Экспрессия гена это кратко

Обновлено: 04.07.2024

Экспрессия генов

Экспрессия генов (лат. expressio - выражение) - это процесс, с помощью которого информация от гена используется в синтезе функционального продукта гена.

Эти продукты часто являются белками, но в генах, не кодирующих белки (интроны), таких как гены-переносчики РНК (тРНК) или малые ядерные РНК продукт представляет собой функциональную РНК.

Процесс экспрессии генов используется всеми живыми организмами - эукариотами (включая многоклеточные организмы), прокариотами (бактериями и археями) и используется вирусами - для создания макромолекулярного механизма для жизни.

Экспрессия гена управляет такими процессами, как транскрипция, сплайсинг РНК, трансляция и посттрансляционная модификация белка.

Регуляция генов дает клеткам контроль над структурой и функцией, и является основой для клеточной дифференцировки, морфогенеза и универсальности и адаптивности любого организма. Регуляция генов может также служить субстратом для эволюционных изменений, поскольку контроль времени, места и количества экспрессии генов может оказывают глубокое влияние на функции (действия) гена в клетке или в многоклеточном организме.


Таким образом, регуляция экспрессии генов имеет решающее значение для развития живых существ.

Экспрессия генов — это процесс, в ходе которого наследственная информация от гена (последовательности нуклеотидов ДНК) преобразуется в функциональный продукт — РНК или белок. Экспрессия генов может регулироваться на всех стадиях процесса: и во время транскрипции, и во время трансляции, и на стадии посттрансляционных модификаций белков.

Регуляция экспрессии генов позволяет клеткам контролировать собственную структуру и функцию и является основой дифференцировки клеток, морфогенеза и адаптации. Экспрессия генов является субстратом для эволюционных изменений, так как контроль за временем, местом и количественными характеристиками экспрессии одного гена может иметь влияние на функции других генов в целом организме.

Содержание

Транскрипция и трансляция

У прокариот и эукариот гены представляют собой последовательности нуклеотидов ДНК. На матрице ДНК происходит транскрипция — синтез комплементарной РНК. Далее на матрице мРНК происходит трансляция — синтезируются белки. Существуют гены, кодирующие нематричную РНК (например, рРНК, тРНК, малые РНК), которые экспрессируются (транскрибируются), но не транслируются в белки.

Регуляция

Компактизация ДНК

Привлечение факторов транскрипции

Регуляция после транскрипции

МикроРНК — это короткие (18—25 нуклеотидов) последовательности односпиральной РНК, вызывают подавление экспрессии генов. МикроРНК связываются со своей мишенью — информационной РНК — по принципу комплементарности . Это вызывает подавление синтеза белка или деградацию информационной РНК.

МикроРНК могут иметь большую или меньшую специфичность благодаря большей или меньшей доле комплементарных своей мишени азотистых оснований. Низкая специфичность позволяет одной микроРНК подавлять экспрессию сотен разных генов. [1]

Моноаллельная экспрессия генов

Моноаллельная экспрессия у эукариот характерна:

  • для генов Х-хромосомы в женских клетках из-за механизма дозовой компенсации;
  • для импринтируемых генов;
  • В настоящее время известно, что около 5—10 % генов эукариот экспрессируются в клетках моноаллельно, среди таких генов чаще наблюдаются гены, кодирующие поверхностные клеточные белки и, в частности, гены, кодирующие иммуноглобулины, Т-клеточные и обонятельные рецепторы. Это явление носит также название аллельное исключение. Выбор экспрессирующегося аллеля происходит рано в развитии, и этот выбор осуществляется случайно, в результате около половины клеток организма экспрессируют отцовский аллель, а другая половина клеток — материнский аллель. Иногда наблюдается тканеспецифичная моноаллельная экспрессия гена, в других тканях такой ген может экспрессироваться биаллельно. К случайной моноаллельной экспрессии аутосомных генов не относят случаи, когда разные алллели гена экспрессируются на различном уровне из-за полиморфизма в cis-регуляторных последовательностях гена [2] .

См. также

Примечания

Литература

  • Патрушев Л. И. Экспрессия генов. — М.: Наука, 2000. — ISBN 5-02-001890-2

Wikimedia Foundation . 2010 .

Полезное

Смотреть что такое "Экспрессия генов" в других словарях:

Экспрессия генов — (от лат. expressio выражение) сложный молекулярный процесс в результате которого информация содержащаяся в ДНК (или РНК) молекуле преобразуется в вещество (белок, фермент) … Физическая Антропология. Иллюстрированный толковый словарь.

Клеточно-специфическая экспрессия генов — * клетачна спецыфічная экспрэсія генаў * cell specific gene expression экспрессия только определенной части генома в определенных клетках и в определенное время, которая происходит под контролем транскрипционных факторов, включающих и выключающих … Генетика. Энциклопедический словарь

генов поток — * генаў паток * gene flow обмен генами между разными популяциями одного и того же вида за счет мигрантов, что приводит к временному изменению частоты генов многих локусов в общем пуле генов (см. ) популяции реципиента (см. ). Генов распределение… … Генетика. Энциклопедический словарь

Экспрессия гена — Экспрессия генов это процесс, в котором наследственная информация от гена (последовательности нуклеотидов ДНК) преобразуется в функциональный продукт РНК или белок. Экспрессия генов может регулироваться на всех стадиях процесса: и во время… … Википедия

Экспрессия — Экспрессия (лат. expressio выражение): В Викисловаре есть статья «экспрессия … Википедия

Экспрессия белков — * экспрэсія бялкоў * protein expression синтез белков в клетке под контролем соответствующих генов. При вставке рекомбинантного гена в клетку хозяина экспрессируют нужный исследователю белок. Многие методики и технологии базируются на Э. б., при… … Генетика. Энциклопедический словарь

ЭКСПРЕССИЯ ГЕНА — программируемый геномом процесс биосинтеза белков и(или) РНК. При синтезе белков Э. г. включает транскрипцию синтез РНК с участием фермента РНК полимеразы; трансляцию синтез белка на матричной рибонуклеиновой кислоте, осуществляемый в рибосомах,… … Химическая энциклопедия

геномная библиотека банк генов — геномная библиотека, банк генов * геномная бібліятэка, банк генаў * genomic library or gene bank набор клонированных фрагментов ДНК, представляющих индивидуальный (групповой, видовой) геном. У млекопитающих (в т. ч. человека) геномы крупные,… … Генетика. Энциклопедический словарь

Импринтинг генов — Геномный импринтинг это эпигенетический процесс, при котором экспрессия определенных генов осуществляется в зависимости от того, от какого родителя поступил аллель гена. Это ненаследуемый процесс, который не подчиняется наследованию по Менделю.… … Википедия


«Начать свое выступление я бы хотел с объяснения некоторых терминов и концепций биологии клетки и клеточной генетики.

Это рисунок клетки, очень схематичный рисунок.


В самом центре этого рисунка находиться элемент, который называется – ЯДРО КЛЕТКИ, и внутри этого клеточного ядра содержится ДНК — то образование, в котором хранится вся информация о том, что мы есть.

Эти структуры, хранящие информацию о нас, называются хромосомы. И вокруг хромосом, как показано здесь на рисунке, плотно обвиваются наши молекулы ДНК. И если размотать эту цепочку, то она состоит из отдельных участков – индивидуальных генов. Каждый из этих генов содержит информацию, которая представляет собой отдельный уникальный кирпичик, из которого строится конкретный человек.

Человек, его тело и организм состоят из около 50 триллионов клеток. И каждая клетка содержит полный комплект ДНК. И в каждом этом комплекте ДНК находится порядка 20 тысяч генов. Я уже упомянул о том, что каждый ген служит строительным кирпичиком вашего организма. Но возможно сейчас прозвучит термин, с которым вы пока не знакомы, но он очень важен для понимания той науки, которая стоит за созданием аgeLОС.

Что такое экспрессия генов?

Каждый из генов нашего организма отвечает за создание определенного продукта, но выработка этого продукта из расчета на один ген – различна. Некоторые из них вырабатывают много того, что должны, другие – недостаточно. И как раз это и определяет степень (концепцию) экспрессии гена. Экспрессия – это скорость (например – поезд-экспресс) в нашем случае – это активность генов. Экспрессия некоторых генов находится на невысоком уровне, а у других – степень экспрессии высокая. Экспрессия генов не измеряется в категориях – хорошая экспрессия или плохая экспрессия, каждый из генов имеет свою собственную экспрессию.


Генетики – это ученые, которые изучают гены. И их очень интересует возможность измерить величину экспрессии каждого гена. И для этого в научной лаборатории NuSkin совместно с лабораторией LifeGenTechnology была разработана специальная цветная шкала, которая позволяет хорошо укладывать в различные цветовые комбинации величину экспрессии генов.

Если экспрессия гена находиться на невысоком уровне, то он окрашивается в один из цветов зеленой части спектра. А если ген имеет высокую экспрессию, то при нанесении на эту цветовую палитру он окрашивается в красной части спектра.

Вы помните, что я упоминал, что в каждой ДНК находиться около 20 тысяч генов. Это может показаться безумием, но для разработки нашей технологии ageLOC нам приходиться иметь дело со всеми 20 тысячами генов. Не просто каждый ген обладает собственным размером экспрессии, собственной величиной экспрессии, экспрессия наших генов различна в разные периоды жизни человека.


На слайде показаны два разных гена, один имеет низкую экспрессию, другой – высокую, и далее мы видим, как сильно меняется величина экспрессии генов, когда возраст человека увеличивается, может получиться прямо противоположная картинка.

Ген, который имел высокую экспрессию, когда человек был молод, с течением времени, в результате старения, его экспрессия понижается, а экспрессия гена, который был менее активен в молодости, возрастает.

Таким образом становиться понятно, что важно не просто изучать степени экспрессии генов, велика она или мала, важно обеспечить сохранение того уровня экспрессии генов, который был у человека в молодости. И на этой цветовой палитре очень хорошо видно, что ген, у которого была низкая активность в молодом возрасте, с возрастом повышается, и аналогично, ген, у которого была высокая экспрессия в молодости, с возрастом – снижается, перемещаясь в другую часть спектра.

Это та концепция, которая называется “Концепцией Экспрессии Генов”, и она имеет исключительную важность для понимания концепции ageLOC в целом.

А как генетики изучают экспрессию генов и исследуют ее на протяжении нашей жизни?


Для этого был разработан специальный генетический чип. И в этом небольшом окошке темного цвета хранится огромное количество информации.

Фактически один-единственный чип способен измерить весь геном человека, все 20 тысяч генов. Каждая из этих точек обозначает один из 20 тысяч генов, которые измеряются данным чипом. И можно использовать такой генетический чип для измерения экспрессии всех генов конкретного человека в разные периоды его жизни, и при этих замерах точки, обозначающие экспрессию отдельных генов, будут в течении жизни изменять свой цвет в зависимости от изменения экспрессии.

Чтобы еще лучше проиллюстрировать вам концепцию экспрессии генов, я хочу рассказать вам совершенно замечательную историю об исследовании экспрессии генов у однояйцевых близнецов.



Эти две близняшки родились в 1908 году. Этой фотографии почти сто лет, она была сделана, когда девочкам было пять лет. Это однояйцевые близнецы, то есть их молекулы ДНК идентичны. Они действительно выглядят одинаково? Как вам видится? Согласны, что они абсолютно идентичны, то есть совершенно одинаковы, как внешне, так и внутренне. Теперь давайте посмотрим, как они выглядели в 12 лет. Они по-прежнему выглядят одинаково?

А на фотографии где им 21 год? А теперь давайте посмотрим на фотографию, когда им исполнилось по 102 года. А сейчас они выглядят одинаково? Их, конечно, можно принять за сестер, они похожи друг на друга, как родственники, но они уже не так похожи, как однояйцевые близнецы.

Как может так получиться, что в старости два организма с идентичными молекулами ДНК выглядят по-разному? Что у них изменилось? Молекула ДНК? Нет, ДНК не меняется никогда. И вот именно здесь вступает в дело замечательная наука, изучающая экспрессию генов.


Здесь представлены хромосомы четырех человек. Правая часть представлена хромосомами близнецов. Желтая часть – это хромосомы близнецов молодого возраста, а красная – это хромосомы близнецов пожилого возраста. Вы помните, что хромосомы состоят из молекул ДНК и то отличие в цветах, которое мы видим на фотографиях, оно обусловлено именно экспрессией генов. И если посмотреть на окраску хромосом близнецов молодого возраста, маленьких детей, то мы видим, что отличия в цветах практически – нет, потому что отсутствует различие в экспрессии их генов. Но ДНК близнецов пожилого возраста уже начинают различаться по цвету, потому что в силу разных условий жизни взрослых людей у них по-разному меняется экспрессия генов и идет процесс старения.

Я хотел бы еще раз подчеркнуть, что молекулы ДНК как молодых близнецов, представленных здесь, так и ДНК пожилых людей продолжают оставаться абсолютно идентичными друг другу, только экспрессия их генов с возрастом меняется! И если наш возраст влияет на экспрессию генов, то разве неинтересно узнать, какие пищевые компоненты, какие нутриенты могут повлиять положительным образом на то, как будет меняться экспрессия наших генов с возрастом.


Давайте сейчас прервемся в обсуждении и объяснении того, как осуществляется экспрессия наших генов. И позвольте мне представить вам научный совет Pharmanex.

В трех странах мира расположены наши научные лаборатории. Одна из наших лабораторий расположена в Пекине, есть лаборатория в Шанхае, есть лаборатория в штаб-квартире нашей компании, в Прово. И не то чтобы у нас было очень много ученых, просто наши ученые имеют очень сильно отличающийся от других багаж знаний, и знания очень разнообразные.

Как же нам помогает такой разнообразный багаж знаний наших ученых?

Ведь у истинных ученых очень часто возникают различные мнения по научным вопросам. Относясь к делу творчески, мы внесли различные научные позиции как элемент научных изысканий, заставляющий подходить к проблеме старения – комплексно.

Мы решили проанализировать идею о том, что все гены нашего организма начинают с возрастом работать по-другому и изучить специфику работы генов в молодом и пожилом возрасте. Но добиться понимания того, как осуществляется экспрессия генов на протяжении всей жизни человека, – это очень сложная задача. И несмотря на то, что у нас более ста ученых, никто из них, взятый отдельно, не в состоянии в полной мере изучить и оценить, как осуществляется экспрессия генов, например, животного, на всем протяжении жизни этого животного.

На самом деле на всей нашей планете есть только одна группа (коллектив, команда) ученых, которая владеет этим знанием.

Мы рассказали вам о концепции экспрессии генов и вы знаете, что некоторые гены имеют высокую экспрессию, а некоторые – низкую. И помните цветовую палитру, тот спектр, который я вам показывал? Зеленый означает низкую экспрессию генов, а красный – высокую. Это очень сложно, взять 20 тысяч генов и посмотреть на каждый из них в отдельности.


Но когда речь заходит об ингредиентах и нутриентах, и о том, как они влияют на экспрессию генов, здесь уже приоритет ученым NuSkin. И здесь мы видим, то какое воздействие определенный набор ингредиентов оказывает на эти именно гены.

И мы видим, что ингредиент №3 оказался способен уменьшить экспрессию генов данной группы до уровня практически сопоставимым с тем, который естественным образом присутствовал в данном организме в молодом возрасте.

Экспрессия генов — это реализация заложенной в них информации, то есть синтез РНК и белков. Другими словами, под экспрессией генов понимают их активность.

В клетках живых организмов экспрессия генов регулируется: одни гены могут быть реализованы, другие — нет. Причем регуляция может осуществляться на разных этапах: может выполняться или нет транскрипция, из пре-мРНК в результате альтернативного сплайсинга могут образовываться разные мРНК, может блокироваться трансляция и др.

У эукариот, обладающих отграниченным от цитоплазмы ядерным содержимым и более сложным геномом, регуляция экспрессии генов намного разнообразнее и сложнее, чем у прокариот.

Регуляция экспрессии генов у прокариот

У прокариот пока молекула РНК синтезируется на участке ДНК, она тут же может транслироваться (начиная с уже синтезированного конца). Поэтому у них регуляция экспрессии (активности) генов осуществляется почти исключительно на уровне ДНК, так как в РНК часто невозможно внести какие-нибудь изменения до ее трансляции.

В 1961 г. Жакобом и Моно была предложена модель оперона как системы регуляции генов у бактерий. Оперон состоит из промотора, оператора, структурных генов оперона (их может быть разное количество) и терминатора. В области промотора прикрепляется фермент РНК-полимераза. В области оператора присоединяется белок-репрессор, который кодируется отдельно отстоящим от оперона геном-регулятором (может быть сцеплен со своим опероном, а может находиться на расстоянии).

Если белок-репрессор соединяется с оператором, то транскрипция всех структурных генов оперона становится невозможной, так как РНК-полимераза не может перемещаться по цепи ДНК.

В свою очередь активность белка-репрессора может блокироваться определенным для него низкомолекулярным соединением — индуктором (тем или иным питательным веществом бактерий). В результате взаимодействия с индуктором белок-репрессор видоизменяется и уже не может присоединиться к оператору своего оперона. В этом случае гены оперона экспрессируются (т. е. на них идет синтез).

Бывает обратная ситуация, когда индуктор активирует белок-репрессор.

Таким образом, в зависимости от того, какие индукторы находятся в цитоплазме, у прокариот экспрессируются те или иные генные группы.

Вышеописанный механизм экспрессии генов относится к негативной регуляции, так как гены транскрибируются, если они не выключены репрессором. И наоборот: не транскрибируются, если выключены.

Кроме негативной регуляции у бактерий существует также позитивная. В этом случае вместо белка-репрессора действие оказывает белок-активатор. На эти белки также действуют индукторы, активируя или инактивируя их.

Также у прокариот были выявлены опероны, которые актируются двумя регуляторными белками, соединенными друг с другом.

Регуляция экспрессии генов у эукариот

У многоклеточных организмов в клетках разных тканей экспрессируются разные гены, т. е. для эукариот характерна дифференциальная экспрессия.

У эукариот, также как и у прокариот, существуют регуляторные белки с похожим механизмом действия. При этом для эукариот не характерна регуляция по типу оперона. Цистроны (транскрибируемые участки) эукариот обычно содержат по одному гену. (Это не касается геномов хлоропластов и митохондрий.)

Кроме регуляторных белков, взаимодействующих с ДНК, у эукариот существуют и другие способы регуляции экспрессии генов.

Конденсация и деконденсация хроматина. Это наиболее универсальный метод регуляции транскрипции. Когда нужно экспрессировать определенные гены, хроматин в этом месте деконденсируется.

Альтернативные промоторы. У гена может быть несколько промоторов, каждый из которых начинает транскрипцию с разных его экзонов в зависимости от типа клетки. В конечном итоге будут синтезированы разные белки.

Метилирование и деметилирование ДНК. Метилирование ДНК происходит в регуляторных областях гена. Метилируется цитозин в последовательности ЦГ, после чего ген инактивируется. При деметилировании активность гена восстанавливается. Процесс регулируется ферментом метилтрансферазой.

Гормональная регуляция. При гормональной регуляции гены активируются в ответ на внешний химический сигнал (поступление в клетку определенного гормона). Этот гормон запускает те гены, которые имеют специфические последовательности нуклеотидов в регуляторных областях.

Геномный импринтинг. Это малоизученный способ регуляции экспрессии генов у эукариот. Он возможен только у диплоидных организмов и выражается в том, что активность генов зависит, от какого из родителей они были получены. Выключение генов осуществляется путем метилирования ДНК.

Альтернативный сплайсинг. Это регуляция на уровне процессинга. При альтернативном сплайсинге порядок сшивки экзонов может быть различным. Отсюда следует, что на основе одной и той же нуклеотидной последовательности ДНК могут быть синтезированы разные белки. Хотя их отличие друг от друга будет в основном заключаться лишь в разных сочетаниях одних и тех же аминокислот.

Тканеспецифическое редактирование РНК также протекает на уровне процессинга. Выражается в замене отдельных нуклеотидов в РНК в определенных тканях организма.

Кроме того, у эукариот иРНК часто не подвергается процессингу вообще (а распадается) или подвергается с задержкой. Это токже можно рассматривать как способ регуляции экспрессии генов.

Посттрансляционная модификация белка. Чтобы молекула полипептида превратилась в активную молекулу белка, в ней должны произойти различные модификации определенных аминокислот, должны быть сформированы вторичная, третичная и возможно четверичная структуры. На этом этапе также можно повлиять на реализацию генетической информации, например, не дав молекуле сформироваться.

Риборегуляторы. Были обнаружены РНК, выполняющие регуляторные функции путем ослабления работы отдельных генов.

Для высокоорганизованных животных отмечается существование надклеточного уровня регуляции экспрессии генов.

Как известно, в ДНК содержится определенная генетическая информация:

- о структуре всех белков и РНК организма,

- о порядке реализации этой информации в разных клетках в процессе онтогенеза (индивидуального развития) и при различных функциональных состояниях.

Поскольку во всех соматических клетках организма один и тот же набор из 46 хромосом, то, несмотря на подчас сильные отличия между клетками, все они содержат в своих ДНК одну и ту же генетическую информацию. (Некоторое исключение составляют лимфоциты, в процессе формирования которых происходит перестройка генов иммуноглобулинов - антител.)

Данное обстоятельство - генетическая эквивалентность ядер всех соматических клеток организма послужило основанием для клонирования животных. В процессе репликации ДНК генетическая информация воспроизводится целиком, чтобы затем передаваться дочерним клеткам.

Но, кроме того, эта информация экспрессируется (реализуется) в клетке, обуславливая все проявления ее жизнедеятельности. Однако экспрессии подвергается отнюдь не вся имеющаяся в ядре генетическая информация, а лишь какая-то (обычно весьма небольшая) ее часть.

Этим-то и обусловлены особенности тех или иных клеток тем, каков спектр (набор) функционирующих генов и каковы при этом уровни их активности.

Экспрессия информации о структуре определенного белка включает 2 основных этапа (рис. 1).

Рисунок 1. Основные этапы экспрессии генов


Первый этап — транскрипция: образование в клеточном ядре на соответствующем гене (локализующемся в одной из хромосом) специального посредника — матричной РНК (м-РНК).

Смысл этого процесса — переписывание информации о структуре белка с огромного неподвижного носителя (ДНК в составе хромосомы) на небольшой подвижный носитель - м-РНК. Примерно так же обстоит дело, когда с жесткого диска компьютера, содержащего тысячи файлов, переписывают один из них на дискету. С той лишь разницей, что м-РНК в процессе записи информации образуется из новых нуклеотидов. Следовательно, м-РНК, считанные с разных генов, должны отличаться друг от друга — как отличаются друг от друга сами гены. Другое важное обстоятельство: непосредственный продукт транскрипции гена правильней называть предшественником м-РНК (пре-м-РНК). Дело в том, что новообразованная м-РНК подвергается, тут же (в ядре) созреванию, или процессингу. При этом она претерпевает существенную модификацию.

И лишь после того зрелая м-РНК (видимо, в комплексе со специальными белками) поступает из ядра в цитоплазму.

Второй этап — трансляция: синтез белка на рибосомах по программе, диктуемой м-РНК. Суть этой программы - определение очередности, в которой аминокислоты должны включаться в строящуюся пептидную цепь. Причем в процессе участвуют не свободные, а активированные аминокислоты: каждая из них связана с т. н. транспортной РНК (т-РНК), т. е. находится в виде аминоацил-т РНК (аа-т РНК). Для каждой из 20 аминокислот имеется своя специфическая форма т-РНК, а чаще — даже не одна, а несколько форм.

Рибосомы же играют в трансляции роль молекулярных машин, обеспечивающих правильное взаимодействие участников. В состав рибосомы входят четыре молекулы т. н. рибосомной РНК (р-РНК) — по одной молекуле каждого из 4-х видов р-РНК. Объединяясь с рибосомными белками, они образуют две субъединицы рибосомы и выполняют в них структурную, а также, возможно, каталитическую функции.

Таким образом, в трансляции участвуют РНК трех классов — м-РНК, т-РНК и р-РНК.

После окончания трансляции новый белок обычно не работает. Он должен приобрести рабочую (третичную или четвертичную) структуру. Этот процесс называется фолдинг(рис. 2).

Рисунок 2. Схема фолдинга.


Таким образом, как видим, фолдинг - очень важный этап в образовании работоспособных белков.

Вместе с тем оказалось, что добавление в среду некоторых белковых фракций клетки значительно облегчает рефолдинг (восстановление активности) денатурированных белков. Отсюда и возникло представление о вспомогательных белках (или факторах) фолдинга.

Затем было обнаружено, что данные факторы можно разделить на две группы.

Первая группа - это белки с каталитической активностью, т.е. ферменты фолдинга, или фолдазы. Пока обнаружено только два таких белка.




Вторая группа - т. н. молекулярные шапероны. Полагают, что сюда входят белки с самыми разными механизмами действия. Например, шапероны могут обеспечить белку удобное место для безопасного сворачивания в третичную структуру - котел с крышкой.

Объединяют же их следующие два обстоятельства:

- они требуются в количествах, близких к стехиометрическим, т. е. сравнимых по величине с концентрацией сворачиваемых белков;

- они, как и фолдазы, не входят в состав конечных продуктов фолдинга, какими бы сложными олигомерными образованиями эти продукты ни были.

Данный белок, если он находится в нормальной конформации, называется прионовым белком. Обнаруживается он в мозгу; функция его неизвестна.

При ряде же заболеваний тот же полипептид оказывается в другой конформации. В последней преобладают участки с бета-структурой, почти отсутствующие в нормальной нативной форме, а молекулы белка имеют повышенную склонность к агрегации. Такой белок называется прионом(от proteinaceous infection particle - белковая инфекционная частица). В данной форме он, видимо, не способен к выполнению своей обычной функции.

Как возникают в организме первые порции приона? Иногда, чрезвычайно редко, это происходит спонтанно - в результате ошибки фолдинга. Несколько чаще встречаются мутации, тогда болезнь передается по наследству. Наиболее часто болезнь возникает в результате употребления в пищу тех тканей животного, в которых содержатся прионы. Потому-то данные белки и названы инфекционными частицами.

Их отличает еще одна очень важная особенность - устойчивость к протеазам. Это помогает прионам проникать в неизмененном виде из желудочно-кишечного тракта в нервную ткань, где и запускается вышеизложенный автокаталитический процесс.

Все вместе это делает прионы уникальным инфекционным агентом: это, видимо, единственный случай, когда подобный агент лишен нуклеиновой кислоты (белковая инфекция).

Дополнительная литература.

1. Грин Н., Стаут У., Тейлор Д. Биология: В 3-х т. Т.1: Пер. с англ. / Под ред. Р. Сопера. -М: Мир, 1993. С.206-217.

2. Мушкамбаров Н.Н., Кузнецов С.Л. Молекулярная биология. М.: 2003. 554 с.

Блок дополнительной информации.

Как известно, в ДНК содержится определенная генетическая информация:

- о структуре всех белков и РНК организма,

- о порядке реализации этой информации в разных клетках в процессе онтогенеза (индивидуального развития) и при различных функциональных состояниях.

Поскольку во всех соматических клетках организма один и тот же набор из 46 хромосом, то, несмотря на подчас сильные отличия между клетками, все они содержат в своих ДНК одну и ту же генетическую информацию. (Некоторое исключение составляют лимфоциты, в процессе формирования которых происходит перестройка генов иммуноглобулинов - антител.)

Данное обстоятельство - генетическая эквивалентность ядер всех соматических клеток организма послужило основанием для клонирования животных. В процессе репликации ДНК генетическая информация воспроизводится целиком, чтобы затем передаваться дочерним клеткам.

Но, кроме того, эта информация экспрессируется (реализуется) в клетке, обуславливая все проявления ее жизнедеятельности. Однако экспрессии подвергается отнюдь не вся имеющаяся в ядре генетическая информация, а лишь какая-то (обычно весьма небольшая) ее часть.

Этим-то и обусловлены особенности тех или иных клеток тем, каков спектр (набор) функционирующих генов и каковы при этом уровни их активности.

Экспрессия информации о структуре определенного белка включает 2 основных этапа (рис. 1).

Рисунок 1. Основные этапы экспрессии генов


Первый этап — транскрипция: образование в клеточном ядре на соответствующем гене (локализующемся в одной из хромосом) специального посредника — матричной РНК (м-РНК).

Смысл этого процесса — переписывание информации о структуре белка с огромного неподвижного носителя (ДНК в составе хромосомы) на небольшой подвижный носитель - м-РНК. Примерно так же обстоит дело, когда с жесткого диска компьютера, содержащего тысячи файлов, переписывают один из них на дискету. С той лишь разницей, что м-РНК в процессе записи информации образуется из новых нуклеотидов. Следовательно, м-РНК, считанные с разных генов, должны отличаться друг от друга — как отличаются друг от друга сами гены. Другое важное обстоятельство: непосредственный продукт транскрипции гена правильней называть предшественником м-РНК (пре-м-РНК). Дело в том, что новообразованная м-РНК подвергается, тут же (в ядре) созреванию, или процессингу. При этом она претерпевает существенную модификацию.

И лишь после того зрелая м-РНК (видимо, в комплексе со специальными белками) поступает из ядра в цитоплазму.

Второй этап — трансляция: синтез белка на рибосомах по программе, диктуемой м-РНК. Суть этой программы - определение очередности, в которой аминокислоты должны включаться в строящуюся пептидную цепь. Причем в процессе участвуют не свободные, а активированные аминокислоты: каждая из них связана с т. н. транспортной РНК (т-РНК), т. е. находится в виде аминоацил-т РНК (аа-т РНК). Для каждой из 20 аминокислот имеется своя специфическая форма т-РНК, а чаще — даже не одна, а несколько форм.

Рибосомы же играют в трансляции роль молекулярных машин, обеспечивающих правильное взаимодействие участников. В состав рибосомы входят четыре молекулы т. н. рибосомной РНК (р-РНК) — по одной молекуле каждого из 4-х видов р-РНК. Объединяясь с рибосомными белками, они образуют две субъединицы рибосомы и выполняют в них структурную, а также, возможно, каталитическую функции.

Таким образом, в трансляции участвуют РНК трех классов — м-РНК, т-РНК и р-РНК.

После окончания трансляции новый белок обычно не работает. Он должен приобрести рабочую (третичную или четвертичную) структуру. Этот процесс называется фолдинг(рис. 2).

Рисунок 2. Схема фолдинга.


Таким образом, как видим, фолдинг - очень важный этап в образовании работоспособных белков.

Вместе с тем оказалось, что добавление в среду некоторых белковых фракций клетки значительно облегчает рефолдинг (восстановление активности) денатурированных белков. Отсюда и возникло представление о вспомогательных белках (или факторах) фолдинга.

Затем было обнаружено, что данные факторы можно разделить на две группы.

Первая группа - это белки с каталитической активностью, т.е. ферменты фолдинга, или фолдазы. Пока обнаружено только два таких белка.

Вторая группа - т. н. молекулярные шапероны. Полагают, что сюда входят белки с самыми разными механизмами действия. Например, шапероны могут обеспечить белку удобное место для безопасного сворачивания в третичную структуру - котел с крышкой.

Объединяют же их следующие два обстоятельства:

- они требуются в количествах, близких к стехиометрическим, т. е. сравнимых по величине с концентрацией сворачиваемых белков;

- они, как и фолдазы, не входят в состав конечных продуктов фолдинга, какими бы сложными олигомерными образованиями эти продукты ни были.

Данный белок, если он находится в нормальной конформации, называется прионовым белком. Обнаруживается он в мозгу; функция его неизвестна.

При ряде же заболеваний тот же полипептид оказывается в другой конформации. В последней преобладают участки с бета-структурой, почти отсутствующие в нормальной нативной форме, а молекулы белка имеют повышенную склонность к агрегации. Такой белок называется прионом(от proteinaceous infection particle - белковая инфекционная частица). В данной форме он, видимо, не способен к выполнению своей обычной функции.

Как возникают в организме первые порции приона? Иногда, чрезвычайно редко, это происходит спонтанно - в результате ошибки фолдинга. Несколько чаще встречаются мутации, тогда болезнь передается по наследству. Наиболее часто болезнь возникает в результате употребления в пищу тех тканей животного, в которых содержатся прионы. Потому-то данные белки и названы инфекционными частицами.

Их отличает еще одна очень важная особенность - устойчивость к протеазам. Это помогает прионам проникать в неизмененном виде из желудочно-кишечного тракта в нервную ткань, где и запускается вышеизложенный автокаталитический процесс.

Все вместе это делает прионы уникальным инфекционным агентом: это, видимо, единственный случай, когда подобный агент лишен нуклеиновой кислоты (белковая инфекция).

Дополнительная литература.

1. Грин Н., Стаут У., Тейлор Д. Биология: В 3-х т. Т.1: Пер. с англ. / Под ред. Р. Сопера. -М: Мир, 1993. С.206-217.

2. Мушкамбаров Н.Н., Кузнецов С.Л. Молекулярная биология. М.: 2003. 554 с.

Читайте также: