Детонация это кратко и понятно

Обновлено: 02.07.2024

ДЕТОНАЦИЯ (франц. detoner – взрываться, от лат. detono – гремлю) — процесс сгорания смесей газообразных, твердых и жидких горючих веществ (см. ГОРЮЧЕСТЬ; ГОРЮЧЕСТЬ СТРОИТЕЛЬНЫХ МАТЕРИАЛОВ) с окислителем (см. КИСЛОРОД), распространяющийся со сверхзвуковой скоростью (до 9000 м/с) в виде детонационной волны . [1]

История исследования явления

В 1940-е годы Я. Б. Зельдович разработал теорию детонации, в которой учитывается конечное время протекания химической реакции вслед за нагревом вещества ударной волной. В этой модели условие Чепмена-Жуге получило ясный физический смысл как правило отбора скорости детонации, а сама модель была названа моделью ZND — по именам Зельдовича, Неймана и Деринга , так как независимо от него к схожим результатам пришли фон Нейман в США и Деринг в Германии. [2]

Механизм детонации

Детонация вызывается механическим или тепловым воздействием (удар, искра и т. п.) с определенной интенсивностью. В практике обеспечения пожаровзрывобезопасности явление детонации рассматривается относительно редко. Это обусловлено ограниченным количеством производств с использованием взрывчатых веществ ( см. ВЗРЫВЧАТОЕ ВЕЩЕСТВО ) или легкодетонирующих горючих газо-, паро- или пылевоздушных смесей.

Кроме того, далеко не в каждой горючей смеси можно возбудить процесс детонации, а способные к детонации смеси зачастую сгорают в режиме дефлаграции .

Детонация может возникать в газах, жидкостях, конденсированных веществах и гетерогенных средах. При прохождении фронта ударной волны вещество нагревается. Если ударная волна достаточно сильная, то температура за фронтом ударной волны может превысить температуру самовоспламенения вещества, и в веществе начинаются химические реакции горения. В ходе химических реакций выделяется энергия, подпитывающая ударную волну. Такое взаимодействие газодинамических и физико‑химических факторов приводит к образованию комплекса из ударной волны и следующей за ней зоны химических реакций, называемого детонационной волной. Механизм превращения энергии в детонационной волне отличается от механизма в волне медленного горения ( дефлаграции ) , движущейся с дозвуковой скоростью, в которой передача энергии в исходную смесь осуществляется в основном теплопроводностью .

Скорость детонации

Характерные значения скорости детонации составляют от одной до нескольких тысяч метров в секунду. Например, для гремучей смеси водорода с кислородом стехиометрического состава скорость детонации составляет 2820 м/с, для твердого гексогена — 8850 м/с, для взвесей угольной пыли в воздухе — от 1200 до 2500 м/с. Детонация в газах и аэровзвесях приводит к давлению, превышающему начальное не менее чем в 10 раз, при детонации в жидкостях и твердых телах возникает существенно большее давление (до сотен тысяч атмосфер). [1]

Химическая реакция вводится интенсивной ударной волной, образующей передний фронт детонационной волны. Благодаря резкому повышению температуры и давления за фронтом химическое превращение протекает с постоянной скоростью, превышающей скорость звука в данном веществе, и в очень тонком слое, непосредственно прилегающем к фронту волны. Энергия, освобождающаяся в зоне превращения, непрерывно поддерживает высокое давление в ударной волне, т. е. обеспечивает самоподдерживающийся процесс. При расширении сжатых продуктов детонации происходит взрыв. Этим объясняется огромное разрушающее действие подобных процессов. В однородном веществе детонация распространяется с постоянной скоростью, которая среди возможных для данного вещества скоростей распространения детонационной волны является минимальной. В такой волне зона химической реакции перемещается относительно продуктов реакции со скоростью звука (но со сверхзвуковой скоростью относительно исходного вещества). Благодаря этому волны разрежения, возникающие при расширении газообразных продуктов химической реакции, не могут проникнуть в зону реакции и ослабить бегущую впереди ударную волну. Минимальная скорость распространения детонации принимается в качестве характеристики взрывчатого вещества. Энергия, выделяемая в зоне химической реакции, непрерывно поддерживает высокое давление в ударной волне.

При определенных условиях во взрывчатом веществе может быть возбуждена детонация, скорость распространения которой превышает минимальную скорость. Так, взрыв заряда твердого взрывчатого вещества, помещенного в газообразную взрывчатую смесь, порождает в смеси ударную волну, интенсивность которой во много раз превосходит интенсивность волны, отвечающей режиму с минимальной скоростью. В результате в газовой смеси распространяется детонационная волна с повышенной скоростью. В этой волне зона химической реакции движется относительно продуктов реакции с дозвуковой скоростью. Поэтому по мере удаления такой волны от места ее возникновения ударная волна постепенно ослабевает (сказывается влияние волн разрежения) и скорость распространения детонации снижается до минимального значения. Детонационную волну с повышенной скоростью распространения можно также получить в неоднородном взрывчатом веществе при движении волны в направлении убывающей плотности.

Еще одним примером распространения детонации со скоростью, превышающей минимальное значение, может служить сферическая детонационная волна, сходящаяся к центру. Скорость волны с приближением к центру возрастает. Устойчивый процесс детонации не всегда возможен. Например, волна детонации не может распространяться в цилиндрическом заряде взрывчатого вещества слишком малого диаметра (разлет вещества через боковую поверхность вызывает прекращение химической реакции прежде, чем вещество успеет заметно прореагировать). Минимальный диаметр заряда, в котором возможен незатухающий процесс детонации, пропорционален ширине зоны химической реакции.

В газообразных взрывчатых смесях распространение детонации возможно лишь при условиях, когда концентрация горючего газа (или паров горючей жидкости) находится в определенных пределах. Эти пределы зависят от химической природы взрывчатой смеси, давления и температуры. Например, в смеси водорода с кислородом при комнатной температуре и атмосферном давлении волна детонации способна распространяться, если концентрация (по объему) водорода находится в пределах от 20 до 90 %. Исследование волны детонации в газах показывает, что при понижении начального давления химическая реакция приобретает характер пульсаций. Неравномерное протекание реакции вызывает искажения движущейся впереди ударной волны. Наконец, при достаточно низком давлении осуществляется режим так называемой спиновой детонации, при котором на фронте детонационной волны возникает излом, вращающийся по винтовой линии. Дальнейшее снижение давления приводит к затуханию детонации. [3]

Применение

Детонационное горение является наиболее термодинамически выгодным способом сжигания топлива и преобразования химической энергии топлива в полезную работу. Поэтому детонация может применяться в рабочем процессе в камерах сгорания перспективных энергетических установок, таких как импульсный детонационный двигатель .

Явление детонации лежит в основе действия взрывчатых веществ , широко применяемых как в военном деле , так и в гражданской хозяйственной деятельности при производстве взрывных работ . [2]

Представления о тротиловом эквиваленте энергетического потенциала отдельных участков производства (с последующими выводами о расчетных значениях взрывных нагрузок при аварии) используются в правилах по обеспечению взрывобезопасности химических, нефтехимических и нефтеперерабатывающих производств. [1]

Детонация – это процесс химического превращения взрывчатого вещества, сопровождающийся освобождением энергии (тепла) и распространяющийся по веществу в виде волны от одного слоя к другому со сверхзвуковой скоростью.

Химическая реакция вводится интенсивной ударной волной, образующей передний фронт детонационной волны. Благодаря резкому повышению температуры и давления за фронтом химическое превращение протекает с постоянной скоростью, превышающей скорость звука в данном веществе, и в очень тонком слое, непосредственно прилегающем к фронту волны. Энергия, освобождающаяся в зоне превращения, непрерывно поддерживает высокое давление в ударной волне, т.е. обеспечивает самоподдерживающийся процесс. Благодаря высокой скорости детонации (в газовых смесях 1000-3500 м/с, в твердых и жидких взрывчатых веществах — до 9000 м/с) давление в газообразных взрывчатых смесях составляет десятки атмосфер, а в жидких и твердых телах достигает нескольких сотен тыс. атмосфер. При расширении сжатых продуктов детонации происходит взрыв. Этим объясняется огромное разрушающее действие подобных процессов.

В однородном веществе детонация распространяется с постоянной скоростью, которая среди возможных для данного вещества скоростей распространения детонационной волны является минимальной. В такой волне зона химической реакции перемещается относительно продуктов реакции со скоростью звука (но со сверхзвуковой скоростью относительно исходного вещества). Скорости детонации некоторых взрывчатых веществ представлены в табл.

Благодаря этому волны разрежения, возникающие при расширении газообразных продуктов химической реакции, не могут проникнуть в зону реакции и ослабить бегущую впереди ударную волну. Минимальная скорость распространения детонации принимается в качестве характеристики взрывчатого вещества. Энергия, выделяемая в зоне химической реакции, непрерывно поддерживает высокое давление в ударной волне.

Скорости детонации

Вещество

ν, м/сек

Тринитротолуол (тротил, тол), C7H5(NО2)3CH3 (твердое вещество, d=1,62 г/см 3 )

Пентаэритриттетранитрат (ТЭН) C5H8(ОNО2)4 (твердое вещество, d=1,77 г/см 3 )

Циклотриметилентринитроамин (гексоген), C3H6О6N6 (твердое вещество, d=1,80 г/см 3 )

Виды детонации

При анализе чрезвычайных ситуаций, связанных с проявлением детонации, различают несколько видов процесса.

Физическая детонация — процесс, возникающий при смешении жидкостей с разными температурами, когда температура одной из них значительно превышает температуру кипения другой.

Детонационный взрыв — при котором воспламенение последующих слоев взрывчатого вещества происходят в результате сжатия и нагрева ударной волной, когда ударная волна и зона химической реакции следуют неразрывно друг за другом с постоянной сверхзвуковой скоростью.

Дефлаграционный взрыв — при котором нагрев и воспламенение последующих слоев взрывчатого вещества происходит в результате диффузии и теплопередачи, когда фронт волны сжатия и фронт пламени движутся с дозвуковой скоростью.

Возбуждение детонации является обычным способом осуществления взрывов. Детонация в заряде взрывчатого вещества создается интенсивным механическим или тепловым воздействием (удар, искровой разряд, взрыв металлической проволочки под действием электрического тока, и т.п.). Сила воздействия, необходимого для возбуждения детонации, зависит от химической природы взрывчатого вещества. К механическому воздействию чувствительны, например, так называемые инициирующие взрывчатые вещества (гремучая ртуть, азид свинца и др.), которые входят в состав капсюлей-детонаторов, используемых для возбуждения детонации вторичных (менее чувствительных) взрывчатых веществ.

Детонация

При определенных условиях во взрывчатом веществе может быть возбуждена детонация, скорость распространения которой превышает минимальную скорость, указанную в приведенной выше таблице. Так, взрыв заряда твердого взрывчатого вещества, помещенного в газообразную взрывчатую смесь, порождает в смеси ударную волну, интенсивность которой во много раз превосходит интенсивность волны, отвечающей режиму с минимальной скоростью. В результате в газовой смеси распространяется детонационная волна с повышенной скоростью. В этой волне зона химической реакции движется относительно продуктов реакции с дозвуковой скоростью. Поэтому по мере удаления такой волны от места ее возникновения ударная волна постепенно ослабевает (сказывается влияние волн разрежения) и скорость распространения детонации снижается до минимального значения. Детонационную волну с повышенной скоростью распространения можно также получить в неоднородном взрывчатом веществе при движении волны в направлении убывающей плотности. Еще одним примером распространения детонации со скоростью, превышающей минимальное значение, может служить сферическая детонационная волна, сходящаяся к центру. Скорость волны с приближением к центру возрастает. Устойчивый процесс детонации не всегда возможен. Например, волна детонации не может распространяться в цилиндрическом заряде взрывчатого вещества слишком малого диаметра (разлет вещества через боковую поверхность вызывает прекращение химической реакции прежде, чем вещество успеет заметно прореагировать). Минимальный диаметр заряда, в котором возможен незатухающий процесс детонации, пропорционален ширине зоны химической реакции. В газообразных взрывчатых смесях распространение детонации возможно лишь при условиях, когда концентрация горючего газа (или паров горючей жидкости) находится в определенных пределах. Эти пределы зависят от химической природы взрывчатой смеси, давления и температуры. Например, в смеси водорода с кислородом при комнатной температуре и атмосферном давлении волна детонации способна распространяться, если концентрация (по объему) водорода находится в пределах от 20 до 90 %. Исследование волны детонации в газах показывает, что при понижении начального давления химическая реакция приобретает характер пульсаций. Неравномерное протекание реакции вызывает искажения движущейся впереди ударной волны. Наконец, при достаточно низком давлении осуществляется режим так называемой спиновой детонации, при котором на фронте детонационной волны возникает излом, вращающийся по винтовой линии. Дальнейшее снижение давления приводит к затуханию детонации.

В двигателях внутреннего сгорания детонация — быстрый, приближающийся к взрыву процесс горения топливной смеси в цилиндре карбюраторного двигателя, сопровождающийся неустойчивой работой (металлический стук в цилиндре), износом и разрушением деталей. В результате детонации двигатель перегревается и его мощность падает. Детонация возникает, если топливо не соответствует конструкции или работе двигателя. Для каждого топлива существует определенная степень сжатия, при которой возникает детонация. Детонационную стойкость бензинов для бедных смесей характеризуют октановым числом, для богатых смесей — сортностью бензинов.

Детонационный взрыв и взрывное горение могут иметь разное назначение — причинять ущерб жизни и здоровью людей и животных, разрушать объекты инфраструктуры и повреждать окружающую среду, но и выполнять полезную работу по строительству тоннелей, каналов и дорог, по добыче полезных ископаемых и сносу строительных конструкций. Детонация является физической основой проведения специальных боевых операций. Одним из наиболее опасных проявлений детонации является использование ее разрушающего действия в большинстве террористических атак. Во многих случаях, например, при горении топливной смеси в двигателях внутреннего сгорания или реактивного двигателя, при горении пороха в стволе артиллерийского орудия и другого, детонация недопустима. В связи с этим подбираются такие условия горения и химический состав используемых веществ, чтобы возникновение детонации с характерным для нее чрезвычайно резким повышением давления было исключено.

Детонация и калильное зажигание

Источник: Детонация конденсированных и газовых систем. — М., 1986; Теория детонации. Зельдович Я.Б., Компанеец А.С. — М., 1955.

процесс химического превращения взрывчатого вещества, сопровождающийся освобождением энергии и распространяющийся по веществу в виде волны от одного слоя к другому со сверхзвуковой скоростью. Химическая реакция вводится интенсивной ударной волной (См. Ударная волна), образующей передний фронт детонационной волны. Благодаря резкому повышению температуры и давления за фронтом ударной волны химическое превращение протекает чрезвычайно быстро в очень тонком слое, непосредственно прилегающем к фронту волны (рис. 1, 2).

Энергия, освобождающаяся в зоне химической реакции, непрерывно поддерживает высокое давление в ударной волне. Д., т. о., представляет собой самоподдерживающийся процесс.

Возбуждение Д. является обычным способом осуществления Взрывов. Д. в заряде взрывчатого вещества создаётся интенсивным механическим или тепловым воздействием (удар, искровой разряд, взрыв металлической проволочки под действием электрического тока и т.п.). Сила воздействия, необходимого для возбуждения Д., зависит от химической природы взрывчатого вещества. К механическому воздействию чувствительны, например, так называемые инициирующие взрывчатые вещества (гремучая ртуть, азид свинца и др.), которые обычно входят в состав капсюлей-детонаторов, используемых для возбуждения Д. вторичных (менее чувствительных) взрывчатых веществ.

В однородном взрывчатом веществе Д. обычно распространяется с постоянной скоростью, которая среди возможных для данного вещества скоростей распространения детонационной волны является минимальной. В детонационной волне, распространяющейся с минимальной скоростью, зона химической реакции перемещается относительно продуктов реакции со скоростью звука (но со сверхзвуковой скоростью относительно исходного вещества). Благодаря этому волны разрежения, возникающие при расширении газообразных продуктов химической реакции, не могут проникнуть в зону реакции и ослабить бегущую впереди ударную волну. Д., отвечающая указанным выше условиям, называется процессом Чепмена — Жуге; соответствующая ей минимальная скорость распространения принимается в качестве характеристики взрывчатого вещества (см. табл.). Давление, которое создаётся при распространении детонационной волны в газообразных взрывчатых смесях, составляет десятки атмосфер, а в жидких и твёрдых взрывчатых веществах измеряется сотнями тысяч атмосфер.

При определённых условиях во взрывчатом веществе может быть возбуждена Д., скорость распространения которой превышает минимальную скорость Д. Так, взрыв заряда твёрдого взрывчатого вещества, помещённого в газообразную взрывчатую смесь, порождает в смеси ударную волну, интенсивность которой во много раз превосходит интенсивность волны, отвечающей режиму с минимальной скоростью. В результате в газовой смеси распространяется детонационная волна с повышенной скоростью. В этой волне, в отличие от процесса Чепмена — Жуге, зона химической реакции движется относительно продуктов реакции с дозвуковой скоростью. Поэтому по мере удаления такой волны от места её возникновения ударная волна постепенно ослабевает (сказывается влияние волн разрежения) и скорость распространения Д. снижается до минимального значения.

Детонационную волну с повышенной скоростью распространения можно также получить в неоднородном взрывчатом веществе при движении волны в направлении убывающей плотности. Ещё одним примером распространения Д. со скоростью, превышающей минимальное значение, может служить сферическая детонационная волна, сходящаяся к центру. Скорость волны с приближением к центру возрастает. В центре такая волна в течение короткого интервала времени создаёт давление, во много раз превышающее величину, характерную для режима Чепмена — Жуге.

Устойчивый процесс Д. не всегда возможен. Например, волна Д. не может распространяться в цилиндрическом заряде взрывчатого вещества слишком малого диаметра (разлёт вещества через боковую поверхность вызывает прекращение химической реакции прежде, чем вещество успеет заметно прореагировать). Минимальный диаметр заряда, в котором возможен незатухающий процесс Д., пропорционален ширине зоны химической реакции. В газообразных взрывчатых смесях распространение Д. возможно лишь при условиях, когда концентрация горючего газа (или паров горючей жидкости) находится в определённых пределах. Эти пределы зависят от химической природы взрывчатой смеси, давления и температуры. Например, в смеси водорода с кислородом при комнатной температуре и атмосферном давлении волна Д. способна распространяться, если концентрация (по объёму) водорода находится в пределах от 20% до 90%.

Исследование волны Д. в газах показывает, что при понижении начального давления химическая реакция приобретает характер пульсаций. Неравномерное протекание реакции вызывает искажения движущейся впереди ударной волны (рис. 3). Наконец, при достаточно низком давлении осуществляется режим так называемой спиновой Д., при котором на фронте детонационной волны возникает излом, вращающийся по винтовой линии (рис. 4). Дальнейшее снижение давления приводит к затуханию Д.

Кроме Д., во взрывчатом веществе возможен др. тип волны химической реакции — Горение. Волны горения всегда распространяются с дозвуковой скоростью (обычно значительно меньшей, чем скорость звука в исходном веществе). Движение волны горения обусловлено сравнительно медленными процессами теплопроводности (См. Теплопроводность) и диффузии (См. Диффузия). При некоторых условиях горение может перейти в Д.

Во многих случаях, например при горении топливной смеси в двигателях внутреннего сгорания или реактивного двигателя, при горении пороха в стволе артиллерийского орудия и др., Д. недопустима. В связи с этим подбираются такие условия горения и химический состав используемых веществ, чтобы возникновение Д. с характерным для неё чрезвычайно резким повышением давления было исключено.

детон а ция, детонации, жен. (от лат. detono - гремлю) (спец.). Мгновенный и разрушительный взрыв какого-нибудь взрывчатого вещества под действием удара или воспламенения детонатора.

Словарь Военных Терминов

1) быстропроте-кающий процесс химического превращения взрывчатых веществ, сопровождающийся освобождением энергии и распространяющийся по ВВ в виде волны со сверхзвуковой скоростью. При Д. мгновенно образуется большое количество газов с высоким давлением. При расширении сжатых продуктов Д. происходит взрыв;

2) быстрый, приближающийся к взрыву процесс горения топливной смеси в поршневых двигателях внутреннего сгорания с искровым зажиганием.

Военно-морской Словарь

быстропротекающий процесс химического превращения взрывчатого вещества (ВВ), сопровождающийся освобождением энергии и распространяющийся по ВВ в виде волны со сверхзвуковой скоростью, постоянной для данного вещества. Детонация характеризуется образованием большого количества газов с огромным давлением, при расширении которых происходит взрыв.

Словарь музыкальных терминов

(от фр. detonner — петь фальшиво) — откло­нение (повышение или понижение) звука от необходимой высоты. Причины детонации разнообразны: неразвитый музыкальный (вокальный) слух, недостаточное развитие ладового чувства, отсутствие координации между слухом и голосом, болезнь голосового аппарата, плохие акустические условия, недостатки вокального мастерства.

Автомобильный словарь

(от лат. detonare — прогреметь) (в двигателях внутреннего сгорания), быстрый, приближающийся к взрыву процесс горения топливной смеси в цилиндре карбюраторного двигателя, сопровождающийся неустойчивой работой (металлический стук в цилиндре), износом и разрушением деталей.

Словарь терминов МЧС

режим сгорания парового облака, а также других взрывчатых веществ и смесей. В детонационных режиме возникает мощная самоподдерживающаяся ударная волна, сжимающая вещество и инициирующая химическое превращение с выделением энергии. Скорость детонационной волны больше скорости звука в исходной смеси. При детонационном превращении парового облака основным опражающим фактором является воздушная ядерная волна.

Гражданская защита. Понятийно-терминологический словарь

распространение взрыва по ВВ, обусловленное прохождением ударной волны с постоянной сверхзвуковой скоростью, обеспечивающей быструю химическую реакцию.

Краткий словарь оперативно-тактических и общевоенных терминов

распространение сгорания с очень большой постоянной скоростью (больше скорости звука). Скорость д. в различных газовых взрывчатых смесях равна 4000—3500 м/сек, а в твердых и жидких взрывчатых веществах достигает 8000—9000 м/сек. д. возникает во взрывчатых веществах под действием мощной ударной волны, а также других факторов.

Энциклопедический словарь

(франц. detoner - взрываться, от лат. detono - гремлю), процесс химического превращения взрывчатого вещества, происходящий в очень тонком слое и распространяющийся со сверхзвуковой скоростью (до 9 км/с). Детонация представляет собой комплекс мощной ударной волны и следующей за ее фронтом зоны химического превращения вещества (детонационная волна).

Словарь Ожегова

ДЕТОНАЦИЯ, и, ж. (спец.).

1. Мгновенный взрыв вещества, вызванный взрывом другого вещества или сотрясением, ударом.

2. Быстрое и неполное сгорание топлива в двигателе внутреннего сгорания. Д. топлива.

| прил. детонационный, ая, ое.

Словарь Ефремовой

ж.
Мгновенный взрыв вещества, вызванный взрывом другого вещества, сотрясением,
ударом и т.п.

Уверен, даже начинающие автовладельцы слышали это пугающее словечко - "детонация двигателя". И по обыкновению, предлагаю вам не забивать себе голову различными байками и домыслами с форумов, а разобрать сей вопрос подробно. Поэтому, для начала чуть-чуть теории.

Чуть-чуть теории

Как известно, свеча зажигания (в качестве примера сегодня рассмотрим бензиновые двигатели) поджигает топливо-воздушную смесь. Но до этого волнующего момента, поршень идет вверх, завершая такт сжатия. Когда же поджиг произошел, поршень, толкаемый стремительно сгораемыми газами, идет обратно вниз - это такт рабочего хода. В идеале, момент образования искры примерно совпадает с достижением поршнем верхней мертвой точки (ВМТ). Почему я говорю "примерно"? Потому что есть еще такая штука как угол опережения зажигания (УОЗ). Этим "углом", с помощью электронного блока управления (а на старых машинах - механически) как раз и регулируется либо более ранний поджиг для высоких оборотов, либо обычный (за несколько градусов коленвала до ВМТ) - для средних и низких. Очевидно, что такое отклонение по углу (проще говоря - моменту) зажигания должно лежать в строго заданных конструкторами мотора пределах. А вот когда смесь воспламеняется слишком рано - и возникает детонация.

Другими словами, детонация - это хаотичное и незапланированное горение смеси в цилиндре еще ДО того момента, как ее поджигает свеча .

Далее предлагаю разделить наше повествование на две части.

Часть 1: почему детонация - это плохо?

Как уже говорилось выше, поршень идет вверх, сжимая рабочую смесь, которая затем воспламенится разрядом свечи. И если на высоких оборотах даже поджечь ее чуть незадолго до самой верхней точки - это допустимо. Дело в том, что на больших оборотах поршни двигаются с огромной скоростью и высокой инерцией, поддерживаемой маховиком . И давление только-только начавших расширение газов, которые станут на него давить сверху, не успеет достичь той силы, чтобы сколь-нибудь значительно его замедлить. Зато появляется положительный момент: пик давления горящего заряда придется аккурат на тот момент, когда поршень пойдет от верхней точки "на снижение" - вниз, уже тактом рабочего хода. Соответственно, получаем оптимальную эффективность при данных оборотах.

Пример опережения зажигания: за 15 градусов до ВМТ смесь поджигается, а на 20 градусах после ВМТ давление газов достигает максимального.

Пример опережения зажигания: за 15 градусов до ВМТ смесь поджигается, а на 20 градусах после ВМТ давление газов достигает максимального.

Но что будет если поджечь смесь еще раньше? Правильно. Успевшая как следует расшириться от взрыва, она начнет воздействовать на поршень противоходом уже куда мощнее - то есть, намного раньше, чем он достигнет ВМТ. И получаем такую картину: поршень еще вовсю стремится вверх, а набравшие силу газы пытаются резко его остановить. Возникающие ударные нагрузки и значительное повышение температуры в цилиндре крайне негативно воздействуют на весь кривошипно-шатунный механизм. В конечном итоге, поездив с хорошей детонацией определенное количество километров, вполне реально поиметь осыпавшиеся в камеру сгорания свечи, прогоревшие поршни или оборванные шатуны. Полагаю, последствия таких явлений описывать излишне.

Суть детонации одной картинкой. Клапаны закрыты, поршень еще далеко от ВМТ, а спонтанное горение уже началось ему навстречу. Итог: детали КШМ испытывают сильнейшие ударные нагрузки

Суть детонации одной картинкой. Клапаны закрыты, поршень еще далеко от ВМТ, а спонтанное горение уже началось ему навстречу. Итог: детали КШМ испытывают сильнейшие ударные нагрузки

Часть 2: из-за чего же она возникает?

Логично предположить, что намеренно поджигать смесь слишком рано блок управления не будет (хотя, гаражным "тюнинхерам" подвластно всё). Поэтому, если глобально, то детонация возникает всего по трем причинам:

  • Слишком бедная смесь. То есть, когда воздуха очень много, а бензина очень мало. Например, в случае засорения форсунок или чрезмерной подачи воздуха из-за поврежденного датчика положения заслонки.
    Казалось бы, при чем здесь бедная смесь, ведь должно быть наоборот - бензина-то мало! Но не всё так очевидно.
    Дело в том, что бензин, впрыскиваемый в камеру сгорания в виде мелкодисперсного тумана, выполняет роль охладителя, частично испаряясь на горячих стенках камеры, клапанах и поршне. Тем самым, понижается температура смеси и она опять же "терпит" до момента поджига свечой. А вот если обороты большие, а заряд очень скуден на долю топлива в нём, риск детонации повышается. Конечно, если бензина не будет совсем, просто воздух не загорится. Но детонация - такая неприятная штука, которая возникает как раз на пограничных режимах работы мотора и ловить ее не так-то просто. Именно поэтому любой блок управления имеет арсенал борьбы с этим явлением. В том числе есть датчик, который так и называется: "датчик детонации". Функционировать он может по-разному: особо продвинутые алгоритмы даже анализируют уровень ионизации газов в камере сгорания (SAAB), но как правило, датчик просто "слушает" стуки специальным пьезоэлементом (да-да, те самые детонационные стуки о которых столько страшилок). Но суть одна: как можно быстрее определить слишком раннее воспламенение и скорректировать его составом смеси и/или углом опережения зажигания.
  • Слишком высокая температура в камере сгорания. Когда даже "правильный" бензин не выдерживает до конца такта сжатия и смесь начинает взрываться сильно раньше. Как и в предыдущем случае, причин может быть множество: забитый вентилятор, неэффективная работа помпы, низкий уровень охлаждающей жидкости, и еще куча факторов. Кстати, кому интересно - подробный ликбез по причинам перегрева мотора я уже проводил чуть ранее .

И напоследок. Каждый второй "вася", который осилил замену масла собственными руками, считает теперь что круче него моториста свет еще не знал. И спешит сразу же поставить диагноз по звуку мотора, записанного на кнопочный "сименс" и сто раз пережатый ютубами. Чего я только в сети не слышал, трактуемого как: "да у тебя детонация шпарит, ты чего!". И штатную работу клапана адсорбера, и стрекот гидрокомпенсаторов, и даже обычное тарахтение сцепления при трогании. Смех!

Что в итоге?

Данная статья ни в коем случае не может охватить все нюансы явления детонации, да и не пытается. Это оставим профессиональным диагностам и мотористам (эх, где бы их найти еще. ) Просто в очередной раз хочу простым языком объяснить суть вещей, которые большинство не только не понимают сами, но и путают других. А потом из-за такого вот сарафанного радио, когда один глупость сказал, а все остальные подхватили - вполне полезные изначально ресурсы и форумы превращаются в трудночитаемую помойку из абсурдных мнений и глупых мифов. Не уподобляйтесь, друзья.

Надеюсь, кому-то было полезно!
Всем хорошего бензина и поменьше стуков в моторе!

Читайте также: