Единая природа химических связей кратко

Обновлено: 05.07.2024

Учение о химической связи занимает значительное место в современной химии, поскольку свойства веществ обусловлены непосредственно особенностями химических связей в них.

Химическая связь — это взаимодействие двух или нескольких атомов, в результате которого образуется химически стойкая двух- или многоатомная система (молекула, ион, радикал, кристалл).

Основные понятия о строении химических соединений изложены в теории химического строения О.М.Бутлерова (в 1861 г.), в основе которой лежит утверждение:

Атомы в молекулах соединены друг с другом химическими связями в соответствии с их валентностями в определенной последовательности. Порядок и пространственное размещение атомов и атомных групп в молекуле и характер химических связей между ними называется химическое строение.

Различают стехиометрические валентность и ковалентность (или спинвалентность).

Стехиометрическая валентность элемента — это количественная характеристика способности его атомов соединяться с атомами других элементов, которая определяет, сколько атомов водорода может присоединить один атом данного элемента или заменить его в соединениях.

Некоторые элементы в свои соединениях проявляют постоянную стехиометрического валентность. Так, одновалентными элементами являются H, Li, Na, K, Rb, Ag, Cs, F, двухвалентного — O, Ca, Ba, Mg, Sr, Zn, Cd, Hg, трехвалентными — Al, B. Но для большинства элементов характерна переменная стехиометрическая валентность, величина которой зависит от качественного и количественного состава соединения. Валентность обычно записывают римскими цифрами над химическим символом элемента.

Для определения стехиометрической валентности элемента в сложных соединениях используют определенный алгоритм. В общем случае для бинарного соединения АxВy , в которой буквами x и y обозначены индексы, а буквами m и n — валентности атомов, выполняется равенство m · x = n · y . На его основе можно вычислить валентность искомого элемента, исходя из известной валентности другого элемента:

Стехиометрическая валентность отражает только количественное соотношение атомов, но не дает четкого понимания особенностей ковалентной связи. Для объяснения о создании химических связей используется понятие ковалентности (спинвалентности).

Ковалетность (или спинвалентность ) — это количество ковалентных связей, которые образует атом; она определяется числом неспаренных электронов в атоме в основном состоянии или числом неспаренных электронов, появляющихся в атоме при его возбуждении.

Например, атом кислорода имеет в основном состоянии два неспаренных электрона, а атом азота — три. Эти электроны могут участвовать в образовании соответствующего количества ковалентных связей, поэтому ковалентность кислорода равна двум, а ковалентность азота — трем:

Во время химических реакций атомы могут переходить в возбужденное состояние, в котором двухэлектронные облака распадаются на одноэлектронные — спаренные электроны распариваются. Этот процесс требует затраты энергии, а при образовании химической связи неспаренными электронами энергия, наоборот, выделяется. Для того чтобы химическая связь была устойчивой, необходимо, чтобы энергия на распаривание электронов была меньше энергии, которая выделяется при образовании химических связей.

Рассмотрим атом углерода, который в основном состоянии имеет два неспаренных электрона, поэтому его ковалентность равен двум.

При переходе атома С с основного состояния (2s 2 2p 2 ) в возбужденное состояние, для обозначения которого к символу элемента справа вверху приписывается звездочка, электронная конфигурация атома изменяется (С *: 2s 1 2p 3 ), в результате чего он приобретает четыре неспаренных электрона — при этом ковалентность углерода становится равной 4:

В отличие от углерода атомы элементов N, О и F, которые размещаются в периодической системе во втором периоде после С, не могут испытывать возбуждение путем увеличения числа неспаренных электронов через распаривание спаренных электронов. Это объясняется тем, что атомы элементов азота (2s 2 2p 3 ), кислорода (2s 2 2p 4 ) и фтора (2s 2 2p 5 ) уже не имеют свободных р-орбиталей (а d-подуровень на втором уровне отсутствует вообще). Возбуждение этих атомов связано с переходом валентных электронов на следующий, третий, квантовый уровень, требует очень значительной энергии, которая не компенсируется выделением энергии при образовании дополнительных связей. Поэтому за счет неспаренных электронов атом N может проявлять ковалентность три, атом О — два, а атом F — один.

Атомы элементов третьего периода на внешнем энергетическом уровне имеют вакантный d-подуровень, на который при возбуждении могут переходить s- и p-электроны внешнего уровня. При этом возникает дополнительная возможность увеличения количества неспаренных электронов. Так, атом хлора в основном состоянии проявляет ковалентность один, а при возбуждении — три, пять и даже семь:

Однозначно установлено, что любая химический связь имеет электрическую природу. Это означает, что при ее образовании наиболее существенную роль играют силы взаимодействия между электрическими зарядами, носителями которых являются отрицательно заряженные электроны и положительно заряженные ядра атомов. Суть взаимодействия заключается в отталкивании одноименно заряженных частиц (ядро-ядро, электрон-электрон) и притяжении разноименно заряженных (ядро-электрон).

Понятно, что система будет устойчивой, если силы притяжения преобладают над силами отталкивания.

Рост сил притяжения при образовании молекулы по сравнению с изолированными атомами сопровождается выделением энергии, в результате чего энергия системы уменьшается. Итак, движущей силой образования химической связи является стремление изолированных атомов к выигрышу в энергии, который достигается при их объединении в систему; устойчивость системы обеспечивается возникновением области повышенной плотности отрицательного электрического заряда, притягивает к себе положительно заряженные ядра атомов.

При образовании химической связи важнейшими являются электроны внешнего слоя , то есть валентные электроны, которые удерживаются ядром наименее прочно. Именно поэтому строение электронной конфигурации атомов является определяющим фактором при рассмотрении условий образования химической связи.

Согласно предложенному Льюисом правилу октета наиболее стабильными и энергетически выгодными являются внешние оболочки с электронными конфигурациями благородных газов, то есть содержащие два (в случае ближайшего к ядру энергетического уровня) или восемь электронов.

Согласно современным представлениям в зависимости от расстояния, на котором проявляется действие химической связи, его разделяют две группы. В зависимости от степени обобществления электронной плотности рассматривают такие виды химической связи как:

  1. Короткодействующая химическая связь, которая образуется в результате перекрывания электронных облаков при сближении атомов, что приводит к возникновению обобщенного ( связующего ) электронного облака — области повышенной плотности электрического заряда, в зависимости от распределения которой различают следующие основные типы короткодействующего химической связи :
    • ковалентная, когда общая электронное облако размещается только между двумя ядрами соседних атомов;
    • ионный, при котором обобщена электронное облако настолько сильно смещается к ядру одного из атомов, практически принадлежит только ему,
    • металлический, если общая Многоэлектронные облако принадлежит одновременно всем атомам, которые отдали для ее образования по одному или несколько электронов.
    • локализованный химическая связь, при котором электронная плотность связи сконцентрирована (локализована) в пределах двух ближайших химически соединенных атомов;
    • делокализованная химическая связь, когда электронная плотность распределена между тремя (трехцентровая) или большим количеством ядер (многоцентровая). Делокализованной наиболее часто бывает ионная связь и металлическая связь.
  2. Дальнодействующая химическая связь характерна, в основном, для веществ в жидком и твердом состоянии, ее действие проявляется на расстояниях, которые во много раз превышают размеры не только атомов, но и молекул. Дальнодействующая связь подразделяется на следующие виды:
    • водородная связь с участием протонизованого атома водорода;
    • межмолекулярное взаимодействие, для которого характерны свои специфические особенности.

Веществ, в строении которых реализуется только один из перечисленных типов химических связей, совсем немного. В большинстве случаев наблюдается совместное существование нескольких типов связей.

Любая химическая связь образуется, если это энергетически выгодно — когда сближения изолированных атомов приводит к уменьшению полной энергии системы. Для характеристики энергии системы, содержащей два изолированных атома, которые приближаются друг к другу, применяют так называемые потенциальные кривые.

Верхняя потенциальная кривая отражает увеличение общей энергии системы по мере уменьшения расстояния между двумя атомами, так как при сближении атомов с параллельными спинами преобладают силы отталкивания между их электронными оболочками. При этом связь не образуется. Нижняя потенциальная кривая показывает уменьшение энергии системы в случае сближения атомов, имеющих антипараллельные спины, на определенное расстояние — длину связи lн, на которой происходит образование химической связи. Минимум на нижней потенциальной кривой определяет энергию связи Ен. При дальнейшем сближении атомов начинают преобладать силы отталкивания между их ядрами, поэтому общая энергия системы возрастает. Происходит взаимное отталкивание электронных оболочек, поэтому связь не образуется;

При сближении атомов, содержащих валентные электроны с антипараллельными спинами наблюдается их взаимное притяжение, в результате чего энергия системы уменьшается, возникает химическая связь и образуется молекула Н2.

Следовательно, при образовании химической связи общая энергия системы, состоящей из двух атомов, уменьшается (то есть энергия выделяется). Очевидно, что на разрыв связи необходимо потратить такую ​​же энергию, то есть при разрыве связи энергия поглощается.

Энергия связи Eн — это мера прочности связи, определяется количеством энергии, которая выделяется в результате образования связи.

Единицы измерения энергии связи: [кДж / моль] или — реже — [эВ]. Энергия связи характеризует его прочность: чем больше энергия связи, тем он прочнее. Прочность связи ослабляется по мере увеличения длины связи.

Длина связи lн — это расстояние между ядрами химически соединенных атомов.

Длину связи измеряют чаще в нанометрах [нм], пикометр [пм], но иногда — в ангстремах [Å] (1нм = 10 -9 м, 1ПМ = 10 -12 м, 1Å = 10 -10 м). С увеличением радиусов атомов, между которыми возникает связь, растет его длина.

Длина связи всегда меньше суммы радиусов двух соединенных атомов, поскольку образование молекулы сопровождается, кроме изменения энергии, и изменением плотности электронных облаков. Например, если при образовании связи между двумя атомами водорода, радиусы которых равны 0,053 нм, электронные облака взаимно проникали бы друг в друга, то длина связи должна была равняться удвоенному радиусу: 0,053 × 2 = 0,106 нм. На самом деле длина связи в молекуле Н2 составляет 0,074 нм. Это свидетельствует о перекрывания электронных облаков изолированных атомов, которое происходит при образовании связи, то есть в молекуле меняется плотность и форма электронных облаков по сравнению с изолированными атомами.

Химическая связь -это сила, удерживающая вместе два или несколько атомов, ионов, молекул или любую комбинацию из них. По своей природе она представляет собой электростатическую силу притяжения между отрицательно заряженными электронами и положительно заряженными ядрами. Величина этой силы притяжения зависит главным образом от электронной конфигурации внешней оболочки атомов (см. гл. 1). Например, благородные газы с трудом образуют химические связи, потому что они имеют устойчивую внешнюю электронную оболочку. В отличие от этого элементы, атомы которых имеют во внешней оболочке только один электрон, легко образуют связи. Примером таких элементов является водород.

Когда два атома водорода сближаются на малое расстояние, они притягиваются друг к другу. Однако, если они сближаются слишком сильно, между ними возникает отталкивание. Оптимальным оказывается такое расстояние, при котором силы притяжения и отталкивания уравновешиваются. Ha таком расстоянии потенциальная энергия двух взаимодействующих атомов минимальна. Это расстояние называется длиной связи. Мы еще вернемся к ее более подробному обсуждению в данной главе. Ha рис. 2.1 показана зависимость потенциальной энергии от расстояния между ядрами. Кривая такого типа называется кривой Морзе. Энергия, необходимая для того, чтобы разделить два связанных между собой атома и удалить их друг от друга на расстояние, на котором они уже не испытывают силы притяжения друг к другу, называется энергия связи, или энергия диссоциации связи. Ее экспериментальное определение осуществляется путем измерения энтальпии связи (с этим понятием мы познакомимся в гл. 5).

Способность атома образовывать химические связи называется его валентностью. Впрочем, это понятие считается сильно устаревшим, поскольку в настоящее время гораздо чаще принято рассматривать химическую связь не вообще, а с учетом ее конкретного типа. Электроны, пршшмающие участие в образовании химических связей, называются валентными электронами. Эти электроны находятся на самых высоких по энергии орбиталях атома (см. гл. 1). Внешняя оболочка атома, которая содержит эти орбитали, называется валентной оболочкой.

Электронная теория валентности. Современные представления о природе химической связи основаны на электронной теории валентности. Эту теорию разработали независимо Г. Н. Льюис и В. Коссель в 1916 г. Согласно электронной теории валентности, атомы, образуя связи, приближаются к достижению наиболее устойчивой (т.е. имеющей наиболее низкую энергию) электронной конфигурации. Атомы могут достичь этого двумя способами:

1. Они могут терять либо приобретать электроны, образуя ионы. Если атомы приобретают электроны, они превращаются в анионы. Если они теряют электроны, то превращаются в катионы. Анионы и катионы с заполненной внешней электронной оболочкой имеют устойчивую электронную конфигурацию. Между анионом и катионом возникает химическая связь, представляющая собой электростатическую силу притяжения. Химическая связь такого типа ранее называлась электровалентной связью; современное название ионная связь.

2. Атомы могут также приобретать устойчивые внешние электронные конфигурации путем обобществления электронов. Возникающая при этом химическая связь называется ковалентной связью. Ковалентная связь образуется в результате обобществления пары электронов, поставляемых по одному от каждого атома. Однако в некоторых молекулах или многоатомных ионах оба таких электрона могут поставляться только одним атомом. Такая разновидность ковалентной связи называется координационной, донорно-акцепторной или дативной ковалентной связью.

Правило октета. Когда атом какого-либо элемента образует химическую связь, приобретая, теряя либо обобществляя валентные электроны, его электронная конфигурация становится такой же, как у атома благородного газа, расположенного в конце того же периода, что и данный элемент, либо в конце предыдущего периода. Атомы всех благородных газов, за исключением гелия, имеют во внешней оболочке устойчивый октет (восьмерку) электронов. Поэтому образование химических связей путем достижения устойчивых электронных конфигураций, как в атомах благородных газов, составляет суть так называемого правила октета. Это правило применимо и к ионным, и к ковалентным связям.



Существуют еще два типа химической связи, которые тоже будут рассматриваться в данной главе. Это - водородная связь и вандерваальсовы силы. Связи этих двух типов значительно слабее, чем связи других типов.

Свидетельство и скидка на обучение каждому участнику

Зарегистрироваться 15–17 марта 2022 г.

Единая природа химической связи Войнова Т.А. МОУ "Лицей "Эрудит" г.Рубцовск А.

Описание презентации по отдельным слайдам:

Единая природа химической связи Войнова Т.А. МОУ "Лицей "Эрудит" г.Рубцовск А.

Единая природа химической связи Войнова Т.А. МОУ "Лицей "Эрудит" г.Рубцовск Алтайский край

Цель: дать представление о причинах единства всех типов химической связи Зад.

Цель: дать представление о причинах единства всех типов химической связи Задачи. Образовательная: углубить и расширить знания о причинах возникновения разных видов химической связи и механизмах их образования; дать более полное представление о всех типах кристаллических решеток ; Развивающая: научить характеризовать химические связи по определенному плану; научить соотносить зависимость физических и химических свойств веществ от вида химической связи и типа кристаллической решетки. Воспитательная: развивать представления о взаимосвязи, взаимозависимости явлений окружающего мира. Медиасоставляющая: используя различные справочники, дополнительную литературу, интернет ресурсы, материалы CD дисков, презентацию – сформировать целостное представление о химической связи. Войнова Т.А. МБОУ КСОШ №2 г.Рубцовск Алтайский край Войнова Т.А. МБОУ КСОШ №2 г.Рубцовск Алтайский край

Что такое химическая связь? Какова природа химической связи? Войнова Т.А. МБ.

Что такое химическая связь? Какова природа химической связи? Войнова Т.А. МБОУ КСОШ №2 г.Рубцовск Алтайский край Войнова Т.А. МБОУ КСОШ №2 г.Рубцовск Алтайский край

Любая химическая связь образуется только тогда, когда сближение частиц привод.

Любая химическая связь образуется только тогда, когда сближение частиц приводит к понижению полной энергии системы. Определяющим является: энергия взаимодействия – Е межъядерное расстояние – r Войнова Т.А. МБОУ КСОШ №2 г.Рубцовск Алтайский край Войнова Т.А. МБОУ КСОШ №2 г.Рубцовск Алтайский край

Причина образования химической связи – стремление системы к минимизации энерг.

Причина образования химической связи – стремление системы к минимизации энергии. Энергия образующейся системы – химическое связи – меньше энергии, которой обладают изолированные частицы. Идет выигрыш в энергии. Войнова Т.А. МБОУ КСОШ №2 г.Рубцовск Алтайский край Войнова Т.А. МБОУ КСОШ №2 г.Рубцовск Алтайский край

Войнова Т.А. МОУ "Лицей "Эрудит" г.Рубцовск Алтайский край Войнова Т.А. МОУ ".

Войнова Т.А. МОУ "Лицей "Эрудит" г.Рубцовск Алтайский край Войнова Т.А. МОУ "Лицей "Эрудит" г.Рубцовск Алтайский край

Войнова Т.А. МБОУ КСОШ №2 г.Рубцовск Алтайский край Войнова Т.А. МБОУ КСОШ №2.

Войнова Т.А. МБОУ КСОШ №2 г.Рубцовск Алтайский край Войнова Т.А. МБОУ КСОШ №2 г.Рубцовск Алтайский край

Важнейшим фактором характеристики атома является его электроотрицательность.

Важнейшим фактором характеристики атома является его электроотрицательность Войнова Т.А. МБОУ КСОШ №2 г.Рубцовск Алтайский край Войнова Т.А. МБОУ КСОШ №2 г.Рубцовск Алтайский край

Определение типа связи(по ЭО): Равная ЭО – ковалентная неполярная; Разность Э.

Определение типа связи(по ЭО): Равная ЭО – ковалентная неполярная; Разность ЭО 1,7 – ионная связь; Войнова Т.А. МБОУ КСОШ №2 г.Рубцовск Алтайский край Войнова Т.А. МБОУ КСОШ №2 г.Рубцовск Алтайский край

Кристаллические решётки веществ – это упорядоченное расположение частиц(атомо.

Кристаллические решётки веществ – это упорядоченное расположение частиц(атомов, молекул, ионов) в строго определённых точках пространства. Точки размещения частиц называют узлами кристаллической решётки. В зависимости от типа частиц, расположенных в узлах кристаллической решётки, и характера связи между ними различают 4 типа кристаллических решёток: ионные, атомные, молекулярные, металлические. Рассмотрим каждую из решёток в отдельности и поподробней. Войнова Т.А. МБОУ КСОШ №2 г.Рубцовск Алтайский край Войнова Т.А. МБОУ КСОШ №2 г.Рубцовск Алтайский край

Ионные Ионными называют кристаллические решетки, в узлах которых находятся ио.

Ионные Ионными называют кристаллические решетки, в узлах которых находятся ионы. Их образуют вещества с ионной связью. Ионные кристаллические решётки имеют соли, некоторые оксиды и гидроксиды металлов. Рассмотрим строение кристалла поваренной соли, в узлах которого находятся ионы хлора и натрия. Связи между ионами в кристалле очень прочные и устойчивые. Поэтому вещества с ионной решёткой обладают высокой твёрдостью и прочностью, тугоплавки и нелетучи. Войнова Т.А. МБОУ КСОШ №2 г.Рубцовск Алтайский край Войнова Т.А. МБОУ КСОШ №2 г.Рубцовск Алтайский край

Атомные Атомными называют кристаллические решётки, в узлах которых находятся.

Атомные Атомными называют кристаллические решётки, в узлах которых находятся отдельные атомы, которые соединены очень прочными ковалентными связями. Ниже показана кристаллическая решётка алмаза. В природе встречается немного веществ с атомной кристаллической решёткой. К ним относятся бор, кремний, германий, кварц, алмаз. Вещества с АКР имеют высокие температуры плавления, обладают повышенной твёрдостью. Алмаз-самый твёрдый природный материал. Войнова Т.А. МБОУ КСОШ №2 г.Рубцовск Алтайский край Войнова Т.А. МБОУ КСОШ №2 г.Рубцовск Алтайский край

Молекулярные Молекулярными называют кристаллические решётки, в узлах которых.

Молекулярные Молекулярными называют кристаллические решётки, в узлах которых располагаются молекулы. Химические связи в них ковалентные, как полярные, так и неполярные. Связи в молекулах прочные, но между молекулами связи не прочные. Ниже представлена кристаллическая решётка I2 Вещества с МКР имеют малую твёрдость, плавятся при низкой температуре, летучие, при обычных условиях находятся в газообразном или жидком состоянии Войнова Т.А. МОУ "Лицей "Эрудит" г.Рубцовск Алтайский край Войнова Т.А. МОУ "Лицей "Эрудит" г.Рубцовск Алтайский край

Металлические Металлическими называют решётки, в узлах которых находятся атом.

Металлические Металлическими называют решётки, в узлах которых находятся атомы и ионы металла. Для металлов характерны физические свойства: пластичность, ковкость, металлический блеск, высокая электро- и теплопроводность Войнова Т.А. МБОУ КСОШ №2 г.Рубцовск Алтайский край Войнова Т.А. МБОУ КСОШ №2 г.Рубцовск Алтайский край

Войнова Т.А. МБОУ КСОШ №2 г.Рубцовск Алтайский край Название Природа связи Ра.

Войнова Т.А. МБОУ КСОШ №2 г.Рубцовск Алтайский край Название Природа связи Ра.

Войнова Т.А. МБОУ КСОШ №2 г.Рубцовск Алтайский край НазваниеПрирода связиРазность ЭОВ каких соединениях встречаетсяТип кристаллической решеткиСвойства Ковалентная связь (атомная)Посредством общих электронных пар, в одинаковой мере принадлежащих обоим атомам.


Какая сила удерживает вместе атомы в молекуле вещества и почему они не разбегаются в разные стороны? Эта сила называется химической связью, школьники узнают о ней в 8 классе. Еще Ньютон предположил, что она имеет электростатическую природу, но подробнее в этом разобрались лишь в начале ХХ века. Сейчас расскажем, что такое химическая связь и какой она бывает.

О чем эта статья:

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат (в правом нижнем углу экрана).

Химическая связь и строение вещества

Химическая связь — это взаимодействие между атомами в молекуле вещества, в ходе которого два электрона (по одному от каждого атома) образуют общую электронную пару либо электрон переходит от одного атома к другому.

Как понятно из определения химической связи, при взаимодействии двух атомов один из них может притянуть к себе внешние электроны другого. Эта способность называется электроотрицательностью (ЭО). Атом с более высокой электроотрицательностью (ЭО) при образовании химической связи с другим атомом может вызвать смещение к себе общей электронной пары.

Существует несколько систем измерения ЭО, но пользоваться для расчетов можно любой из них. Для образования химической связи важно не конкретное значение ЭО, а разница между этими показателями у двух атомов.

Механизм образования химической связи

Существует два механизма взаимодействия атомов:

обменный — предполагает выделение по одному внешнему электрону от каждого атома и соединение их в общую пару;

донорно-акцепторный — происходит, когда один атом (донор) выделяет два электрона, а второй атом (акцептор) принимает их на свою свободную орбиталь.

Независимо от механизма химическая связь между атомами сопровождается выделением энергии. Чем выше ЭО атомов, т. е. их способность притягивать электроны, тем сильнее и этот энергетический всплеск.

Энергией связи называют ту энергию, которая выделяется при взаимодействии атомов. Она определяет прочность химической связи и по величине равна усилию, необходимому для ее разрыва.

Также на прочность влияют следующие показатели:

Длина связи — расстояние между ядрами атомов. С уменьшением этого расстояния растет энергия связи и увеличивается ее прочность.

Кратность связи — количество электронных пар, появившихся при взаимодействии атомов. Чем больше это число, тем выше энергия и, соответственно, прочность связи.

На примере химической связи в молекуле водорода посмотрим, как меняется энергия системы при сокращении расстояния между ядрами атомов. По мере сближения ядер электронные орбитали этих атомов начинают перекрывать друг друга, в итоге появляется общая молекулярная орбиталь. Неспаренные электроны через области перекрывания смещаются от одного атома в сторону другого, возникают общие электронные пары. Все это сопровождается нарастающим выделением энергии. Сближение происходит до тех пор, пока силу притяжения не компенсирует сила отталкивания одноименных зарядов.

Зависимость энергии системы от расстояния между ядрами атомов

Основные типы химических связей

Различают четыре вида связей в химии: ковалентную, ионную, металлическую и водородную. Но в чистом виде они встречаются редко, обычно имеет место наложение нескольких типов химических связей. Например, в молекуле фосфата аммония (NH4)3PO4присутствует одновременно ионная связь между ионами и ковалентная связь внутри ионов.

Также отметим, что при образовании кристалла от типа связи между частицами зависит, какой будет кристаллическая решетка. Если это ковалентная связь — образуется атомная решетка, если водородная — молекулярная решетка, а если ионная или металлическая — соответственно, будет ионная или металлическая решетка. Таком образом, влияя на тип кристаллической решетки, химическая связь определяет и физические свойства вещества: твердость, летучесть, температуру плавления и т. д.

Основные характеристики химической связи:

насыщенность — ограничение по количеству образуемых связей из-за конечного числа неспаренных электронов;

полярность — неравномерная электронная плотность между атомами и смещение общей пары электронов к одному из них;

направленность — ориентация связи в пространстве, расположение орбиталей атомов под определенным углом друг к другу.

Ковалентная связь

Как уже говорилось выше, этот тип связи имеет два механизма образования: обменный и донорно-акцепторный. При обменном механизме объединяются в пару свободные электроны двух атомов, а при донорно-акцепторном — пара электронов одного из атомов смещается к другому на его свободную орбиталь.

Ковалентная связь — это процесс взаимодействия между атомами с одинаковыми или близкими радиусами, при котором возникает общая электронная пара. Если эта пара принадлежит в равной мере обоим взаимодействующим атомам — это неполярная связь, а если она смещается к одному из них — это полярная связь.

Как вы помните, сила притяжения электронов определяется электроотрицательностью атома. Если у двух атомов она одинакова, между ними будет неполярная связь, а если один из атомов имеет большую ЭО — к нему сместится общая электронная пара и получится полярная химическая связь.

В зависимости от того, сколько получилось электронных пар, химические связи могут быть одинарными, двойными или тройными.

Ковалентная неполярная связь образуется в молекулах простых веществ, неметаллов с одинаковой ЭО: Cl2, O2, N2, F2 и других.

Посмотрим на схему образования этой химической связи. У атомов водорода есть по одному внешнему электрону, которые и образуют общую пару.

Схема образования ковалентной неполярной связи

Ковалентная полярная связь характерна для неметаллов с разным уровнем ЭО: HCl, NH3,HBr, H2O, H2S и других.

Посмотрим схему такой связи в молекуле хлороводорода. У водорода имеется один свободный электрон, а у хлора — семь. Таким образом, всего есть два неспаренных электрона, которые соединяются в общую пару. Поскольку в данном случае ЭО выше у хлора, эта пара смещается к нему.

Схема образования ковалентной полярной связи

Другой пример — молекула сероводорода H2S. В данном случае мы видим, что каждый атом водорода имеет по одной химической связи, в то время как атом серы — две. Количество связей определяет валентность атома в конкретном соединении, поэтому валентность серы в сероводороде — II.

Схема образования ковалентной полярной связи на примере сероводорода

Число связей, которые могут быть у атома в молекуле вещества, называется валентностью.

Характеристики ковалентной связи:

Примеры ковалентных связей

Ионная связь

Как понятно из названия, данный тип связи основан на взаимном притяжении ионов с противоположными зарядами. Он возможен между веществами с большой разницей ЭО — металлом и неметаллом. Механизм таков: один из атомов отдает свои электроны другому атому и заряжается положительно. Второй атом принимает электроны на свободную орбиталь и получает отрицательный заряд. В результате этого процесса образуются ионы.

Ионная связь — это такое взаимодействие между атомами в молекуле вещества, итогом которого становится образование и взаимное притяжение ионов.

Разноименно заряженные ионы стремятся друг к другу за счет кулоновского притяжения, которое одинаково направлено во все стороны. Благодаря этому притяжению образуются ионные кристаллы, в решетке которых заряды ионов чередуются. У каждого иона есть определенное количество ближайших соседей — оно называется координационным числом.

Обычно ионная связь появляется между атомами металла и неметалла в таких соединениях, как NaF, CaCl2, BaO, NaCl, MgF2, RbI и других. Ниже схема ионной связи в молекуле хлорида натрия.

Схема образования ионной связи

Все соли образованы с помощью ионных связей, поэтому в задачах, где нужно определить тип химической связи в веществах, в качестве подсказки можно использовать таблицу растворимости.

Характеристики ионной связи:

не имеет направленности.

Ионная связь

Ковалентная и ионная связь в целом похожи, и одну из них можно рассматривать, как крайнее выражение другой. Но все же между ними есть существенная разница. Сравним эти виды химических связей в таблице.

Характеризуется появлением электронных пар, принадлежащих обоим атомам.

Характеризуется появлением и взаимным притяжением ионов.

Общая пара электронов испытывает притяжение со стороны обоих ядер атомов.

Ионы с противоположными зарядами подвержены кулоновскому притяжению.

Имеет направленность и насыщенность.

Ненасыщенна и не имеет направленности.

Количество связей, образуемых атомом, называется валентностью.

Количество ближайших соседей атома называется координационным числом.

Образуется между неметаллами с одинаковой или не сильно отличающейся ЭО.

Образуется между металлами и неметаллами — веществами со значимо разной ЭО.

Металлическая связь

Свободные электроны мигрируют от одного иона к другому, временно соединяясь с ними и снова отрываясь в свободное плавание. Этот механизм по своей природе имеет сходство с ковалентной связью, но взаимодействие происходит не между отдельными атомами, а в веществе.

Металлическая связь

Характеристики металлической связи:

Металлическая связь присуща как простым веществам — таким как Na, Ba, Ag, Cu, так и сложным сплавам — например, AlCr2, CuAl11Fe4, Ca2Cu и другим.

Схема металлической связи:

Схема образования металлической связи

M — металл,

n — число свободных внешних электронов.

К примеру, у железа в чистом виде на внешнем уровне есть два электрона, поэтому его схема металлической связи выглядит так:

Связь в молекуле железа

Обобщим все полученные знания. Таблица ниже описывает кратко химические связи и строение вещества.

Типы химической связи

Водородная связь

Данный тип связи в химии стоит отдельно, поскольку он может быть как внутри молекулы, так и между молекулами. Как правило, у неорганических веществ эта связь происходит между молекулами.

Водородная связь образуется между молекулами, содержащими водород. Точнее, между атомами водорода в этих молекулах и атомами с большей ЭО в других молекулах вещества.

Объясним подробнее механизм этого вида химической связи. Есть молекулы А и В, содержащие водород. При этом в молекуле А есть электроотрицательные атомы, а в молекуле В водород имеет ковалентную полярную связь с другими электроотрицательными атомами. В этом случае между атомом водорода в молекуле В и электроотрицательным атомом в молекуле А образуется водородная связь.

Такое взаимодействие носит донорно-акцепторный характер. Донором электронов в данном случае выступают электроотрицательные элементы, а акцептором — водород.

Графически водородная связь обозначается тремя точками. Ниже приведена схема такого взаимодействия на примере молекул воды.

Схема образования водородной связи

В отдельных случаях водородная связь может образоваться внутри молекулы. Это характерно для органических веществ: многоатомных спиртов, углеводов, белковых соединений и т. д.

Характеристики водородной связи:

Водородная связь

Кратко о химических связях

Итак, самое главное. Химической связью называют взаимодействие атомов, причиной которого является стремление системы приобрести устойчивое состояние. Во время взаимодействия свободные внешние электроны атомов объединяются в пары либо внешний электрон одного атома переходит к другому.

Образование химической связи сопровождается выделением энергии. Эта энергия растет с увеличением количества образованных электронных пар и с сокращением расстояния между ядрами атомов.

Основные виды химических связей: ковалентная (полярная и неполярная), ионная, металлическая и водородная. В отличие от всех остальных водородная ближе к молекулярным связям, поскольку может быть как внутри молекулы, так и между разными молекулами.

Как определить тип химической связи:

Ковалентная полярная связь образуется в молекулах неметаллов между атомами со сходной ЭО.

Ковалентная неполярная связь имеет место между атомами с разной ЭО.

Ионная связь ведет к образованию и взаимному притяжению ионов. Она происходит между атомами металла и неметалла.

Водородная связь появляется при условии, что есть атом с высокой ЭО и атом водорода, связанный с другой электроотрицательной частицей ковалентной связью.

Химическая связь и строение молекулы: типом химической связи определяется кристаллическая решетка вещества: ионная, металлическая, атомная или молекулярная.

Читайте также: