличить напряжение на другом выводе, то концентрация носителей в образованном поле уменьшится, значит, снизится и тормозящий эффект. Это приведёт к увеличению тока.

Таким образом, вылетающие электроны можно уподобить электра ракетам, преодолевшим земное притяжение. Если к выводу присоединить положительный электрод источника тока, то возникшее электромагнитное поле между спиралью и электродом внутри колбы с вакуумом, устремит к нему электроны. Внутри потечёт электрический ток.

Вакуумный диод

Вакуумный диод

Одним из типичных устройств, использующих проводимость безвоздушного пространства, является вакуумная двухэлектродная электронная лампа. Если на её положительный вывод подаётся обратное напряжение, то все испущенные катодом электроны возвращаются. При прямом же смещении носители зарядов устремляются к аноду. Другими словами, происходит выпрямление переменного сигнала. Устройство работает как диод.

Исследовать появление электрического тока в вакууме и газах можно с помощью радиоэлемента, состоящего из следующих частей:

  • запаянной колбы;
  • электрода из металла (анод);
  • вольфрамовой спирали (катод);
  • реостата.

Нить из вольфрама находится в герметичной колбе и подключена через реостат к генератору для регулировки силы тока. Электрод подключён к микроамперметру. С него цепь, проходя через балластный резистор, замыкается на катоде.

Реостатом можно регулировать температуру катода. Переменным сопротивлением устанавливается разность потенциалов между положительным и отрицательным выводом. Вольт-амперная характеристика, то есть зависимость анодного тока от напряжения будет формироваться следующим образом. Допустим, напряжения нет. Тогда электроны, вылетевшие из катода, притянутся обратно. Ток в цепи анода не течёт. Если на вывод подать отрицательный сигнал, то электроны будут отталкиваться. Ток снова не течёт.

Появление электрического тока в вакууме и газах

Когда на анод поступает положительное напряжение, то возникает электрическое поле. Оно создаёт силу, направленную в сторону анода. Скорость полёта электронов разная, так как некоторые из них отталкиваются от уже ранее вылетевших частиц. Чем больше будет напряжённость поля, тем сильнее начнёт протекать ток. Но изменение будет происходить не линейно. Например, если увеличить напряжение в два раза, то число электронов, вылетевших из катода, увеличится в больше раз, чем это число. Чем больше разность потенциалов, тем меньше пространственный заряд электронов.

На графике эта зависимость будет представлять полукубическую параболу. Описать её можно приблизительной формулой: I = U 3/2 . Если продолжить поднимать напряжение, то напряжённость становится намного больше поля, создаваемого пространственным облаком. Все электроны начнут добираться до анода. Сила тока уже не будет зависеть от напряжения. На ВАХ это изображается прямой линией, а эффект называется током насыщения.

Электронно-лучевая трубка

Электронно-лучевая трубка

В вакуумных радиолампах поток электронов направлен от анода к катоду во все стороны. Но можно создать такие конструкции, в которых электроны будут направлены в одном направлении. Создаётся такой поток с помощью специальных фокусирующих пластин. Его часто называют катодным лучом. С его помощью можно нагревать тела, например, в вакуумных печах.

По своей природе он обладает следующими свойствами:

  • на него действует электрическое и магнитное поле (сила Лоренца);
  • попадая на некоторые вещества, например, сернистый цинк, сфокусированный электронный поток приводит к интересному результату — свечению;
  • луч генерирует рентгеновское излучение.

На этих свойствах и базируется класс вакуумных приборов называемый электронно-лучевыми трубками (ЭЛТ).

Устроено такое устройство следующим образом. Электроны в приборе образовываются с помощью термоэлектронной эмиссии. Катод прибора представляет собой цилиндр с плоским основанием, покрытым окисью бария. Этот электрод испускает электроны. Чтобы управлять их интенсивностью используется сетка. Подавая на неё напряжение, можно запирать поток или отпирать.

Главная деталь в определение электронного потока это его узкая направленность. Добиться этого можно, используя дополнительные анодные выводы. Один из них ускоряющий, а другой фокусирующий. Проходя через указанный набор ускоренный сфокусированный поток вылетает из ЭЛТ. На второй анод подаётся положительное напряжение напрямую, а на ускоряющий через реостат. Разность потенциалов кратна десяткам киловольт.

Схема электронно- лучевой трубки

Вылетев с пушки поток, попадает на экран, покрытый люминофором. Вся эта система находится в колбе с безвоздушным пространством. Для того чтобы можно было перемещать луч по поверхности экрана используют конденсаторы. В зависимости от расположения их пластин происходит отклонение потока. Вызывает его подающееся на обкладки напряжение. От его значения луч может притягиваться к одной стороне или другой, по сути, изменяя поток электрического тока в вакууме. Так, кратко, и работает ЭЛТ.

Электрический ток в вакууме

Физика

Общие сведения

Любое физическое тело, будь то газ, жидкость или твёрдое вещество состоит из набора молекул, образованных ковалентными связями атомов. Это электрически нейтральные частицы, не несущие заряды. С точки зрения квантовой физики, молекула — это система, состоящая из ядер и электронов.

Электрический ток в вакууме кратко

В равновесном состоянии число положительных частиц равняется количеству отрицательных. Поэтому тело находится в энергетическом равновесии.

Установлено, что электрический ток возможен при существовании так называемых свободных частиц — электронов. Они не привязаны к ядрам и хаотично перемещаются по физическому телу. Из-за того что их движение хаотичное, то заряд, который они несут, скомпенсирован. Для того чтобы появился электроток, протекающий длительное время нужно выполнение трёх условий:

  • существование свободных носителей зарядов;
  • действие электрического поля;
  • замкнутая цепь.

Сторонние силы источника тока обеспечивают круговорот зарядов перемещая их в цепи против электрического поля на определённом участке. Из опытов стало известно, что сила тока пропорциональна работе (напряжению) которую необходимо выполнить, чтобы переместить заряд из одной точки в другую. То есть для того чтобы появился электроток должна быть создана разность потенциалов. Такое состояние характерно для металлов полупроводников и даже газов с жидкостями (явление пробоя). Но безвоздушное пространство отличается от них тем что в нём ничего нет.

Электрический ток в вакууме

На самом деле существует два понятия вакуума:

  • физическое — под ним понимают состояние газа, при котором длина свободного пробега молекул больше размера сосуда;
  • технический — сильно разряжённый газ.

Поэтому физики считают, что вакуум — это пространство в котором нет молекул атомов или ионов. Для того чтобы протекал ток нужны заряженные частицы. Вот ими как раз и являются электроны, но при этом они не существуют в вакууме сами по себе, а помещаются туда. Впервые процесс внесения отрицательных частиц в такую среду был выполнен Томасом Эдисоном в 1884 году. Он не был учёным, а был изобретателем. Его лампа накаливания и исследование свойств проводника при нагреве и послужили толчком для создания электровакуумного диода — устройства, проводящего эл. ток в вакууме.

Открытие явления и его природа

Томас Эдисон, проводя ряд экспериментов с лампочкой накаливания, пытался выяснить причину перегорания нити. Физик обратил внимание, что при её разрыве на стекле колбы с внутренней её стороны образуется чёрный налёт. При дальнейшем изучении Эдисон обнаружил что если пластина, внесённая в вакуум относительно нити накаливания, подключается к положительному потенциалу ток не появлялся. В ином случае проводник довольно сильно нагревался.

Это явление учёный объяснил существованием зарядов определённого знака, которые способны перемещаться в вакууме. На то время электрон ещё не был открыт. Эдисон увидел, что при повышении напряжения степень накала изменялась. Этот эффект был после назван термоэлектронной эмиссией. Уже после этого явления нашлось применение в детектировании радиоволн.

Ток в вакууме

С физической точки зрения, термоэлектронной эмиссией называют способность тел испускать со своей поверхности электроны при нагревании. Связано это с тем что в веществах существует так называемый потенциальный барьер. То есть область пространства с конкретной потенциальной энергией. В равновесном состоянии величина заряда мала и не позволяет частице перейти через этот барьер. Но как только потенциал электрона возрастает, он свободно проходит через него. Нужную дополнительную энергию как раз и получает частица за счёт тепловых колебаний.

Уровень потенциального барьера зависит от двух параметров:

Носители заряда в вакууме

  • термоэлектронной работы выхода f;
  • значения надбарьерного отражения электронов.

Таким образом, прикладывая разность потенциалов между двумя проводниками, подключёнными к одной цепи, можно добиться протекания между ними тока. При нагревании проводника до высоких температур вокруг него образуется электронное облако. Причём чем выше температура, тем его плотность больше.

Так как проводник начинает заряжаться отрицательно из-за частичного ухода электронов то возникает сила притягивающая вылетевшие частицы обратно.

Но при дальнейшем повышении температуры наступает такой момент, когда электроны вырываются из облака. Этому способствует другой проводник с меньшим потенциалом, к которому и устремляются электроны. Возникает электропроводность.

Вакуумный диод

Прибором простейшего вида, использующим явление возникновения электричества, порождаемого термоэлектронной эмиссией, является вакуумный диод. Его работа довольно простая, а сам прибор относится к простейшим устройствам. Основной характеристикой диода является вольт-амперная зависимость.

Она имеет три участка: нелинейный, степенной, насыщения. На первом происходит медленное возрастание силы тока при увеличении напряжения. Эта зависимость экспоненциальная. На втором промежутке изменение описывается формулой: I = G * U 3/2 где: G — проводимость, величина, обратная сопротивлению. Третий участок характеризуется тем что при росте напряжения значение тока практически не изменяется. Это связано с тем что число электронов, вылетевших из проводника, становится постоянным для любого момента времени.

Эл ток в вакууме

Сам электронный прибор представляет собой колбу с двумя электродами. В середине сосуда создан физический вакуум. Один электрод (катод) предназначен для испускания электронов, а другой (анод) для их получения. Катодный вывод состоит из нити, которая разогревается под действием тока и длинного цилиндра с уложенным в него спиралью подогревателя.

При нагреве электрода возникает термоэлектронная эмиссия. Электроны покидают поверхность и создают облако с избытком отрицательных зарядов. Поверхность же вывода начинает заряжаться положительно. Некоторое количество частиц, обладающих небольшой скоростью, падают на катод, но быстрые электроны преодолевают барьер и переходят на анод. Если на положительный вывод подать прямое смещение, то возникнет ускоряющее поле, которое ещё больше способствует переносу электронов.

В результате появится постоянный ток. Электровакуумный диод имеет неоспоримое достоинство перед полупроводниковым — отсутствие обратного тока. Кроме этого, устройство способно выдерживать большие напряжения и ионизирующее излучение. Но при этом прибор нельзя назвать энергоэффективным.

Наиболее часто в качестве термокатода используют вольфрам или смесь окислов щёлочноземельных металлов. Следует отметить, что к основным параметрам диода относят крутизну вольт-амперной характеристики ток насыщения и запирающее напряжение. Последнее определяет значение, при котором происходит пробой — появление искры с дугой и увеличение в несколько раз силы тока. То есть нарушения прочности вакуума.

Электронно-лучевая трубка

Природное явление способное создавать ток в вакууме используется не только в электроприборах простого типа, но и электронно-лучевых трубках (ЭЛТ). Двадцать лет тому назад это были основные устройства, на базе которых создавались кинескопы, предназначенные для вывода видеоинформации на экран мониторов. Их встраивали в осциллографы — это прибор какой может не только мерить значение напряжения, но и показывать форму электрического сигнала.

Током порождается нагревание тела. Это происходит из-за свойства, электронных пучков, которые иногда в научных презентациях называют катодными лучами. Связано это с тем, что во времена Томсона думали, что частицы, летящие от катода, образуют линии. Такую терминологию и сейчас часто можно встретить в конспектах американских учащихся.

Электронно-лучевая трубка

Электронный пучок ускоряется полем, следовательно, он приобретает энергию. Попадая на какое-либо тело, он передаёт веществу накопленный заряд. В результате происходит нагревание. Этот эффект и способность носителей заряда в вакууме обеспечивать протекание тока используют в работе ЭЛТ.

Реальное устройство представляет собой цилиндр с плоским основанием, которое покрыто окисью бария. К катоду подключается проводник, который выводится за пределы ЭЛТ. Для управления пучком, испускаемым с поверхности катода, используется сетка. Изменяя на ней напряжение, можно регулировать плотность потока.

Летящий поток с помощью дополнительных электродов фокусируется и ускоряется. По сути, это два цилиндра, на которых также регулируется напряжение. По закону природы если к катоду подключается минус, а к анодам плюс, то созданная разность потенциалов позволяет летящим электронам ударяться об люминофор, приводя его к свечению. Этим материалом и покрывают внутреннюю поверхность экрана. Вся эта конструкция затем помещается в безвоздушное пространство равноудалено от потолка и пола колбы.

Прообраз подобного устройства был создан в 1879 году английским физиком Уильямом Круксом. Следует отметить, что ЭЛТ разделяют на два класса: электромагнитные и электростатические. Определение устройства к тому или иному виду зависит от способа организации отклонения луча.

Читайте также: