Цикл кребса кратко и понятно

Обновлено: 02.07.2024

Для того, чтобы жить и функционировать, клеткам и организму человека нужна энергия. Солнечный свет – это источник энергии для всех живых организмов на Земле. Растения преобразуют ее в химическую энергию органических соединений. Единственным же источником энергии для животных и человека является энергия углеводов, липидов и белков.

Энергетическое средоточие в клетках

В организме человека энергия запасается в виде соединений АТФ. АТФ – это универсальный источник энергии всех процессов в живых организмах.
Атомы между этими молекулами являются главным носителем энергии для человека. Когда связь между ними распадается, возникает свободная энергия. Из-за этого стационарная форма энергии преобразуется в мобильную, приводящую к возбужденному состоянию молекулы. Она используется организмом для накопления электричества, теплообразования, выполнения механической работы и т.д. Именно молекула АТФ (аденозинтрифосфат) занимает центральное место в энергетическом обмене тканей организма.

А если подробнее?

Синтез (то есть, выработка) АТФ происходит в митохондриях. Митохондрии – это энергетические станции клетки . Для такого трудоемкого процесса как синтез АТФ требуются белковые ферменты, ускоряющие биохимические реакции. Многие из них работают только в присутствии коферментов. Ими могут быть ионы металла, витамины и т.д.
Образование энергии – это результат двух тесно связанных метаболических процессов:

  • Цикла трикарбоновых кислот (цикл Кребса);
  • Цепи передачи электронов (ЦПЭ).

Цикл жизни под микроскопом

Цикл Кребса был открыт английским биохимиком Г. Кребсом. Углеводы, жирные кислоты и аминокислоты сначала превращаются в определенное вещество – ацетилкофермент А, а потом ацетил-КоА вступает в цикл Кребса.
Цикл Кребса состоит из восьми последовательных реакций. В результате полного оборота цикла одна молекула ацетил-КоА сгорает до воды и углекислого газа. Освобождающаяся при этих реакциях энергия сосредотачивается в молекуле АТФ. За один цикл Кребса может образоваться 12 молекул АТФ.
Ферменты, задействованные в цикле Кребса, требуют для выполнения своей задачи участия разнообразных коферментов и субстратов:

  • Пантотеновой кислоты (витамин В5);
  • Никотиновой кислоты (витамин В3);
  • Рибофлавина (витамин В2);
  • Липоевой кислоты;
  • Тиамина (витамин В1);
  • Цистеина;
  • Ионов металлов Fe, Mg, Mn.

Важно : чтобы цикл Кребса активизировался и образовался ацетил-КоА, необходимо присутствие витаминоподобного вещества L-карнитина.

Для выполнения второго обменного процесса, а именно передачи электронов в цепи ЦПЭ, необходимы коферменты:

  • Рибофлавин;
  • Железо;
  • Медьсодержащие субстраты.

Для нормального функционирования цикла Кребса и ЦПЭ необходимы ВСЕ химические составляющие ферментов и коферментов. При нехватке любого вещества активность ферментов будет снижаться, а синтез АТФ замедляться, что приведет к замедлению всех процессов в организме и коже в том числе!

Для человека основным источником всех необходимых веществ являются пищевые продукты, поэтому питание служит главным фактором — оно определяет наше здоровье и долголетие.

Образовавшийся в результате окислительного декарбоксилирования пирувата в митохондриях ацетил-КоА вступает в цикл Кребса. Данный цикл происходит в матриксе митохондрий и состоит из восьми последовательных реакций (рис. 10.9). Начинается цикл с присоединения ацетил-КоА к оксалоацетату и образования лимонной кислоты (цитрата). Затем лимонная кислота (шестиуглеродное соединение) путем ряда дегидрирований (отнятие водорода) и двух декарбоксилирований (отщепление СО2) теряет два углеродных атома и снова в цикле Кребса превращается в оксалоацетат (четырехуглеродное соединение), т.е. в результате полного оборота цикла одна молекула ацетил-КоА сгорает до СО2 и Н2О, а молекула окса-лоацетата регенерируется. Рассмотрим все восемь последовательных реакций (этапов) цикла Кребса.

Цикл трикарбоновых кислот (цикл Кребса)

Первая реакция катализируется ферментом цит-рат-синтазой, при этом ацетильная группа ацетил-КоА конденсируется с оксалоацетатом, в результате чего образуется лимонная кислота:

Образование лимонной кислоты из оксалоацетата и ацетил-КоА

По-видимому, в данной реакции в качестве промежуточного продукта образуется связанный с ферментом цитрил-КоА. Затем последний самопроизвольно и необратимо гидролизуется с образованием цитрата и HS-KoA.

В результате второй реакции образовавшаяся лимонная кислота подвергается дегидратированию с образованием цис-аконитовой кислоты, которая, присоединяя молекулу воды, переходит в изолимонную кислоту (изоцитрат). Катализирует эти обратимые реакции гидратации–дегидратации фермент аконитатгидратаза (аконитаза). В результате происходит взаимоперемещение Н и ОН в молекуле цитрата:

Гидратация-дегидратация молекулы цитрата

Третья реакция, по-видимому, лимитирует скорость цикла Кребса. Изолимонная кислота дегидрируется в присутствии НАД-зависимой изо-цитратдегидрогеназы.

Изолимонная кислота дегидрируется в присутствии НАД-зависимой изо-цитратдегидрогеназы

В ходе изоцитратдегидрогеназной реакции изолимонная кислота одновременно декарбоксилируется. НАД-зависимая изоцитратдегидрогеназа является аллостерическим ферментом, которому в качестве специфического активатора необходим АДФ. Кроме того, фермент для проявления своей активности нуждается в ионах Mg 2+ или Мn 2+ .

Во время четвертой реакции происходит окислительное декарбокси-лирование α-кетоглутаровой кислоты с образованием высокоэнергетического соединения сукцинил-КоА. Механизм этой реакции сходен с таковым реакции окислительного декарбоксилирования пирувата до ацетил-КоА, α-кетоглутаратдегидрогеназный комплекс напоминает по своей структуре пируватдегидрогеназный комплекс. Как в одном, так и в другом случае в реакции принимают участие 5 коферментов: ТПФ, амид липоевой кислоты, HS-KoA, ФАД и НАД + .

Образование сукцинил-КоА из alpha-кетоглутарата

Пятая реакция катализируется ферментом сукцинил-КоА-синтета-зой. В ходе этой реакции сукцинил-КоА при участии ГТФ и неорганического фосфата превращается в янтарную кислоту (сукцинат). Одновременно происходит образование высокоэргической фосфатной связи ГТФ за счет высокоэргической тиоэфирной связи сукцинил-КоА:

Образование сукцината из сукцинил-КоА

В результате шестой реакции сукцинат дегидрируется в фумаровую кислоту. Окисление сукцината катализируется сукцинатдегидрогеназой, в молекуле которой с белком прочно (ковалентно) связан кофермент ФАД. В свою очередь сукцинатдегидрогеназа прочно связана с внутренней ми-тохондриальной мембраной:

Образование фумарата из сукцината

Седьмая реакция осуществляется под влиянием фермента фума-ратгидратазы (фумаразы). Образовавшаяся при этом фумаровая кислота гидратируется, продуктом реакции является яблочная кислота (малат). Следует отметить, что фумаратгидратаза обладает стереоспецифичностью (см. главу 4) – в ходе реакции образуется L-яблочная кислота:

Образование оксалоацетата из L-малата

Наконец, в ходе восьмой реакции цикла трикарбоновых кислот под влиянием митохондриальной НАД-зависимой малатдегидрогеназы происходит окисление L-малата в оксалоацетат:


Если подсчитать полный энергетический эффект гликолитического расщепления глюкозы и последующего окисления двух образовавшихся молекул пирувата до СО2 и Н2О, то он окажется значительно большим.

Как отмечалось, одна молекула НАДН (3 молекулы АТФ) образуется при окислительном декарбоксилировании пирувата в ацетил-КоА. При расщеплении одной молекулы глюкозы образуется 2 молекулы пирувата, а при окислении их до 2 молекул ацетил-КоА и последующих 2 оборотов цикла трикарбоновых кислот синтезируется 30 молекул АТФ (следовательно, окисление молекулы пирувата до СО2 и Н2О дает 15 молекул АТФ). К этому количеству надо добавить 2 молекулы АТФ, образующиеся при аэробном гликолизе, и 6 молекул АТФ, синтезирующихся за счет окисления 2 молекул внемитохондриального НАДН, которые образуются при окислении 2 молекул глицеральдегид-3-фосфата в дегидрогеназной реакции гликолиза. Следовательно, при расщеплении в тканях одной молекулы глюкозы по уравнению С6Н12О6 + 6О2 —> 6СО2 + 6Н2О синтезируется 38 молекул АТФ. Несомненно, что в энергетическом отношении полное расщепление глюкозы является более эффективным процессом, чем анаэробный гликолиз.

Необходимо отметить, что образовавшиеся в процессе превращения глицеральдегид-3-фосфата 2 молекулы НАДН в дальнейшем при окислении могут давать не 6 молекул АТФ, а только 4. Дело в том, что сами молекулы внемитохондриального НАДН не способны проникать через мембрану внутрь митохондрий. Однако отдаваемые ими электроны могут включаться в митохондриальную цепь биологического окисления с помощью так называемого глицеролфосфатного челночного механизма (рис. 10.10). Ци-топлазматический НАДН сначала реагирует с цитоплазматическим ди-гидроксиацетонфосфатом, образуя глицерол-3-фосфат. Реакция катализи-

Глицеролфосфатный челночный механизм (см. текст)

Рис. 10.10. Глицеролфосфатный челночный механизм. Объяснение в тексте.

руется НАД-зависимой цитоплазматической глицерол-3-фосфат-дегидроге-назой:

Дигидроксиацетонфосфат + НАДН + Н + Глицерол-3-фосфат + НАД + .

Образовавшийся глицерол-3-фосфат легко проникает через митохонд-риальную мембрану. Внутри митохондрии другая (митохондриальная) глицерол-3-фосфат-дегидрогеназа (флавиновый фермент) снова окисляет глицерол-3-фосфат до диоксиацетонфосфата:

Глицерол-3-фосфат + ФАД Диоксиацетонфосфат + ФАДН2.

Восстановленный флавопротеин (фермент-ФАДН2) вводит на уровне KoQ приобретенные им электроны в цепь биологического окисления и сопряженного с ним окислительного фосфорилирования, а диоксиаце-тонфосфат выходит из митохондрий в цитоплазму и может вновь взаимодействовать с цитоплазматическим НАДН + Н + . Таким образом, пара электронов (из одной молекулы цитоплазматического НАДН + Н + ), вводимая в дыхательную цепь с помощью глицеролфосфатного челночного механизма, дает не 3, а 2 АТФ.

Малат-аспартатная челночная система для переноса восстанавливающих эквивалентов от цитозольного НАДН в митохондриальный матрикс (см. текст)

Рис. 10.11. Малат-аспартатная челночная система для переноса восстанавливающих эквивалентов от цитозольного НАДН в митохондриальный матрикс. Объяснение в тексте.

В дальнейшем было показано, что с помощью данного челночного механизма лишь в скелетных мышцах и мозге осуществляется перенос восстановленных эквивалентов от цитозольного НАДН + Н + в митохондрии.

В клетках печени, почек и сердца действует более сложная малат-ас-партатная челночная система. Действие такого челночного механизма становится возможным благодаря присутствию малатдегидрогеназы и ас-партатаминотрансферазы как в цитозоле, так и в митохондриях.

Установлено, что от цитозольного НАДН + Н + восстановленные эквиваленты сначала при участии фермента малатдегидрогеназы (рис. 10.11) переносятся на цитозольный оксалоацетат. В результате образуется малат, который с помощью системы, транспортирующей дикарбоновые кислоты, проходит через внутреннюю мембрану митохондрии в матрикс. Здесь малат окисляется в оксалоацетат, а матриксный НАД + восстанавливается в НАДН + Н + , который может теперь передавать свои электроны в цепь дыхательных ферментов, локализованную на внутренней мембране митохондрии. В свою очередь образовавшийся оксалоацетат в присутствии глутамата и фермента АсАТ вступает в реакцию трансаминирования. Образующиеся аспарат и α-кетоглутарат с помощью специальных транспортных систем способны проходить через мембрану митохондрий.

Итак, если функционирует малат-аспартатный механизм, то в результате полного окисления одной молекулы глюкозы может образоваться не 36, а 38 молекул АТФ (табл. 10.1).

Образование высокоэргических фосфатных связей в ходе катаболизма глюкозы

В табл. 10.1 приведены реакции, в которых происходит образование высокоэргических фосфатных связей в ходе катаболизма глюкозы, с указанием эффективности процесса в аэробных и анаэробных условиях.


Цикл трикарбоновых кислот - он же цикл Кребса, поскольку существование такого цикла было предположено Гансом Кребсом в 1937 году. [2]
За это спустя 16 лет он был удостоен Нобелевской премии по физиологии и медицине. Значит, открытие весьма значительное. В чём же смысл этого цикла и почему он так важен?

Как ни крути, все равно придётся начать довольно-таки издалека. Если вы взялись читать эту статью, то хотя бы понаслышке знаете, что основной источник энергии для клеток - это глюкоза. Она постоянно присутствует в крови в практически неизменной концентрации - для этого существуют специальные механизмы, запасающие или высвобождающие глюкозу.


Первый этап - это превращение молекулы глюкозы в две молекулы пирувата (пировиноградной кислоты) или лактата (молочной кислоты). При этом выделяется небольшая часть (примерно 5%) той энергии, что запасена в молекуле глюкозы. Лактат получается при анаэробном окислении - то есть в отсутствие кислорода. Также есть способ превращения глюкозы в анаэробных условиях в две молекулы этанола и углекислый газ. Это называется брожением, и этот способ мы рассматривать не будем.

. Так же как не будем мы рассматривать подробно сам механизм гликолиза, то есть расщепления глюкозы в пируват. Поскольку, цитируя Леинджера, "Превращение глюкозы в пируват катализируется десятью ферментами, действующими последовательно". Желающие могут открыть учебник по биохимии и подробно ознакомиться со всеми стадиями процесса - он изучен очень хорошо.

Казалось бы, путь от пирувата до углекислого газа должен быть довольно простым. Но оказалось, что он осуществляется посредством девятистадийного процесса, который и называется циклом трикарбоновых кислот. Это кажущееся противоречие с принципом экономии (неужели нельзя было проще?) отчасти объясняется тем, что цикл связывает между собой несколько метаболических путей: вещества, образующиеся в цикле, являются прекурсорами других молекул, уже не имеющих отношения к дыханию (например, аминокислот), а любые другие соединения, подлежащие утилизации, в итоге попадают в цикл и либо "сгорают" для получения энергии, либо перерабатываются в те, которые находятся в недостатке.

Первая стадия, которая традиционно рассматривается в отношении к циклу Кребса - это окислительное декарбоксилирование пирувата в ацетильный остаток (Acetyl-CoA). CoA, если кто не знает - это кофермент А, имеющий в своём составе тиольную группу, на которой он может переносить ацетильный остаток.

Расщепление жиров тоже приводит к ацетилам, которые также вступают в цикл Кребса. (Синтезируются они аналогично - из Acetyl-CoA, что объясняет тот факт, что в жирах почти всегда присутствуют только кислоты с чётным числом атомов углерода).

Ацетил-КоА конденсируется с молекулой оксалоацетата, давая цитрат. При этом высвобождается кофермент А и молекула воды. Эта стадия необратима.

Цитрат дегидрируется в цис-аконитат - вторую трикарбоновую кислоту в цикле.

Цис-аконитат присоединяет обратно молекулу воды, превращаясь уже в изолимонную кислоту. Эта и предыдущая стадии обратимы. (Ферменты катализируют как прямую, так и обратную реакции - вы же знаете, да?)

Изолимонная кислота декарбоксилируется (необратимо) и одновременно окисляется, давая кетоглутаровую кислоту. При этом NAD+, восстанавливаясь, превращается в NADH.

Следующая стадия - окислительное декарбоксилирование. Но при этом образуется не сукцинат, а сукцинил-КоА, который на следующей стадии гидролизуется, направляя высвобождающуюся энергию на синтез АТФ.

Далее три обратимые стадии: дегидрирование сукцината в фумарат, присоединение воды с образованием малата и окисление, дающее снова оксалоацетат. Круг замыкается.

При этом образуется ещё одна молекула NADH и молекула FADH2 (кофермент, отличный от NAD, который однако так же может окисляться и восстанавливаться, запасая и отдавая энергию).

Выходит, что оксалоацетат работает как катализатор - он не накапливается и не расходуется в процессе. Так и есть - концентрация оксалоацетата в митохондриях поддерживается довольно низкой. А как избежать накопления других продуктов, как согласовать между собой все восемь стадий цикла?

Для этого, как оказалось, существуют специальные механизмы - своего рода отрицительная обратная связь. Как только концентрация какого-то продукта растёт выше нормы, это блокирует работу фермента, ответственного за его синтез. А для обратимых реакций всё ещё проще: при превышении концентрации продукта реакция просто начинает идти в обратную сторону.

И ещё пара мелких замечаний по теме:
1. Цикл называется циклом трикарбоновых кислот, хотя не все его продукты являются трикарбоновыми кислотами (таковых всего три: лимонная, цис-аконитовая и изолимонная). Название прижилось по историческим причинам.
2. Потери энергии в цикле, несмотря на большое количество стадий, довольно малы: это обеспечивается подходящим соотношением концентрации исходных веществ и продуктов.

цикл кребса - что это такое простым языком

Метаболизм – это энергетический обмен, происходящий в нашем организме. Мы вдыхаем кислород и выдыхаем углекислый газ. Только живое существо может что-то брать из окружающей среды и обратно возвращать в другом виде.

Допустим, мы решили позавтракать и съели хлеб с курицей. Хлеб — это углеводы, курица – это белки.
В течении этого времени переваренные углеводы распадутся до моносахаридов, а белки до аминокислот.
Это начальная стадия – катаболизм. На этой ступени по своему строению сложные распадаются на более простые.

Также, в качестве примера можно привести обновление поверхности кожи. Они постоянно меняются. Когда верхний слой кожи отмирает, макрофаги убирают омертвевшие клетки и появляется новая ткань. Она создается путем сбора белка из органических соединений. Это протекает в рибосомах. Совокупность действий возникновения сложного состава (белка) из простого (аминокислот) называется анаболизмом.

Только полезные сведения на нашу тему

  • рост,
  • увеличение,
  • расширение.
  • расщепления,
  • деление,
  • уменьшения.

Что такое Цикл Кребса?

В 30 годы 20 века ученый Ганс Кребс занимается изучение мочевины. Затем он переселяется в Англию и приходит к такому выводу, что некоторые ферменты катализируются в нашем теле. За это ему вручили Нобелевскую премию.

Мы получаем энергию благодаря глюкозе, содержащейся в эритроцитах. Действию перехода декстроза в энергию помогают митохондрии. Затем конечный продукт превращается в аденозинтрифосфат или АТФ. Именно АТФ является главной ценностью организма. Получаемое вещество насыщает энергией и органы нашего тела. Сама по себе глюкоза не может видоизмениться в АТФ, для этого нужны сложные механизмы. Этот переход и называется Циклом Кребса.

Цикл Кребса — это постоянные химические превращения, происходящие внутри каждого живого существа. Так оно называется, так как процедура повторяется без остановки. В итоге этого явления мы приобретаем аденозинтрифосфорную кислоту, которая считается жизненно важной для нас.

Важным условием является дыхание клетки. Во время прохождения всех стадий обязательно должен присутствовать кислород. На данном этапе также происходит создание новых аминокислот и углеводов. Эти элементы играют роль строителей организма, можно сказать это явление выполняет еще одну значительную роль — строительную. Для эффективности этих функций нужны и другие микро и макроэлементы и витамины. При недостатке хоть одного элемента, работа органов нарушается.

Этапы цикла Кребса

Здесь происходит деление одной молекулы глюкозы на две части пировиноградной кислоты. Она является важным звеном в процессе обмена веществ и от нее зависит работа печени. Она имеется во многих фруктах и ягодах. Ее часто используют в косметических целях. В результате еще может появиться молочная кислота. Она содержится в клетках крови, мозга, мышц. Затем мы получим кофермент А. Его функция — перенос углерода в разные части тела. При присоединении с оксалатом получаем цитрат. Кофермент А полностью распадается, также получаем молекулу воды.

На втором вода отделяется от цитрата. В итоге появляется акатиновое соединение, она поможет при получении изоцитрата. Так, например, мы можем узнать качество фруктов и соков, нектаров. Образуется NADH — оно необходимо при окислительных процессах и обмене веществ.
Происходит процесс соединения с водой, и высвобождается энергия аденозинтрифосфата. Получение оксалоцетата. Функционирует в митохондриях.

По каким причинам замедляется энергетический обмен?

Наше тело имеет особенность адаптироваться к еде, к жидкости и тому, сколько мы двигаемся. Эти вещи сильно влияют на метаболизм.
Еще в те далекие времена человечество выживало в тяжелых погодных условиях при болезнях, голоде, неурожае. Сейчас медицина двинулась вперед, поэтому в развитых странах люди стали дольше жить и лучше зарабатывать, не прикладывая всех своих сил. В наши дни люди чаще употребляют мучные, сладкие кондитерские изделия и мало двигаются. Такой образ жизни ведет к замедлению работы элементов.

Чтобы этого не было, в первую очередь необходимо включить в рацион цитрусовые. В них содержится комплекс витаминов и других важных веществ. Большую роль играет лимонная кислота, содержащаяся в ее составе. Она играет роль в химическом взаимодействии всех ферментов и названа в честь Цикла Кребса.

Прием цитрусовых поможет решить проблему энергетического взаимодействия, также если соблюдать здоровый образ жизни. Нельзя часто принимать в пищу апельсины, мандарины, так как они могут раздражать стенки желудка. Всего понемногу.

Читайте также: