Диффузия это в химии кратко

Обновлено: 05.07.2024

ДИФФУЗИЯ

ДИФФУЗИЯ (от лат. diflusio - распространение, растекание, рассеивание), перенос частиц разной природы, обусловленный хаотич. тепловым движением молекул (атомов) в одно-или многокомпонентных газовых либо конденсир. средах. Такой перенос осуществляется при наличии градиента концентрации частиц или при его отсутствии; в последнем случае процесс наз. самодиффузией (см. ниже). Различают диффузию коллоидных частиц (т. наз. броуновская диффузия), в твердых телах, молекулярную, нейтронов, носителей заряда в полупроводниках и др.; о переносе частиц в движущейся с определенной скоростью среде (конвективная диффузия) см. Массообмен. Переноса процессы, о диффузии частиц в турбулентных потоках см. Турбулентная диффузия. Все указанные виды диффузии описываются одними и теми же феноменологич. соотношениями.
Основные понятия. Главной характеристикой диффузии служит плотность диффузионного потока J - кол-во в-ва, переносимого в единицу времени через единицу площади пов-сти, перпендикулярной направлению переноса. Если в среде, где отсутствуют градиенты т-ры, давления, электрич. потенциала и др., имеется градиент концентрации с (х, t), характеризующий ее изменение на единицу длины в направлении х (одномерный случай) в момент времени t, то в изотропной покоящейся среде

081_100-71.jpg

где D - коэффициент диффузии (м 2 /с); знак "минус" указывает на направление потока от больших концентраций к меньшим. Пространственно-временное распределение концентрации:

Ур-ния (1) и (2) наз. первым и вторым законами Фика. Трехмерная диффузия [с (х, у, z; t)] описывается ур-ниями:


где J - вектор плотности диффузионного потока, grad - градиент поля концентрации. Перенос частиц в среде осуществляется как последовательность их случайных перемещений, причем абс. величина и направление каждого из них не зависят от предыдущих. Диффузионное движение в среде каждой частицы обычно характеризуют среднеквадратичным смещением L 2 от исходного положения за время t. Для трехмерного пространства справедливо первое соотношение Эйнштейна: L 2 = GDt. Т. обр., параметр D характеризует эффективность воздействия среды на частицы. В случае диффузии в многокомпонентных смесях в отсутствие градиентов давления и т-ры (изобарно-изотермич. диффузия) для упрощения описания взаимного проникновения компонентов при наличии градиентов их концентраций вводят т. наз. коэффициенты взаимной диффузии. Напр., при одномерной диффузии в двухкомпонентной системе выражение для диффузионного потока одного из компонентов принимает вид:

где c 1 + с 2 = const, D 12 = D 21 - коэф. взаимной диффузии обоих компонентов. В результате неравномерного нагревания среды под влиянием градиента т-ры происходит перенос компонентов газовых или жидких смесей - термодиффузия (в р-рах - эффект Соре).

Если между отдельными частями системы поддерживается постоянная разность т-р, то вследствие термодиффузии в объеме смеси появляются градиенты концентрации компонентов, что инициирует обычную диффузию. Последняя в стационарном состоянии (при отсутствии потока в-ва) уравновешивает термодиффузию, и в системе возникает разность концентраций компонентов. Это влияние лежит в основе одного из методов разделения изотопов, а также термодиффузионного разделения нефтяных фракций. При внеш. воздействии на систему градиента давления или гравитац. поля возникает бародиффузия. Примеры: диффузионное осаждение мелких взвешенных частиц при столкновении их с молекулами газа (см. Пылеулавливание); баромембранные процессы - обратный осмос, микро- и ультрафильтрация (см. Мембранные процессы разделения, Осмос). Действие на систему внеш. электрич. поля вызывает направленный перенос заряженных частиц - электродиффузию. Примеры: электромембранные процессы, напр., электродиализ - разделение под действием электрич. тока ионизированных соед. вследствие избират. переноса ионов через ионообменные мембраны; диффузия носителей заряда - перемещение электронов проводимости и дырок, обусловленное неоднородностями их концентрации в полупроводниках. Математически законы Фика аналогичны ур-ниям теплопроводности Фурье. В основе такой аналогии лежат общие закономерности необратимых процессов перераспределения интенсивных параметров состояния (концентрации, т-ры, давления и др.) между разл. частями к.-л. системы при стремлении ее к термодинамич. равновесию. При малых отклонениях системы от него эти закономерности описываются линейными соотношениями между потоками физ. величин и термодинамич. силами, т. е. градиентами параметров, вызывающими указанные отклонения. В частности, диффузионный поток частиц данного типа, помимо градиентов концентраций частиц каждого типа, может при соответствующих условиях в большей степени определяться градиентами др. интенсивных параметров и внеш. силами. В общем виде связь между потоками и силами описывается феноменологич. ур-ниями термодинамики необратимых процессов. Напр., в случае электронейтральной бинарной газовой системы при наличии градиента т-ры дТ/дх, градиента давления др/дх и градиента электрич. потенциала д j /дx выражение для диффузионного потока частиц с зарядом q i в одномерном случае принимает вид:

где с - общее число частиц смеси в единице объема; n i = c i /c -относит. доля частиц i-гo компонента (i = 1, 2); D p , D T - коэф. баро- и термодиффузии; m i = q i D/kТ (соотношение Нернста - Эйнштейна) - подвижность частиц 1-го компонента в электрич. поле; k - постоянная Больцмана; T - абс. т-ра. Напр., в бинарной газовой смеси при постоянном давлении и отсутствии внеш. сил полный диффузионный поток

При отсутствии потока (J = 0) распределение концентраций находят по ф-ле:

где k T = D T /D 12 . Коэф. D T в значит. степени зависит от межмолекулярного взаимод., поэтому его изучение позволяет исследовать межмолекулярные силы в разл. средах. Одновременно с диффузионным переносом частиц посторонних в-в (примесей), неравномерно распределенных в к.-л. среде, происходит самодиффузия - случайное перемещение частиц самой среды, хим. состав к-рой при этом не изменяется. Данный процесс, наблюдаемый даже в отсутствие в системе термодинамич. сил, описывается ур-ниями Фика, в к-рых D заменен параметром D c , называемым коэф. самодиффузии. Эффекты самодиффузии могут приводить к сращиванию двух пришлифованных образцов одного и того же в-ва, спеканию порошков при пропускании через них электрич. тока, к растягиванию тел под действием подвешенного к ним груза (диффузионная ползучесть материалов) и т. д. При взаимной диффузии в твердых телах поток атомов одного сорта может превосходить идущий в обратном направлении поток атомов др. сорта, если для нескомпенсир. вакансий (а возможно, и для нескомпенсир. атомов) имеются стоки. При этом в кристалле появляются поры, приводящие к нарушению устойчивости кристаллич. решетки как мех. системы и, вследствие этого, к смещению кристаллич. плоскостей как целого (эффект Киркиндаля). В частности, при взаимной диффузии в бинарных металлич. системах наблюдается перемещение "инертных" меток, напр., тонких тугоплавких проволочек из Мо или W диаметром неск. мкм, внесенных в зону диффузии. Скорость диффузионного массопереноса в разл. в-вах или материалах иногда удобно характеризовать константой их проницаемости П = D g , где g - константа Генри, определяющая равновесную р-римость переносимого компонента. В частности, выражение для стационарного потока молекул газа, диффундирующих через разделит. перегородку (мембрану) толщиной d , имеет вид: J = П gD р/ d , где D р - разность парциальных давлений разделяемых компонентов газовой смеси по обе стороны перегородки. Коэф. диффузии существенно различаются для диффузионных процессов в газовых и конденсированных (жидких и твердых) средах: наиб. быстро перенос частиц происходит в газах (D порядка 10 - 4 м 2 /с при нормальных т-ре и давлении), медленнее - в жидкостях (порядка 10 - 9 ), еще медленнее - в твердых телах (порядка 10 - 12 ). Проиллюстрируем указанные выводы на примерах молекулярной диффузии.
Диффузия в газовых средах. Для оценки D в качестве характерного (среднего) смещения частиц принимают длину своб. пробега молекул l = u t , где и и t - средние скорость движения частиц и время между их столкновениями. В соответствии с первым соотношением Эйнштейна D ~ l 2 t -1 ; более точно D = 1/3 lu. Коэф. диффузии обратно пропорционален давлению р газа, поскольку l ~ 1/р; с повышением т-ры Т (при постоянном объеме) D возрастает пропорционально T 1/2 , т. к. ; с увеличением мол. массы газа D снижается. Согласно кинетич. теории газов, коэф. взаимной диффузии газов А и В в бинарной смеси (табл. 1)

где р - полное давление в системе, т A и т B - массы газов, s A и s B - параметры потенциала Леннард-Джонса (см., напр., Абсорбция).

Большой практич. интерес представляет перенос газов через сквозные поры в твердых телах. При относительно малых давлениях газа или размерах пор (r 0 ), когда частота столкновений молекул газа со стенками пор превышает частоту взаимных столкновений молекул, т. е. средняя длина их своб. пробега l >> r 0 (для нормального давления при r 0 - 7 м), наблюдается т. наз. кнудсеновская диффузия. При этом газовый поток через пористую перегородку пропорционален средней скорости молекул и константа газопроницаемости определяется из ур-ния:

где N s - поверхностная плотность пор в перегородке. Поскольку средняя скорость молекул обратно пропорциональна квадратному корню из их масс , компоненты разделяемой газовой смеси проникают через поры мембраны с разл. скоростями; в результате прошедшая через перегородку смесь обогащается более легкими компонентами. С увеличением давления газа в таких пористых системах возрастает поверхностная концентрация молекул, адсорбированных на стенках пор. Образовавшийся адсорбц. слой может оказаться подвижным и перемещаться вдоль пов-сти поры, вследствие чего параллельно с объемным диффузионным переносом в ней возможна поверхностная диффузия газа. Последняя оказывает иногда существ. влияние на кинетику хим. превращений, обусловливая неравновесное распределение в системе взаимод. реагентов.
Диффузия в конденсированных средах. В жидкостях и твердых телах диффузия осуществляется перескоками частиц из одного устойчивого положения в другое, расстояние между ними имеет порядок межмолекулярного. Для таких перескоков необходимы локальная перестройка ближнего окружения каждой частицы (вероятность перестройки характеризуется энтропией активации D S) и случайное накопление в этой области нек-рого кол-ва тепловой энергии E D (энергия активации диффузии). После перескока каждая частица оказывается в новом энергетически выгодном положении, а выделяющаяся энергия рассеивается в среде. При этом D = D 0 exp( - E D /RT), где D 0 = n exp ( D S/R) - энтропийный фактор, зависящий от частоты "тепловых ударов" молекул среды ( n ~ 10 12 с - 1 ), R - газовая постоянная. Диффузионное движение частиц в жидкости определяется ее вязкостными св-вами, размерами частиц и характеризуется их т. наз. подвижностью ( ~ D/kT откуда D ~ ( kT (второе соотношение Эйнштейна). Параметр ( - коэф. пропорциональности между скоростью частицы и и движущей силой F при стационарном движении с трением (и = ( F). Напр., в случае сферически симметричных частиц радиусом г. для к-рых ( = 1/6 p r h (T), справедливо ур-ние Стокса-Эйнштейна: D = kT/6 p r h (T), где h (T) - коэф. динамич. вязкости среды в функции от т-ры. Повышение D с увеличением т-ры в жидкостях объясняется уменьшением плотности упаковки их молекул ("разрыхлением структуры") при нагр. и, как следствие, возрастанием числа перескоков частиц в единицу времени. Коэф. диффузии разных в-в в жидкостях приведены в табл. 2 и 3; характерные значения E D ~ 20-40 кДж/моль.

(от лат. diflusio - распространение, растекание, рассеивание), перенос частиц разной природы, обусловленный хаотич. тепловым движением молекул (атомов) в одно-или многокомпонентных газовых либо конденсир. средах. Такой перенос осуществляется при наличии градиента концентрации частиц или при его отсутствии; в последнем случае процесс наз. самодиффузией (см. ниже). Различают Д. коллоидных частиц (т. наз. броуновская Д.), в твердых телах, молекулярную, нейтронов, носителей заряда в полупроводниках и др.; о переносе частиц в движущейся с определенной скоростью среде (конвективная Д.) см. Массообмен. Переноса процессы, о Д. частиц в турбулентных потоках см. Турбулентная диффузия. Все указанные виды Д. описываются одними и теми же феноменологич. соотношениями.
Основные понятия. Главной характеристикой Д. служит плотность диффузионного потока J - кол-во в-ва, переносимого в единицу времени через единицу площади пов-сти, перпендикулярной направлению переноса. Если в среде, где отсутствуют градиенты т-ры, давления, электрич. потенциала и др., имеется градиент концентрации с( х, t), характеризующий ее изменение на единицу длины в направлении х(одномерный случай) в момент времени t, то в изотропной покоящейся среде

J = -D( дс/ дх), (1)

где D - коэффициент Д. (м 2 /с); знак "минус" указывает на направление потока от больших концентраций к меньшим. Пространственно-временное распределение концентрации:

Ур-ния (1) и (2) наз. первым и вторым законами Фика. Трехмерная Д. [с ( х, у, z; t)] описывается ур-ниями:


где J - вектор плотности диффузионного потока, grad - градиент поля концентрации. Перенос частиц в среде осуществляется как последовательность их случайных перемещений, причем абс. величина и направление каждого из них не зависят от предыдущих.Диффузионное движение в среде каждой частицы обычно характеризуют среднеквадратичным смещением L 2 от исходного положения за время t. Для трехмерного пространства справедливо первое соотношение Эйнштейна: L 2 = GDt. Т. обр., параметр Dхарактеризует эффективность воздействия среды на частицы. В случае Д. в многокомпонентных смесях в отсутствие градиентов давления и т-ры (изобарно-изотермич. Д.) для упрощения описания взаимного проникновения компонентов при наличии градиентов их концентраций вводят т. наз. коэффициенты взаимной Д. Напр., при одномерной Д. в двухкомпонентной системе выражение для диффузионного потока одного из компонентов принимает вид:

где c1 + с 2 =const, D12 = D21 - коэф. взаимной Д. обоих компонентов. В результате неравномерного нагревания среды под влиянием градиента т-ры происходит перенос компонентов газовых или жидких смесей - термодиффузия (в р-рах - эффект Соре). Если между отдельными частями системы поддерживается постоянная разность т-р, то вследствие термодиффузии в объеме смеси появляются градиенты концентрации компонентов, что инициирует обычную Д. Последняя в стационарном состоянии (при отсутствии потока в-ва) уравновешивает термодиффузию, и в системе возникает разность концентраций компонентов. Это влияние лежит в основе одного из методов разделения изотопов, а также термодиффузионного разделения нефтяных фракций. При внеш. воздействии на систему градиента давления или гравитац. поля возникает бародиффузия. Примеры: диффузионное осаждение мелких взвешенных частиц при столкновении их с молекулами газа (см. Пылеулавливание); баромембранные процессы - обратный осмос, микро- и ультрафильтрация (см. Мембранные процессы разделения, Осмос). Действие на систему внеш. электрич. поля вызывает направленный перенос заряженных частиц - электродиффузию. Примеры: электромембранные процессы, напр., электродиализ - разделение под действием электрич. тока ионизированных соед. вследствие избират. переноса ионов через ионообменные мембраны; Д. носителей заряда - перемещение электронов проводимости и дырок, обусловленное неоднородностями их концентрации в полупроводниках. Математически законы Фика аналогичны ур-ниям теплопроводности Фурье. В основе такой аналогии лежат общие закономерности необратимых процессов перераспределения интенсивных параметров состояния (концентрации, т-ры, давления и др.) между разл. частями к.-л. системы при стремлении ее к термодинамич. равновесию. При малых отклонениях системы от него эти закономерности описываются линейными соотношениями между потоками физ. величин и термодинамич. силами, т. е. градиентами параметров, вызывающими указанные отклонения. В частности, диффузионный поток частиц данного типа, помимо градиентов концентраций частиц каждого типа, может при соответствующих условиях в большей степени определяться градиентами др. интенсивных параметров и внеш. силами. В общем виде связь между потоками и силами описывается феноменологич. ур-ниями термодинамики необратимых процессов. Напр., в случае электронейтральной бинарной газовой системы при наличии градиента т-ры дТ/дх, градиента давления др/дх и градиента электрич. потенциала дj/ дx выражение для диффузионного потока частиц с зарядом i в одномерном случае принимает вид:

где с - общее число частиц смеси в единице объема; i = ci /c - относит. доля частиц i-гo компонента (i = 1, 2); Dp, DT - коэф. баро- и термодиффузии; mi = iD/kТ> (соотношение Нернста - Эйнштейна) - подвижность частиц 1-го компонента в электрич. поле; k - постоянная Больцмана; T - абс. т-ра. Напр., в бинарной газовой смеси при постоянном давлении и отсутствии внеш. сил полный диффузионный поток

При отсутствии потока (J =0) распределение концентраций находят по ф-ле:

где kT = DT/D12. Коэф. T в значит. степени зависит от межмолекулярного взаимод., поэтому его изучение позволяет исследовать межмолекулярные силы в разл. средах. Одновременно с диффузионным переносом частиц посторонних в-в (примесей), неравномерно распределенных в к.-л. среде, происходит самодиффузия - случайное перемещение частиц самой среды, хим. состав к-рой при этом не изменяется. Данный процесс, наблюдаемый даже в отсутствие в системе термодинамич. сил, описывается ур-ниями Фика, в к-рых Dзаменен параметром Dc, называемым коэф. самодиффузии. Эффекты самодиффузии могут приводить к сращиванию двух пришлифованных образцов одного и того же в-ва, спеканию порошков при пропускании через них электрич. тока, к растягиванию тел под действием подвешенного к ним груза (диффузионная ползучесть материалов) и т. д. При взаимной диффузии в твердых телах поток атомов одного сорта может превосходить идущий в обратном направлении поток атомов др. сорта, если для нескомпенсир. вакансий (а возможно, и для нескомпенсир. атомов) имеются стоки. При этом в кристалле появляются поры, приводящие к нарушению устойчивости кристаллич. решетки как мех. системы и, вследствие этого, к смещению кристаллич. плоскостей как целого (эффект Киркиндаля). В частности, при взаимной диффузии в бинарных металлич. системах наблюдается перемещение "инертных" меток, напр., тонких тугоплавких проволочек из Мо или W диаметром неск. мкм, внесенных в зону диффузии. Скорость диффузионного массопереноса в разл. в-вах или материалах иногда удобно характеризовать константой их проницаемости П = Dg, где g - константа Генри, определяющая равновесную р-римость переносимого компонента. В частности, выражение для стационарного потока молекул газа, диффундирующих через разделит. перегородку (мембрану) толщиной d, имеет вид: J = ПgDр/d, где Dр - разность парциальных давлений разделяемых компонентов газовой смеси по обе стороны перегородки. Коэф. Д. существенно различаются для диффузионных процессов в газовых и конденсированных (жидких и твердых) средах: наиб. быстро перенос частиц происходит в газах (Dпорядка 10 - 4 м 2 /с при нормальных т-ре и давлении), медленнее - в жидкостях (порядка 10 - 9 ), еще медленнее - в твердых телах (порядка 10 - 12 ). Проиллюстрируем указанные выводы на примерах молекулярной Д.
Диффузия в газовых средах. Для оценки Dв качестве характерного (среднего) смещения частиц принимают длину своб. пробега молекул l = ut, где ии t - средние скорость движения частиц и время между их столкновениями. В соответствии с первым соотношением Эйнштейна D~ l 2 t -1 ; более точно D= 1/3 lu. Коэф. Д. обратно пропорционален давлению ргаза, поскольку l ~ 1/р; с повышением т-ры Т (при постоянном объеме) D возрастает пропорционально T 1/2 , т. к. ; с увеличением мол. массы газа Dснижается. Согласно кинетич. теории газов, коэф. взаимной Д. газов Аи В в бинарной смеси (табл. 1)

где р - полное давление в системе, т A и т B -> массы газов, sA и sB - параметры потенциала Леннард-Джонса (см., напр., Абсорбция).

Большой практич. интерес представляет перенос газов через сквозные поры в твердых телах. При относительно малых давлениях газа или размерах пор (r0), когда частота столкновений молекул газа со стенками пор превышает частоту взаимных столкновений молекул, т. е. средняя длина их своб. пробега l>> r0 (для нормального давления при r0 - 7 м), наблюдается т. наз. кнудсеновская Д. При этом газовый поток через пористую перегородку пропорционален средней скорости молекул и константа газопроницаемости определяется из ур-ния:

где Ns - поверхностная плотность пор в перегородке. Поскольку средняя скорость молекул обратно пропорциональна квадратному корню из их масс , компоненты разделяемой газовой смеси проникают через поры мембраны с разл. скоростями; в результате прошедшая через перегородку смесь обогащается более легкими компонентами. С увеличением давления газа в таких пористых системах возрастает поверхностная концентрация молекул, адсорбированных на стенках пор. Образовавшийся адсорбц. слой может оказаться подвижным и перемещаться вдоль пов-сти поры, вследствие чего параллельно с объемным диффузионным переносом в ней возможна поверхностная Д. газа. Последняя оказывает иногда существ. влияние на кинетику хим. превращений, обусловливая неравновесное распределение в системе взаимод. реагентов.
Диффузия в конденсированных средах. В жидкостях и твердых телах Д. осуществляется перескоками частиц из одного устойчивого положения в другое, расстояние между ними имеет порядок межмолекулярного. Для таких перескоков необходимы локальная перестройка ближнего окружения каждой частицы (вероятность перестройки характеризуется энтропией активации DS) и случайное накопление в этой области нек-рого кол-ва тепловой энергии D (энергия активации Д.). После перескока каждая частица оказывается в новом энергетически выгодном положении, а выделяющаяся энергия рассеивается в среде. При этом D= D0exp(- D /RT), где D0 = nexp (DS/R) - энтропийный фактор, зависящий от частоты "тепловых ударов" молекул среды (n ~ 10 12 с - 1 ), R- газовая постоянная. Диффузионное движение частиц в жидкости определяется ее вязкостными св-вами, размерами частиц и характеризуется их т. наз. подвижностью ( ~ D/kT откуда D ~ (kT (второе соотношение Эйнштейна). Параметр ( - коэф. пропорциональности между скоростью частицы ии движущей силой Fпри стационарном движении с трением (и= (F). Напр., в случае сферически симметричных частиц радиусом г. для к-рых ( = 1/6prh(T), справедливо ур-ние Стокса-Эйнштейна: D = kT/6prh(T), где h(T) - коэф. динамич. вязкости среды в функции от т-ры. Повышение D с увеличением т-ры в жидкостях объясняется уменьшением плотности упаковки их молекул ("разрыхлением структуры") при нагр. и, как следствие, возрастанием числа перескоков частиц в единицу времени. Коэф. Д. разных в-в в жидкостях приведены в табл. 2 и 3; характерные значения D ~ 20-40 кДж/моль.


Коэф. Д. в твердых орг. телах имеют значит. разброс, достигая в ряде случаев значений, сравнимых с соответствующими параметрами в жидкостях. Наиб. интерес представляет Д. газов в полимерах. Коэф. Д. в них (табл. 4) зависят от размеров диффундирующих молекул, особенностей взаимод. их с фрагментами макромолекул, подвижности полимерных цепей, своб. объема полимера (разность между реальным объемом и суммарным объемом плотно упакованных молекул) и неоднородностью его структуры.

Высокие значения Dпри т-рах выше т-ры стеклования полимеров обусловлены большой подвижностью в данных условиях фрагментов макромолекул, что приводит к перераспределению своб. объема и соотв. к возрастанию DS и уменьшению D.> При т-рах ниже т-ры стеклования коэф. Д. имеют, как правило, меньшие значения. При Д. в полимерах жидкостей значения Dмогут зависеть от концентрации растворенных компонентов вследствие их пластифицирующего действия. Коэф. Д. ионов в ионообменных смолах в значит. степени определяются их влагосодержанием (среднее число пмолекул воды, приходящееся на одну ионогенную группу). При высоком влагосодержании ( п >15) коэф. Д. сопоставимы с соответствующими Dдля ионов в электролитах (см. табл. 5 и 3). При п 10 и 3.10 39 раз. При массoпереносе в области линейных дислокаций и по поверхностным (границы зерен) дефектам в поликристаллич. телах Dувеличиваются на 4-5 порядков.

Для определения коэф. Д. расчетные данные (концентрац. профили и потоки диффундирующих частиц, сорбиционно-десорбц. закономерности) сравнивают с экспериментальными. Последние находят с помощью разл. физ.-хим. методов: изотопных индикаторов, рентгеновского микроанализа, гравиметрии, масс-спектрометрии, оптических (рефрактометрия, ИК спектроскопия) и др.
Значение диффузионных процессов. Д. играет важную роль в разл. областях науки и техники, в процессах, происходящих в живой и неживой природе. Д. оказывает влияние на протекание или определяет механизм и кинетику хим. р-ций (см., напр., Диффузионных пламен метод, Макрокинетика), а также мн. физ.-хим. процессов и явлений: мембранных, испарения, конденсации, кристаллизации, растворения, набухания, горения, каталитических, хроматографических, люминесцентных, электрич. и оптич. в полупроводниках, замедления нейтронов в ядерных реакторах и т. д. Большое значение имеет Д. при образовании на границах фаз двойного электрич. слоя, диффузиофорезе (см. Электроповерхностные явления) и элекрофорезе (см. Электрокинетические явления), в электрохим. методах анализа и процессах (см., напр., Диффузионный потенциал, Диффузионный ток), в фотографич. процессах для быстрого получения позитивного изображения и др. Д. служит основой мн. распространенных техн. операций: спекания порошков, химико-термич. обработки металлов (напр., азотирования и цементации сталей), гомогенизации сплавов, металлизации и сварки материалов, дубления кожи и меха, крашения волокон; перемещения газов с помощью т. наз. диффузионных насосов. Д. - одна из стадий многочисл. химико-технол. процессов (напр., массообменных); представления о диффузионном переносе в-ва используют при моделировании структуры потоков в хим. реакторах и др. Роль Д. существенно возросла в связи с необходимостью создания материалов с заранее заданными св-вами для развивающихся областей техники (ядерной энергетики, космонавтики, радиационных и плазмохим. процессов и т. п.). Знание законов, управляющих Д., позволяет предупреждать нежелательные изменения в изделиях, происходящие под влиянием высоких нагрузок и т-р, облучения и т. д. Закономерностям Д. подчиняются процессы физ.-хим. эмиграции элементов в земных недрах и во Вселенной, а также процессы жизнедеятельности клеток и тканей растений (напр., поглощение корневыми клетками N, Р, К - осн. элементов минер. питания) и живых организмов. Лит.: Франк-Каменецкий Д. А., Диффузия и теплопередача в химической кинетике, 2 изд., М., 1967; Хаазе Р., Термодинамика необратимых процессов, пер. с нем., М., 1967; Процессы взаимной диффузии в сплавах, под ред. К. П. Гурова, М., 1973; Берд Р., Стьюарт В., Лайтфут Е., Явления переноса, пер. с англ., М., 1974; Кофстад П., Отклонение от стехиометрии, диффузия и электропроводность в простых окислах металлов, пер. с англ., М., 1975; Николаев Н. И., Диффузия в мембранах, М., 1980; Шервуд Т., Пигфорд Р., Уилки Ч., Массопередача, пер. с англ., М., 1982; Физический энциклопедический словарь, М., 1983, с. 174-75, 652, 754; Овчинников А. А., Тимашев С. Ф., Белый А. А., Кинетика диффузионно-контролируемых химических процессов, М., 1986; Чалых А. Е., Диффузия в полимерных системах, М., 1987. С. Ф. Тимашев.

проникновение, распространение, рассеивание, растекание, самодиффузия, термодиффузия, электродиффузия

Диффузией называется самопроизвольный процесс перемещения вещества в растворе, приводящий к выравниванию его концентрации.

В ходе диффузии некоторая первоначальная упорядоченность в распределении вещества (высокая концентрация вещества в одной части системы и низкая – в другой) сменяется полной беспорядоченностью распределения вещества в объеме, при этом энтропия системы возрастает. Когда концентрация раствора во всем объеме выравнивается, энтропия достигает максимального значения, и диффузия прекращается. Скорость диффузии при постоянных температуре и вязкости среды зависит от величины и формы растворяющихся частиц.

Диффузия наблюдается как в жидкостях и газах, так и в твердых веществах. Мерой диффузии является масса вещества , продиффундировавшего за единицу времени через единицу площади поверхности соприкасающихся веществ. Величина тем больше, чем больше изменяется концентрация на единицу длины вдоль направления, в котором происходит диффузия. Скорость диффузии увеличивается с ростом температуры, что связано с увеличением скорости движения частиц.

При гетерогенном катализе химическая реакция протекает на поверхности твердого тела, поэтому процессы транспорта веществ к поверхности и от нее играют важную роль. Если химическое превращение идет гораздо медленнее процессов массообмена, то кинетика реакции определяется процессами на поверхности твердого тела. Если реакция очень быстрая, то кинетика зависит от процессов массообмена.

Рассмотрим диффузию вещества из объема на поверхность реагирующих веществ или на поверхность катализатора, если таковой имеется. Пусть превращение вещества – реакция первого порядка со скоростью, равной

где ωхим – количество вещества, реагирующего у поверхности S в единицу времени, Сп – концентрация реагента у поверхности.

В результате превращения Сп становится меньше концентрации вещества в объеме раствора Соб .

Всю реагирующую смесь можно разделить на две области:

1. область постоянной концентрации вдали от поверхности реакции;

2. область быстрого изменения концентрации непосредственно вблизи этой поверхности.

Экспериментально установлено, что на всех твердых поверхностях, с которыми граничит движущаяся жидкость, скорость движения жидкости равна нулю. Транспорт вещества происходит через неподвижный слой жидкости, прилегающий к поверхности твердого тела, в результате диффузии реагирующих веществ. Этот неподвижный слой называется слоем Нернста, его толщина зависит от свойств растворителя и растворенного вещества, скорости перемещения и т.д. Например, для жидкости толщина этого слоя δ составляет примерно 0.02 – 0.05 мм и меньше. За его пределами движение жидкости приводит к выравниванию концентрации в объеме раствора. Перенос массы в результате диффузии описывается уравнением Фика:

Существует и другая запись уравнения диффузии при Т = Const:

Градиент концентрации (gradC) в диффузионном слое постоянен, поэтому выражение (47) можно записать следующим образом:

Когда в установившемся стационарном режиме скорость подвода вещества к реагирующей поверхности равна скорости химической реакции, поверхностную концентрацию можно представить как:


Для быстрой реакции, когда k>>D/d скорость процесса определяется диффузией. В случае медленной реакции, когда k

Обычно гетерогенно-каталитические процессы протекают в жидкой, газовой или паровой фазе при участии твердого катализатора. В случае газовой гетерогенно-каталитической реакции исходные реагенты и продукты реакции являются газами. При их участии в реакции каждая молекула реагента последовательно проходит следующие стадии процесса:

- диффузионный перенос из газовой среды к поверхности катализатора;

- адсорбцию на его поверхности;

- химическое превращение в адсорбированном слое;

- десорбцию продуктов реакции;

- диффузионный перенос продуктов реакции от поверхности катализатора в газовую фазу.

На скорость гетерогенно-каталитической реакции боль­шое влияние оказывает площадь активной поверхности твердого катализатора. Для ее увеличения катализаторы обычно выполняют в виде зерен с сильно развитой поверхностью. При этом кажущаяся поверхность зерен ничтожна по сравнению с поверхностью внутренних пор и каналов в зерне. Значения длины и диаметра внутренних каналов и пор должны исключать сильное торможение диффузионно-транспортных стадий процесса. Наиболее выгоден режим, при котором лимитирующей стадией процесса является собственно химическое превращение. В этом случае говорят, что процесс идет в кинетической области, однако, не всегда удается устранить диффузионное торможение.

Обычно скорость химической реакции определяется по уравнению (47). Если гетерогенная каталитическая реакция является многокомпонентной, кинетическая формула может оказаться достаточно громоздкой. Рассмотрим кинетические уравнения, выведенные из предположения об ограниченной активности поверхности катализатора. Предполагается, что химическое превращение может происходить только на участках молекул, попавших за счет адсорбции на активный центр катализатора.

Сорбцией называется любой процесс поглощения одного вещества другим независимо от механизма поглощения. В зависимости от механизма сорбции различают:

- адсорбцию – изменение концентрации вещества на границе раздела фаз. Адсорбция происходит на любых межфазовых поверхностях, и адсорбироваться могут любые вещества. Адсорбционное равновесие, т.е. равновесное распределение вещества между пограничным слоем и граничащими фазами, является динамическим равновесием и быстро устанавливается. Адсорбция с повышением температуры уменьшается;

- абсорбцию – поглощение одного вещества другим происходит во всем объеме сорбента (например, растворение газа в жидкостях);

- хемосорбцию – поглощение одного вещества другим сопровождается химическими реакциями;

- капиллярную конденсацию – происходящую вследствие того, что давление паров над вогнутым мениском жидкости в смачиваемых ею узких капиллярах меньше давления насыщенного пара над плоской поверхностью жидкости при той же температуре.

Положительная адсорбция, приводящая к повышению концентрации вещества в пограничном слое, возможна только при уменьшении величины поверхностного натяжения, т.е. все самопроизвольные процессы на границе раздела фаз происходят в направлениях уменьшения свободной поверхностной энергии.

Статическая сорбция наблюдается в том случае, когда поглощаемое вещество контактирует с неподвижным сорбентом. Статическая активность сорбента характеризуется количеством поглощаемого вещества на единицу массы сорбента в определенных условиях.

Динамическая сорбция наблюдается при фильтрации поглощаемого вещества через слой сорбента.

В случае гетерогенно-каталитических реакций считается, что число активных центров на единицу поверхности катализатора ограниченно. Кроме того, для упрощения считается, что каждый активный центр может удержать лишь определенное количество молекул или атомов реагирующего вещества (чаще всего одну). При таких предположениях скорость химического превращения оказывается пропорциональной концентрациям реагирующих веществ, адсорбированным на поверхности катализатора, т.е. поверхностным концентрациям. Для описания зависимости поверхностной концентрации некоторого вещества от его концентрации в объеме окружающего газа используется уравнение изотермы адсорбции Ленгмюра. Для упрощения принимают условия равновесия адсорбции и десорбции. Скорость адсорбции ra (или uадс) некоторого компонента можно принять пропорциональной его давлению Р и концентрации свободных активных центров, определяемой как разность между полной концентрацией активных центров Са и концентрацией занятых центров С:

Скорость десорбции rд (uдес) пропорциональна концентрации занятых активных центров С:

Предполагая равновесие между адсорбцией и десорбцией, т.е. приняв rа = rд (uадс = uдес) получим:

Следовательно, концентрация занятых активных центров равна:

введем замену -константа равновесия адсорбции (56)

В случае равенства kа = kдесK=1, тогда получим:

На рис.3 приведен пример изотермы адсорбции.

Адсорбция газов и паров на поверхности твердых тел также происходит в результате уменьшения свободной поверхностной энергии. На практике об адсорбции судят по количеству адсорбированного вещества, которое тем больше, чем больше поверхностный слой адсорбента, соответственно. Поэтому, для осуществления адсорбционных процессов необходимо использовать адсорбенты с высокоразвитой поверхностью. Важнейшими пористыми сорбентами являются активированный уголь и селикагель.

Рис. 3 Изотерма адсорбции.

Г – поверхностный избыток

а – чистый компонент

б – ненасыщенный мономолекулярный (в одну молекулу толщиной слой)

в – насыщенный мономолекулярный слой

Повышение температуры и понижение давления приводят к десорбции газов и паров. Вследствие этого сорбционные методы широкого использования в промышленности для извлечения различных веществ из воздушной среды и для разделения газов и паров.

Адсорбция растворенных веществ из растворов на твердых сорбентах всегда в большей или меньшей степени включает в себя адсорбцию растворителя. Изотермы адсорбции из растворов имеют вид, аналогичный изотермам адсорбции из газовой фазы.

В практике моделирования гетерогенно-каталитческих процессов вместо поверхностных концентраций активных центров используют относительные концентрации , называемые обычно степенью заполнения активных центров. Уравнение (57) можно переписать, заменив в нем концентрации на степень заполнения активных центров:

Если процесс адсорбции сопровождается обратимой диссоциацией на n частиц, то скорости адсорбции и десорбции являются функциями n-степени от соответствующих концентраций:

Если газовая фаза содержит несколько компонентов, адсорбируемых поверхностью катализатора, необходимо вычислить степень заполнения поверхности каждым компонентом.

Необходимо учесть, что концентрация свободных мест определяется разностью между полной концентрацией активных центров и суммой центров, занятых всеми компонентами. Например, для двухкомпонентной системы:

В случае диссоциации компонента А на две частицы получаем:

Если в газовой среде присутствует инертный компонент, не участвующий в химической реакции, но адсорбируемый поверхностью, в знаменатель выражений (59-63) соответствующее слагаемое, например:

Так как скорость химического превращения пропорциональна поверхностным концентрациям реагирующих компонентов, т.е.

К примеру, для реакции типа А + В ® М при отсутствии диссоциации реагентов и без участия инертного компонента получается следующее выражение для скорости химического превращения:

Степень в знаменателе выражения (66) равна количеству компонентов химической системы.

Если адсорбционные свойства компонентов реакции значительно разнятся, то вид уравнения Ленгмюра изменится. Пусть имеется реакция вида А ® Р, тогда

Рассмотрим различные варианты процесса:

1. Если реагирующий газ А адсорбируется слабо, а продукт реакции – умеренно, то « « 1, то получим уравнение:

И тогда кинетическое уравнение примет вид:

Произведение называется кажущейся константой скорости реакции.

2. В случае сильной адсорбции реагирующего вещества и продукта реакции и значительно больше единицы, тогда уравнение для скорости реакции запишется как:

4. При сильной адсорбции реагента и слабой адсорбции продукта получаем выражение:

5. Если существует химическое взаимодействие адсорбированных молекул реагентов между собой (предположительно), то общий вид кинетического уравнения будет следующим:

Для практических расчетов в ограниченной области режимных параметров часто используют аппроксимирующие степенные кинетические выражения:

где a, b,…,n – частные порядки реакции.

К примеру, скорость окисления водорода до воды H2 + O2 → H2O на палладиевом катализаторе при малой концентрации может быть описана уравнением:

Надо добавить, что при моделировании в неизотермических условиях необходимо учитывать зависимость коэффициентов адсорбции и константы скорости от температуры. Что значительно усложняет модель.

Как видно, моделирование гетерогенных каталитических реакций – более сложный процесс по сравнению с моделированием гомогенных реакций, что связано с сильной нелинейностью получаемых уравнений.

Диффузией называется самопроизвольный процесс перемещения вещества в растворе, приводящий к выравниванию его концентрации.

В ходе диффузии некоторая первоначальная упорядоченность в распределении вещества (высокая концентрация вещества в одной части системы и низкая – в другой) сменяется полной беспорядоченностью распределения вещества в объеме, при этом энтропия системы возрастает. Когда концентрация раствора во всем объеме выравнивается, энтропия достигает максимального значения, и диффузия прекращается. Скорость диффузии при постоянных температуре и вязкости среды зависит от величины и формы растворяющихся частиц.

Диффузия наблюдается как в жидкостях и газах, так и в твердых веществах. Мерой диффузии является масса вещества , продиффундировавшего за единицу времени через единицу площади поверхности соприкасающихся веществ. Величина тем больше, чем больше изменяется концентрация на единицу длины вдоль направления, в котором происходит диффузия. Скорость диффузии увеличивается с ростом температуры, что связано с увеличением скорости движения частиц.

При гетерогенном катализе химическая реакция протекает на поверхности твердого тела, поэтому процессы транспорта веществ к поверхности и от нее играют важную роль. Если химическое превращение идет гораздо медленнее процессов массообмена, то кинетика реакции определяется процессами на поверхности твердого тела. Если реакция очень быстрая, то кинетика зависит от процессов массообмена.

Рассмотрим диффузию вещества из объема на поверхность реагирующих веществ или на поверхность катализатора, если таковой имеется. Пусть превращение вещества – реакция первого порядка со скоростью, равной

где ωхим – количество вещества, реагирующего у поверхности S в единицу времени, Сп – концентрация реагента у поверхности.

В результате превращения Сп становится меньше концентрации вещества в объеме раствора Соб .

Всю реагирующую смесь можно разделить на две области:

1. область постоянной концентрации вдали от поверхности реакции;

2. область быстрого изменения концентрации непосредственно вблизи этой поверхности.

Экспериментально установлено, что на всех твердых поверхностях, с которыми граничит движущаяся жидкость, скорость движения жидкости равна нулю. Транспорт вещества происходит через неподвижный слой жидкости, прилегающий к поверхности твердого тела, в результате диффузии реагирующих веществ. Этот неподвижный слой называется слоем Нернста, его толщина зависит от свойств растворителя и растворенного вещества, скорости перемещения и т.д. Например, для жидкости толщина этого слоя δ составляет примерно 0.02 – 0.05 мм и меньше. За его пределами движение жидкости приводит к выравниванию концентрации в объеме раствора. Перенос массы в результате диффузии описывается уравнением Фика:

Существует и другая запись уравнения диффузии при Т = Const:

Градиент концентрации (gradC) в диффузионном слое постоянен, поэтому выражение (47) можно записать следующим образом:

Когда в установившемся стационарном режиме скорость подвода вещества к реагирующей поверхности равна скорости химической реакции, поверхностную концентрацию можно представить как:

Для быстрой реакции, когда k>>D/d скорость процесса определяется диффузией. В случае медленной реакции, когда k

Диффузия — явление проникновения молекул одного вещества в промежутки между молекулами другого вещества.

Мы ощущаем запах духов на некотором расстоянии от флакона. Это объясняется тем, что молекулы духов, так же как и молекулы воздуха, движутся. Между молекулами существуют промежутки. Молекулы духов проникают в промежутки между молекулами воздуха, а молекулы воздуха — в промежутки между молекулами духов.

Опыты показывают, что диффузии в газах — самый быстрый процесс, в жидкостях он протекает гораздо медленнее, но может наблюдаться даже в твердых телах. Соединив гладко отполированными поверхностями два бруска из разных металлов, например из меди и алюминия, и оставив их в таком положении на длительное время (на 4—5 лет), мы обнаружим их сращивание за счет проникновения атомов меди в алюминиевый образец и, наоборот, проникновения атомов алюминия в медный.

диффузия

Диффузия в газах происходит быстрее, чем в жидкостях, потому, что газы имеют меньшую плотность, чем жидкости, т.е. молекулы газов расположены на больших расстояниях друг от друга. Ещё медленнее происходит диффузия в твёрдых телах, поскольку молекулы твёрдых тел находятся ещё ближе друг к другу, чем молекулы жидкостей.

Диффузия

Скорость диффузии зависит не только от агрегатного состояния вещества, но и от температуры. При более высокой температуре диффузия будет происходить быстрее. Это происходит потому, что при повышении температуры быстрее движутся молекулы. Скорость движения молекул и температура тела взаимосвязаны. Чем больше средняя скорость движения молекул тела, тем выше его температура.

Проявление диффузии: окрашивание, склеивание, проникновение питательных веществ из кишечника в кровь.

Читайте также: