Частотная модуляция это кратко и понятно

Обновлено: 02.07.2024

Частотная модуляция (ЧМ)

При частотной модуляции (ЧМ, англ. FM - Frequency Modulation) несущий сигнал является более высокочастотным по отношению к информационному сигналу и амплитуда частотно-модулированного сигнала является неизменной. Частотно модулированный сигнал отличается высокой помехозащищенностью и используется для высококачественной передачи информации: в радиовещании, телевидении, радиотелефонии и др.

Основными характеристиками частотной модуляции являются девиация (отклонение) и индекс модуляции.

Девиация частоты (frequency deviation) – наибольшее отклонение значения модулированного сигнала от значения его несущей частоты. Единицей девиации частоты является герц (Hz), а также кратные ему единицы.

Индекс модуляции (modulation index) – отношение девиации частоты к частоте модулирующего сигнала.

На рисунке ниже приведены временные диаграммы несущего и модулирующего сигналов, а также результирующего частотно-модулированного сигнала. Частота несущего сигнала -100 КГц, частота модулирующего сигнала синусоидальной формы – 10 КГц, величина девиации – 50 КГц.


На следующей анимации приведен пример частотной модуляции по линейному закону:

image

image

Одним из основных параметров АМ, является коэфициент модуляции(M).
Коэффициент модуляции — это отношение разности между максимальным и минимальным значениями амплитуд модулированного сигнала к сумме этих значений(%).
Проще говоря, этот коэффициент показывает, насколько сильно значение амплитуда несущего колебания в данный момент отклоняется от среднего значения.
При коэффициенте модуляции больше 1, возникает эффект перемодуляции, в результате чего происходит искажение сигнала.


Данный спектр свойственен для модулирующего колебания постоянной частоты.

На графике, по оси Х представлена частота, по оси У — амплитуда.
Для АМ, кроме амплитуды основной частоты, находящейся в центре, представлены также значения амплитуд справа и слева от частоты несущей. Это так называемые левая и правая боковые полосы. Они отнесены от частоты несущей на расстояние равное частоте модуляции.
Расстояние от левой до правой боковой полосы называют ширина спектра.
В нормальном случае, при коэффициенте модуляции

Математика

Мы не будем пытаться заниматься каким-либо тщательным или всесторонним рассмотрением мгновенной частоты в качестве математической концепции. (Если вы намерены подробно изучить эту проблему, вот академический документ, который должен помочь.) В контексте FM важно понять, что мгновенная частота естественно вытекает из того, что частота сигнала несущей изменяется непрерывно в ответ на модулирующую волну (т.е. низкочастотный сигнал). Мгновенное значение модулирующего сигнала влияет на частоту в определенный момент, а не на частоту одного или нескольких полных циклов.

На самом деле это верно только для аналоговой частотной модуляции; в цифровой ЧМ один бит соответствует дискретному числу циклов. Это приводит к интересной ситуации, когда более старая технология (аналоговая ЧМ) менее интуитивно понятна, чем более новая технология (цифровая частотная модуляция, также называемая частотной манипуляцией или FSK (Frequency Shift Keying)).

Вам не нужно размышлять над мгновенной частотой, чтобы монимать цифровую частотную модуляцию

Вам не нужно размышлять над мгновенной частотой, чтобы понимать цифровую частотную модуляцию

В любом случае, вернемся к нашему сигналу несущей: sin(ωнесt) . Если мы добавим низкочастотный сигнал ( xнч ) к величине внутри круглых скобок, мы получим отклонение фазы, линейно пропорциональное низкочастотному сигналу. Но нам нужна частотная модуляция, а не фазовая, поэтому мы хотим, чтобы линейно пропорционально низкочастотному сигналу было отклонение частоты. Из первой статьи данной главы мы знаем, что мы можем получить частоту, взяв производную фазы по времени. Таким образом, если мы хотим, чтобы частота была пропорциональна xнч , мы должны добавить не сам низкочастотный сигнал, а скорее интеграл от низкочастотного сигнала (поскольку взятие производной отменяет интеграл, у нас остается xнч как отклонение частоты).

Единственное, что нам нужно здесь добавить, это индекс модуляции m. В предыдущей статье мы увидели, что индекс модуляции можно использовать для того, чтобы изменения амплитуды несущей были более или менее чувствительны к изменениям амплитуды низкочастотного сигнала. Его функция в FM аналогична: индекс модуляции позволяет нам точно настраивать интенсивность изменения частоты, которое возникает при изменении амплитуды низкочастотного сигнала.

Временна́я область

Давайте посмотрим на несколько сигналов во временной области. Ниже показана наша несущая 10 МГц:

Несущая частота

Несущая частота

Низкочастотным модулирующим сигналом будет синусоида 1 МГц, показанная ниже:

Низкочастотный сигнал

Низкочастотный сигнал

Частотно-модулированный сигнал генерируется с помощью формулы, приведенной выше. Интеграл от sin(x) равен -cos(x) + C . Константа C здесь не важна, поэтому для вычисления FM сигнала мы можем использовать следующую формулу:

\[x_(t)=\sin((10\times10^6\times2\pi t)-\cos(1\times10^6\times2\pi t))\]

Результат показан ниже (красным показан низкочастотный модулирующий сигнал):

Частотная модуляция

Частотная модуляция

\[x_(t)=\sin((10\times10^6\times2\pi t)-4\cos(1\times10^6\times2\pi t))\]

Частотная модуляция

Частотная модуляция ( m =4)

Теперь мы можем более четко видеть, как частота модулированной несущей непрерывно следует за мгновенным значением амплитуды низкочастотного модулирующего сигнала.

Частотная область

Формы AM и FM сигналов при одинаковых сигнале несущей и низкочастотном модулирующем сигнале выглядят совершенно по-разному. Поэтому интересно обнаружить, что AM и узкополосная FM дают аналогичные изменения в частотной области. (Узкополосная частотная модуляция предусматривает ограниченную полосу модулирующего сигнала и позволяет упростить анализ.) В обоих случая низкочастотный спектр (включая отрицательные частоты) переносится в полосу, которая простирается выше и ниже несущей частоты. В AM спектр самого низкочастотного модулирующего сигнала сдвигается вверх. В FM это спектр интеграла низкочастотного модулирующего сигнала, который появляется в полосе, окружающей несущую частоту.

Для модуляции, показанной выше, с m=1 мы получаем следующий спектр:

Спектр частотно-модулированного сигнала при m=1

Спектр частотно-модулированного сигнала при m=1

Следующий спектр соответствует m=4:

Спектр частотно-модулированного сигнала при m=4

Спектр частотно-модулированного сигнала при m=4

Это очень ясно показывает, что индекс модуляции влияет на частотные составляющие частотно-модулированного сигнала. Спектральный анализ частотной модуляции сложнее, чем для амплитудной модуляции; поэтому для частотно-модулированных сигналов трудно предсказать ширину полосы частот.

Компьютерная техника, радиоэлектроника, электрика

  • Главная На главную
  • Электроника Статьи на тему
  • Электрика Статьи на тему
  • Компьютерная техника ПК, сети, комплектующие, обзоры
  • Обзоры устройств Посылки, гаджеты, тесты, видео

Частотная модуляция

Другим распространенным типом модуляции, применяемым в радиосвя­зи, является частотная модуляция (ЧМ), при которой частота несущей изменяется в соответствии с модулирующим сигналом (рис. 15.1).

Частотная модуляция, сигнал и несущая

Несущая промодулированная по частоте

Рис. 15.1. Частотная модуляция.

Обратите внимание, что амплитуда несущей остается постоянной, а частота изменяется.

Девиация частоты

Девиация частоты есть степень изменения частоты несущей при измене­нии уровня сигнала на 1 В. Девиация частоты измеряется в килогер­цах на вольт (кГц/В). Предположим, например, что несущая с частотой 1000 кГц должна быть промодулирована сигналом в виде меандра с ам­плитудой 5 В (рис. 15.2). Предположим также, что девиация частоты равна 10 кГц/В. Тогда во временном интервале от А до В частота не­сущей увеличится на 5 · 10 = 50 кГц (произведение амплитуды сигнала на девиацию частоты) и станет равной 1000 кГц + 50 кГц = 1050 кГц. Во временном интервале от В до С частота несущей изменится на ту же величину, а именно на 5 · 10 = 50 кГц, но на этот раз в отрицательную сторону с уменьшением частоты несущей до 1000 – 50 = 950 кГц.

Частотная модуляция несущей сигналом в виде меандра

Рис. 15.2. Частотная модуляция несущей сигналом в виде меандра.

Максимальная девиация

Изменение частоты несущей при изменении уровня сигнала должно быть ограничено некоторой максимальной величиной, превышение которой не­допустимо. Эта величина называется максимальной девиацией. Напри­мер, при ЧМ-передачах радиостанции Би-би-си используется девиация частоты 15 кГц/В и максимальная девиация 75 кГц. Максимальная ве­личина модулирующего сигнала определяется максимальной допустимой девиацией.

Максимальная девиация ±75

Максимальный сигнал = —————————————— = —— = ±5 В

Девиация частоты 15

или, другими словами, 5 В в положительную или отрицательную область.

Боковые частоты и ширина полосы

Если несущая промодулирована по частоте гармоническим сигналом, образуется неограниченное число боковых частот. Амплитуды боковых Компонент постепенно уменьшаются по мере отдаления частоты этих ком­понент от частоты несущей.

Таким образом, для размещения всех боковых частот ширина полосы частот ЧМ-системы должна быть бесконечной. На практике малые по амплитуде боковые компоненты ЧМ-сигнала могут быть отброшены без внесения каких-либо заметных искажений. Например, ЧМ-передачи ра­диостанции Би-би-си ведутся с использованием полосы частот шириной 250 кГц.

Сравнение AM- и ЧМ-систем модуляции

Амплитудная Частотная

модуляция модуляция

1. Амплитуда несущей Изменяется вместе Остается

с сигналом постоянной

2. Боковые частоты Две для каждой Бесконечное

частоты в спектре число

3. Ширина занимаемой 9 кГц 250 кГц полосы частот

4. Диапазон частот ДВ, СВ. KB УКВ

Преимущества частотной модуляции

Радиовещание с использованием ЧМ имеет следующие преимущества по сравнению с АМ-передачей программ.

1. В системе с ЧМ обеспечивается лучшее качество звучания. Это свя­зано с большой шириной полосы частот ЧМ-сигнала, охватывающей гораздо большее число гармоник.

2. При ЧМ-передаче достигается очень низкий уровень шума. Шум — это нежелательные сигналы, которые появляются на выходе обычно в форме изменения амплитуды несущей. В ЧМ-системе эти сигналы легко устраняются путем двустороннего ограничения амплитуды не­сущей. Информация, которую несет изменяющаяся частота, при этом полностью сохраняется.

В этом видео рассказывается о частотной модуляции:

Читайте также: