Биогеохимический цикл кислорода кратко

Обновлено: 05.07.2024

Биосфера Земли – это подвижная динамическая система, которая постоянно обменивается с другими геологическими оболочками как химическими элементами, так и энергией. Круговорот веществ в биосфере носит непрерывный характер и происходит при участии живых организмов. Его еще называют биогеохимическим циклом.

История открытия

Изучение глобальных природных циклов началось в первой половине XIX века. В 1809 году знаменитый французский естествоиспытатель Ламарк кратко описал концепцию биосферы.

Основоположником учения о биосфере и биогеохимических циклах считается выдающийся российский ученый Владимир Вернадский. Он первый указал на неразрывную связь между живой и неживой природой и оценил ключевую роль организмов в преобразовании облика планеты.

Ученый предположил, что биологический оборот вещества – это главный фактор миграции химических элементов.

Виды круговоротов

Химические вещества, которые доступны для живых организмов в биосфере, ограничены. Поэтому только цикличность процессов позволяет жизни непрерывно существовать и развиваться на протяжении миллиарда лет.

Различают три круговорота:

  • биологический;
  • геологический;
  • антропогенный.

Геологический или большой круговорот происходит под воздействием солнечной, гравитационной и внутренней энергии планеты, излучения. Организмы не принимают в нем участия. Он работает на протяжении всей геологической истории планеты.

После появления первых живых организмов на планете запустился биологический круговорот – его еще называют малым. Он представляет собой непрерывный процесс превращения элементов и веществ.

Биотический круговорот ограничен границами биосферы. Для растений и животных наиболее важны биогенные циклы воды, углерода, фосфора, азота, серы.

Совокупность биологических и геологических процессов составляет биогеохимический цикл.

Антропогенный круговорот – следствие вмешательства человека. Здесь есть две составляющие: одна из них связана с биологической природой человека, вторая – с его деятельностью.

Значение и суть циклов

Биогеохимический цикл – это сложный комплекс перемещения различных веществ в биосфере и других геологических оболочках. Такие циклы обеспечивают постоянство биосферы, дают возможность для ее саморегуляции.

Любой подобный цикл не замкнут полностью – обратимость основных химических элементов составляет примерно 95%. Несбалансированный круговорот веществ – одна основных особенностей подобных циклов, которая имеет планетарное значение.

Солнце – главный источник энергии, обеспечивающий круговорот веществ. Это основная движущая сила биогеохимических циклов.

Большой круговорот перераспределяет элементы между биосферой и глубокими слоями планеты. Он связан с вулканической активностью, перемещением огромных воздушных и водных масс, процессами разрушения пород.

Важнейшим фактором, влияющим на перемещение веществ и превращение энергии, являются живые организмы.

Растения-автотрофы, используя энергию фотосинтеза, превращают неорганические соединения в органические, которые затем используют консументы и деструкторы. Биологический круговорот приводит к перемещению и перераспределению огромного количества химических веществ.

За миллиарды лет эволюции живые организмы существенно изменили облик планеты. Они насытили атмосферу кислородом и азотом, создали огромные осадочные отложения, изменили ландшафты, образовали почву.

Резервный и обменный фонды

В биологическом круговороте веществ участвуют 30-40 элементов периодической системы. Некоторые из них, включая углерод, азот, кислород, нужны организмам в значительных количествах, другие – в самых минимальных.

Необходимые вещества практически никогда не бывают распределены в природе равномерно, нередко они находятся в малопригодной форме. Элементы, участвующие в процессе круговорота веществ, могут быть в составе одного из двух фондов:

Первый обладает значительной массой, но практически не связан с биосферой. Второй – имеет меньший объем, но непосредственно связан с живыми организмами и энергично взаимодействует с ними. Газообразные вещества имеют резервный фонд в воде и атмосфере, а элементы осадочного цикла – в коре.

Редуценты и их функции

Редуценты – это организмы, которые разлагают биологические останки, превращая их в простейшие соединения. Тем самым они возвращают полезные элементы и воду в круговорот веществ и энергии. К этой группе в основном относятся грибы и бактерии.

Обменный фонд элементов, из которого обеспечивают свои потребности большинство организмов, может пополняться двумя путями:

  • при первичной экскреции;
  • при разложении останков редуцентами.

Второй путь пополнения обменного фонда особенно важен для биоценозов степей, лесов, пастбищ. Поэтому грибы и бактерии, включаясь в круговорот веществ, выполняют важнейшую работу.

Важнейшие циклы

В биогеохимическом цикле участвуют многие химические элементы. Самыми важными из них считаются: круговорот кислорода, азота, углерода, водорода, серы, фосфора, а также некоторых металлов.

Первые четыре элемента требуются в особенно больших количествах – из них строятся большинство биологических молекул.

Не менее важен круговорот серы и круговорот фосфора – эти элементы включены в состав белков, ДНК и АТФ.

Живые организмы активно участвуют в круговороте воды в природе. Растения используют ее в процессе фотосинтеза, а затем выделяют при дыхании. Вода нужна животным и другим гетеротрофам.

Ежегодно в цикл вовлекается около 500 тыс. куб. км воды. Схема ее круговорота замкнута, в ее состав входит нескольких этапов:

  • испарение воды;
  • выпадение в виде осадков;
  • перенос в реки и другие водоемы.

Вода не только необходима для метаболизма, с ее помощью осуществляется растворение и перенос элементов и соединений. Для круговорота воды характерна высокая скорость обновления.

Углерод

Углерод – настоящая основа жизни на планете. В схему его круговорота в природе вовлечены все биологические объекты.

Основным резервуаром этого элемента является углекислый газ воздуха. В процессе фотосинтеза автотрофы продуцируют из него углеводы, которыми питаются другие организмы. Можно сказать, что растения – это движущая сила данного цикла в биосфере. Автотрофы замыкают круг, возвращая в процессе дыхания CO2 в атмосферу.

Углекислый газ из атмосферы – это обменный фонд углерода для водорослей и наземных растений. Ученые подсчитали, что живые организмы за восемь лет прогоняют через себя весь углерод воздуха.

Значительный запас этого элемента скрыт в виде угля, нефти, газа, осадочных пород. В его круговороте велика роль антропогенного фактора. За последние десятилетия благодаря нашей деятельности в атмосферу попали миллионы тонн углерода.

Этот элемент содержится в белках, АТФ, хлорофилле и ДНК, поэтому все организмы принимают активное участие в схеме круговорота азота.

Главным резервным фондом свободного азота в биосфере является атмосфера, где он содержится в газообразном состоянии. В таком виде он недоступен для растений, которые могут усваивать его только в виде ионов или сложных соединений. Ключевую роль в круговороте азота в природе играют микроорганизмы, которые улавливают этот элемент из воздуха, а затем нитрифицируют его.

Растения поглощают нитраты, превращая их в аминокислоты, затем они передаются по пищевой цепочке.

Без бактерий, улавливающих азот из воздуха, жизнь на планете практически прекратиться.

В последние время на круговорот азота все большее влияние оказывает человек.

Этот элемент находится в составе аминокислот и ряда других биологических молекул, поэтому круговорот серы так важен для живых организмов.

Резервуаром элемента являются сульфиды горных пород. Ключевую роль в схеме круговорота серы в природе играют микроорганизмы, которые превращают серные соединения в сульфаты. Это единственная форма, пригодная для усвоения растениями. В дальнейшем элемент следуют по пищевой цепи.

Сера скапливается в океанах, куда попадает с речными стоками.

В последние годы на круговорот серы все большее влияние оказывает деятельность человека. Это происходит потому, что выбросы предприятий принимают все более угрожающие масштабы.

Фосфор

Фосфор входит в состав многих органических соединений: аминокислот, АТФ, нуклеиновых кислот. Поэтому круговорот фосфора чрезвычайно важен для биосферы.

Резервуаром этого элемента служат отложения и горные породы. Он может усваиваться растениями исключительно в виде ионов PO34+. Дальше он потребляется животными.

Круговорот фосфора в природе имеет одну особенность. Соединения элемента, попав в океан, опускаются на дно и превращаются в осадочные породы. Следовательно, круговорот фосфора в биосфере постоянно уменьшается.

Кислород

Этот элемент играет ключевую роль в процессах клеточного дыхания, поэтому круговорот кислорода так важен для биосферы. Его главными продуцентами являются зеленые растения – кислород образуется в процессе фотосинтеза. Все остальные организмы на нашей планете потребляют данный элемент.

Круговорот кислорода в биосфере начинается с молекул хлорофилла, где он появляется в качестве побочного продукта реакции фотолиза. Затем растения выделяют газ в атмосферу, где он расходуется на процессы дыхания и окисления. Весь кислород воздуха имеет биогенное происхождение. Его природным резервуаром служит вода.

В последние столетия на круговорот кислорода в природе активно влияет человек. Он сжигает большое количество этого газа при использовании ископаемого топлива.

Свинец

Свинец – это тяжелый токсичный элемент, который появился в земной коре в результате подъема из мантии и радиоактивного распада урана и тория. Его основной природный резервуар – горные породы. При их разрушении происходит перенос свинца в почву и воду, а потом – в живые организмы.

Существуют строгие нормы содержания свинца в воде, пище и воздухе. Их превышение грозит серьезным отравлением, в том числе и с летальным исходом. Опасны и многочисленные сложные вещества, содержащие этот металл.

Ртуть

Это тяжелый и очень ядовитый металл, который не относится к биогенным элементам. В земной коре этот элемент встречается довольно редко, хотя и в очень концентрированной форме. В биосферу ртуть может попадать в газообразной форме или в виде растворов.

В небольших количествах этот металл входит в состав нефти.

Ртуть широко используется в промышленности, поэтому главный источник попадания этого металла в биосферу – выбросы с производств.

Из-за высокой токсичности ртути за ее оборотом осуществляется жесткий контроль.

Железо

Железо является одним из самых распространенных химических элементов в природе. В чистом виде оно практически не встречается, чаще всего этот металл находят в виде сульфидов, оксидов или силикатов.

Железо – самый популярный и используемый металл, велико и его биологическое значение. Он входит в состав дыхательных ферментов, которые осуществляют перенос кислорода к тканям. У человека и других животных к ним относится гемоглобин. Он обладает способностью обратимо связываться с кислородом.

Происхождение железа – наглядный пример воздействия живых организмов на неорганическое вещество. Большинство существующих месторождений железа – продукт жизнедеятельности железобактерий. Эти организмы окисляют металл до гидроксида, получая при этом энергию.

Скорость биогеохимических процессов

В природе все круговороты веществ протекают с разной скоростью. На нее влияет множество факторов. Например, форма нахождения элемента, активность его взаимодействия, роль в метаболических процессах и многое другое.

Круговорот кислорода занимает примерно 2 тыс. лет. За этот срок весь газ из атмосферы проходит через живое вещество. Скорость круговорота воды может достигать 2 млн лет, причем время обновления сильно зависит от ее местонахождения (грунт, ледники или атмосфера). Еще больше времени занимают циклы более редких элементов. Например, круговорот фосфора занимает многие миллионы лет.

В круговороте кислорода отчетливо выражены активная геохимическая деятельность живого вещества, его первостепенная роль в этом процессе. Биогеохимический цикл кислорода является планетарным процессом, который связывает атмосферу и гидросферу с земной корой. Ключевые звенья этого круговорота: образование свободного кислорода при фотосинтезе в зеленых растениях, потребление его для осуществления дыхательных функций всеми живыми организмами, для реакции окисления органических остатков и неорганических веществ (например, сжигания топлива) и другие химические преобразования, ведущие к образованию таких окисленных соединений, как диоксид углерода и вода, и последующему вовлечению их в новый цикл фотосинтетических превращений.

Следует также учитывать использование кислорода для процесса горения и других видов антропогенной деятельности. Предполагается, что в обозримой перспективе ежегодное суммарное потребление кислорода достигнет 210. 230 млрд. т. Между тем ежегодное продуцирование этого газа всей фитосферой составляет 240 млрд. т.

Круговорот фосфора

Кларк этого элемента в земной коре равен 0,093 %, что в несколько десятков раз больше кларка азота. Однако вотличие от последнего фосфор не играет роли одного из главных элементов оболочек Земли. Тем не менее, геохимический цикл фосфора включает разнообразные пути миграции в земной коре, интенсивный биологический круговорот и миграцию в гидросфере. Фосфор — один из главных органогенных элементов. Его органические соединения играют важную роль в процессах жизнедеятельности всех растений и животных, входят в состав нуклеиновых кислот, сложных белков, фосфолипидов мембран, являются основой биоэнергетических процессов. Фосфор концентрируется живым веществом, где его содержание почти в 10 раз выше, чем в земной коре. На суше протекает интенсивный круговорот фосфора в системе почва—растения—животные—почва.

Кислород (O2) вот уже сотни миллионов лет является веществом, обеспечивающим жизнь на Земле. Приблизительно пятая часть (около двадцати процентов) атмосферы Земли заполнена кислородом, а ещё кислород составляет около тридцати процентов химического состава планеты. Кислород может присутствовать как в свободной форме (в составе воздуха, которым дышит абсолютное большинство всех живых организмов), так и в связанной (входить в состав воды, минералов, разных химических соединений). И кислород осуществляет непрерывный биогеохимический цикл, иначе называемый круговоротом кислорода в природе.


В ходе этого цикла кислород совершает переход из атмосферы в биосферу и земную кору, после чего возвращается обратно в атмосферу. При этом кислородом обмениваются все водоёмы (и Мировой океан) и воздух, растения и животные, но также кислород выделяется во время химических реакций. И ключевую роль в этом процессе играет фотосинтез.

Этапы круговорота кислорода в природе

Можно выделить некоторые этапы биогеохимического кислородного цикла, при этом эти этапы выделяются как в процессе прихода кислорода, так и в процессе его расхода. К приходу кислорода относятся следующие этапы. Вначале кислород формируется в результате процесса, называемого фотосинтезом, затем в результате ультрафиолетового излучения он может накапливаться в определённой части атмосферы, называемой озоновым слоем.

Ультрафиолетовое излучение также расщепляет молекулы испарившейся и поднявшейся высоко в атмосферу воды (то есть, происходит диссоциация) с выделением кислорода. Наконец, в результате определённых химических реакций формируется озон (O3).

Что же касается расхода кислорода, то он связан с дыханием. Живые существа (преимущественно животные, да и все живые существа, способные к кислородному дыханию) вдыхают воздух, и кислород поступает в их тела, усваивается телами, и после выдыхается углекислый газ. Также кислород в связанной форме помогает осуществлять химические реакции внутри земной коры. А в результате вулканических процессов происходит окисление окиси углерода.

Неразрывна связь кислорода и углекислого газа (CO2). И его цикл тоже имеет несколько этапов. К приходу углекислого газа относятся процессы, связанные с дыханием животных (и всех существ, способных к кислородному дыханию), разложением органических веществ в результате деятельности микроорганизмов и бактерий, брожением, сжиганием видов ископаемого топлива на фабриках, заводах, котельных и электростанциях, и вырубкой леса.

Что же касается расхода углекислого газа, то свободная его форма фиксируется растениями, питающимися им в ходе фотосинтеза, выделяя тем самым кислород. Животные могут поедать определённые виды растений и растительной пищи, и вместе с тем они потребляют углерод. Углерод фиксируется в земной коре, и это связано с формированием питательного почвенного слоя, известного как гумус, и ископаемого топлива наподобие угля, торфа, горючих сланцев (в океанической части коры это влияет на формирование других пород, таких как известняк и доломиты).

Скорость круговорота кислорода

Если какие-то отдельные процессы, входящие в данный биогеохимический цикл, могут осуществляться достаточно быстро (например, вдох и выдох в течение нескольких секунд), то целиком круговорот кислород, с учётом всех входящих в него процессов, может осуществляться около двух тысяч лет. За этот промежуток времени весь атмосферный кислород проходит через всю биосферу целиком.

Факторы, влияющие на круговорот кислорода в природе

На процессы, входящие в круговорот кислорода, прежде всего влияет сама жизнь на Земле. В основном, кислород потребляется и производится в результате жизнедеятельности живых организмов. И в первую очередь всё связано с растениями. Чем больше растений, тем активнее в результате фотосинтеза выделяется пригодного для дыхания кислорода. И наоборот, чем меньше растений (и цианобактерий, которые также способны осуществлять фотосинтез), тем больше риск превращения тех или иных участков Земли в зоны гипоксии (и такое больше свойственно океану, нежели суше).


Уменьшается количество кислорода не только в результате дыхания животных и людей, но также вследствие лесных пожаров, вырубки лесов, потребления топлива (с его сжиганием), а ещё при окислении пород; тем самым он заменяется, к примеру, тем же углекислым газом. Лишь благодаря растениям это удаётся компенсировать, ведь при потреблении углекислого газа растения выделяют кислород.

Кислородный цикл

Кислородный цикл ‒ это синоним к термину “круговорот кислорода в природе”. Ведь круговорот всегда означает цикл. Кислород, однажды потреблённый или расходованный из атмосферы, неизбежно вернётся обратно в атмосферу.

Круговорот кислорода и фотосинтез

Как уже неоднократно было подчёркнуто выше, ключевая роль в процессах кислородного круговорота принадлежит фотосинтезу. Растения и цианобактерии поглощают углекислый газ и выделяют кислород под воздействием солнечного света. Диоксид углерода и вода подвергаются воздействию квантов света и в итоге расщепляются на углевод и кислород. Растения с помощью фотосинтеза поддерживают необходимый для всей жизни на Земле баланс, ведь ими восполняется тот объём кислорода, расходуемый при гниении отмерших существ, при дыхании, при горении (когда возникает угарный газ).


За счёт фотосинтеза углекислого газа на Земле не так много, чтобы возникала реальная опасность для всей биосферы. Речь о парниковом эффекте, когда из-за избытка углекислого газа Земля перегревается и становится опасной для жизни. Конечно, парниковый эффект уже давно не является исключительно теорией, а вполне воплощается в реальности. Но без фотосинтеза, без растений всё было бы куда серьёзнее и куда хуже для биосферы.

Крупнейший резервуар кислорода на Земле

Любопытно, что атмосфера Земли не может считаться крупнейшим резервуаром с кислородом. Свободный кислород, присутствующий в атмосфере, тот кислород, которым дышат живые существа, составляет всего лишь 0,36 процентов всего кислорода, хотя почти что весь такой кислород является результатом фотосинтеза. Поражает то, что крупнейшим кислородным резервуаром является сама Земля. А вернее, её кора и мантия, то есть, литосфера. А если точнее, то содержащиеся там оксиды и силикаты; всего они составляют 99,5 процентов всего кислорода Земли. Разумеется, кислород там связанный.

Роль живых организмов в круговороте кислорода

Если говорить коротко, то за счёт живых организмов круговорот кислорода и осуществляется. В первую очередь, речь идёт о не раз уже упомянутых ранее растениях и цианобактериях (они также составляют около половины фитопланктона, обитающего в Мировом океане, равно как и в разных водоёмах), способных к фотосинтезу.

Растения помогают в создании кислорода, поглощая углекислый газ. Ранее так же было упомянуто про кислородное дыхание, ибо все, кто на это способен, могут в принципе жить на Земле: рождаться, развиваться, питаться.

А ещё кислород активно влияет на жизнедеятельность не только целых живых организмов, но и клеток в отдельности: окислительно-восстановительные реакции в рамках обмена энергии и метаболизма задействует кислород, и результатом может стать выделение воды с углекислым газом. Получается замкнутый круг: земная биосфера потребляет кислород, который сама же и выделяет.

Значение круговорота кислорода в природе

Был в истории Земли такой период, когда кислорода в атмосфере не было. Около 2,45 миллиардов лет тому назад атмосфера состояла из углекислого газа, метана, аммиака и сероводорода. И сравнительно молодая биосфера Земли в тот период была анаэробной, а аэробные живые существа, и прежде всего, цианобактерии, ещё не были широко распространены. Фотосинтез уже тогда существовал, но он был аноксигенным, то есть, кислород существовавшие тогда существа выделять не могли.

Однако впоследствии произошло то, что учёные назвали “кислородной катастрофой”: атмосфера оказалась заполненной кислородом (в том числе в свободной форме), и в биосфере стали доминировать аэробные существа, способные дышать кислородом, а анаэробная биосфера оказалась оттеснена в среду, куда кислород не мог проникнуть. И так много свободного кислорода выделилось после того, как кислород на тот момент закончил окислять горные породы, растворённые соединения и газы в атмосфере.

С тех пор биосфера стала преимущественно аэробного характера. Если бы “кислородная катастрофа” 2,45 миллиарда лет тому назад не произошла, жизнь была бы совсем другой, и если бы развилась цивилизация, она так же была бы совершенно не похожей на нынешнюю.

А между тем, биосфера на Земле привыкла к кислородному дыханию, важному и для жизнедеятельности отдельных клеток, и для жизни всех живых организмов, от бактерий до людей, от планктона до животных. Фотосинтез позволяет возобновлять расходуемый при дыхании, при гниении, при горении кислород, и отсутствие способных к фотосинтезу живых существ неизбежно изменит атмосферу и полностью перестроит биосферу. На это тоже могут уйти миллионы, а то и миллиарды лет.


Не стоит также забывать об озоновом слое. Он выполняет невероятно важную для Земли функцию. А именно: озон поглощает опасную для биосферы солнечную радиацию. Именно благодаря озоновому слою на Земле установлены комфортные солнечные условия, пригодные в том числе и для фотосинтеза растений.

Чрезмерное количество ультрафиолетовых лучей на Землю просто не попадает. Учёные считают, что отсутствие озонового слоя не позволило бы живым существам выйти из океана на сушу, они бы просто сгорели бы под сильным потоком солнечной радиации. Озон позволяет осуществляться круговороту кислорода как таковому, позволяет жизни на Земле существовать и дальше. И именно поэтому появление так называемых озоновых дыр в XX веке сильно перепугало человечество.

Влияние человека на круговорот кислорода в природе

Считается, что антропогенная деятельность позволила возникнуть парниковому эффекту. То есть, углекислого газа на Земле стало больше, чем это предусмотрено нормой. На это повлияло несколько факторов, среди которых: всё большие масштабы вырубки лесов для разных целей (для добычи древесины как строительного сырья или топлива, для постройки на их месте различных сооружений и объектов инфраструктуры, от транспортных до промышленных, для строительства городов и дорог, для создания сельскохозяйственных угодий), лесные пожары (которые теперь чаще происходят из-за непотушенного костра или брошенного в сухую жаркую погоду окурка сигареты или спички, то есть, из-за человеческого фактора), выбросы в атмосферу вследствие сжигания различных видов топлива (прежде всего, промышленные и транспортные выбросы).

Человек является частью биосферы, и его деятельность является частью круговорота кислорода, но его влияние на эти процессы можно считать скорее деструктивным и дестабилизирующим, нежели позитивным.

Что же касается озоновых дыр, то они не обязательно должны быть вызваны именно антропогенной деятельностью. Так, озоновая дыра над Антарктидой возникает каждый год вследствие особенностей местного климата, и дело не только в отсутствии растений вследствие постоянных минусовых температур. Дело в особом полярном вихре, осуществляющем циркуляцию воздушных потоков только в полярном районе и не допускающем смешивания этих потоков с другими воздушными массами, этот вихрь также препятствует попаданию солнечных лучей, и результатом этого становится разрушение ранее существовавших там запасов озона и отсутствие новых запасов.

Однако очевидно, что влияние человека на истончение озонового слоя стало более заметным. Активное использование хлора и брома (и содержащих эти элементы веществ) стало главной причиной сокращения содержания озона в земной атмосфере.

Примеры круговорота кислорода в природе

И вновь можно вспомнить про самые распространённые механизмы того, как на Земле осуществляется биогеохимический кислородный цикл. А самыми распространёнными механизмами, опять же, являются дыхание и фотосинтез. Растения при солнечном свете поглощают углекислый газ и осуществляют выделение кислорода (хотя они тоже потребляют кислород в отсутствие солнечного света).


Животные, да и все способные к кислородному дыханию организмы и существа, включая членистоногих, рыб, амфибий, рептилий, птиц, млекопитающих, способны, наоборот, поглощать кислород, который помогает в жизнедеятельности всех органов и тканей, всех до единой клеток, и взамен выделять углекислый газ, который потом, весьма вероятно, поглотят окружающие растения. Выделенный при разложении отмерших тканей и при горении углекислый газ также поглощается в процессе фотосинтеза.


Диаграмма кислородного цикла (в Гмоль / год): Цикл включает четыре основных резервуара: земную биосферу (зеленый), морскую биосферу (синий), литосферу (коричневый) и атмосферу (серый). Основные потоки между этими резервуарами представлены цветными стрелками, где зеленые стрелки относятся к земной биосфере, синие стрелки относятся к морской биосфере, черные стрелки относятся к литосфере, фиолетовая стрелка относится к пространству (который не является резервуаром, но также дает атмосферный кислород). Величину фотосинтеза или чистую первичную продуктивность (NPP) можно оценить, используя изменение количества и изотопного состава атмосферного кислорода. Углеродное захоронение было получено по оценкам вулканических и гидротермальных потоков углерода.

Кислорода цикл представляет собой биохимический цикл , который помогает объяснить преобразование кислорода в земной биосфере между ее различными степенями окисления , во ионах , оксиды и молекулами с помощью различных окислительно - восстановительных реакций , в и между резервуарами. Планеты Земли.

Этот цикл неотделим от углеродного цикла, поскольку последний осуществляется за счет углекислого газа, используемого во время фотосинтеза . Последний производит кислород , который при дыхании сжигает углеродные компоненты, образующиеся в процессе фотосинтеза, с возвращением углекислого газа. В конечном итоге фотосинтез и дыхание лежат в основе производства и баланса атмосферных газов. Два механизма -CO 2 + H 2 O → сахара + кислород и наоборот - обусловливают циркуляцию углерода и кислорода.

Резюме

Кислородные баллоны

Литосфера

Литосфера на сегодняшний день является крупнейшим резервуаром кислорода на Земле и содержит почти 99,5% всего кислорода.

Кислород незначительно присутствует в ядре Земли . Он находится в коре и мантии , составляя 46,6% по весу, в виде силикатов и других оксидов .

Гидросфера

Гидросфера в основном состоит из молекул воды H 2 O , как правило, в жидкой форме и, следовательно, с 33% -ным содержанием кислорода в молях . Это второй по величине резервуар кислорода. Общая масса гидросферы оценивается в 1386 х 10 21 г , чей кислород представляет собой 16/ 18 е составляет 10 тысячу двести тридцать-два х 21 г или 77 000 х 10 18 мол .

Кислород также присутствует в виде растворенных молекул, в основном свободного кислорода и угольных кислот (H x C 3 ).

Атмосфера

После коры, мантии и гидросферы атмосфера составляет от 34 до 37 × 10 18 моль O 2. .

Кислород входит в состав других химических соединений, присутствующих в атмосфере, в частности водяного пара H 2 O. , но также углекислый газ CO 2 , а также оксиды серы и азота (SO 2 , НЕТ, N 2 O , так далее.).

Биосфера

Биосфера содержит кислород в виде органических молекул (CxHxNxOx) и молекул воды. Таким образом фиксированный кислород составляет порядка 10 × 10 18 г или 0,6 × 10 18 моль кислорода.

Несмотря на то, что биосфера присутствует в очень незначительных количествах по массе, она является важным фактором кислородного цикла. Первоначально фотосинтез высвободил O 2. газ в атмосфере, чтобы сформировать органическое вещество (в данном случае сахар) за счет восстановления исходного диоксида углерода (см. углеродный цикл ):

Однако это базовое развитие обычно компенсируется клеточным дыханием , которое обычно сводится к обращению процесса вспять: чтобы обеспечить энергию, необходимую для метаболизма , органическое вещество окисляется, потребляя кислород O 2. и по существу высвобождая диоксид углерода CO 2 и вода для глобального нейтрального баланса. Когда организм мертв, оставшееся органическое вещество может также служить источником энергии для внешних хищников, падальщиков, различных организмов-падальщиков, микробиотопа и обычно перерабатывается, поэтому не выходит из жизненного цикла .

Выше по течению, через биологическую фиксацию азота, осуществляемую некоторыми цианобактериями, ингибирование нитрогеназы O 2 , прямо или косвенно через окислительные радикалы, является сильным регулятором содержания кислорода в атмосфере за счет отрицательной обратной связи по фиксации азота. Ингибирование азотфиксации привело бы к падению первичной продуктивности, как непосредственно для диазотрофных цианобактерий, так и косвенно для всей первичной продуктивности гидросферы , вызывая в долгосрочном плане, для круговорота углерода , снижение скорости захоронения. органический углерод. Без захоронения нет чистого образования O 2. биосферой, а избыток кислорода очень реактивными формами постепенно исчезает из-за окисления поверхности планеты.

Биологическое построение насыщенной кислородом атмосферы

Кислородная реактивность

Связывание углерода и выделение кислорода

Чистое производство кислорода биосферой требует, чтобы часть органического вещества была выведена из биологического цикла и иммобилизована. Органические соединения постоянно осаждаются в анаэробных средах , где они могут быть захоронены без разрушения. Затем захоронение углеродистого вещества уравновешивается выделением газообразного кислорода, который был необходим для их создания. Он распространяется в атмосфере и гидросфере и способен окислять присутствующие элементы.

С другой стороны, этот выпуск O 2 может оставаться в атмосфере только в том случае, если он не сталкивается с молекулами с высоким окислительным потенциалом и способен улавливать этот O 2 выпущенный.

В примитивном контексте кислород первоначально реагировал с соединениями в океане, в основном с металлами, такими как двухвалентное железо , с образованием гематита и магнетита , которые захватывали кислород и ограничивали возможности жизни размножением только анаэробных организмов . Дегазация кислорода была тогда пустой тратой жизненного цикла, ядом для анаэробных организмов. Анаэробное производство производит кислород, и это производство разрушает анаэробное производство. Далее следует цикл нестабильности: гибель анаэробных организмов поглощает и фиксирует O 2. и уменьшает его содержание; но исчезновение яда позволяет анаэробным организмам снова размножаться, создавая условия для их нового исчезновения. Эта нестабильность отражается в отложениях в виде полосчатого железа , попеременно черного и красного.

В результате свободный кислород не существовал в атмосфере примерно 2400 млн лет назад , когда в палеопротерозое большая часть этих восстановленных форм железа была окислена. При осаждении соединений двухвалентного железа химическое равновесие растворения железа сдвигается в результате снижения концентрации железа; и сопутствующее увеличение концентрации O 2 в океане в результате фотосинтеза постепенно превратился в окислительную среду, тогда как первоначально он был восстановительным. После истощения морского двухвалентного железа содержание O 2 прогрессировал сначала в океанах, затем в атмосфере. Это называется Великой окислительной или кислородной катастрофой .

Переход заканчивается только появлением клеток, способных жить в насыщенной кислородом среде. В геологическом отношении появляются красные отложения, отмеченные трехвалентным железом , а осадочные породы меняют цвет с преимущественно черного на красный. Эти красные осадочные слои означают, что атмосфера и поверхностные воды стали насыщенными кислородом.

Каменноугольный эпизод

Фактически была выдвинута гипотеза, что захоронение большого количества древесины произошло из-за того, что бактерии и животные еще не были достаточно развиты, чтобы иметь возможность разлагать новые древесные растения, появившиеся в то время. Лигнин трудно разлагаются, и присутствует в высокой пропорции в растениях каменноугольного. Лигнин не растворяется, он может оставаться в почве в течение сотен лет и препятствовать распаду других растительных веществ. В результате массивное захоронение углерода могло привести к избытку кислорода в воздухе до 35%, но пересмотренные модели считают эту цифру нереальной и оценивают процентное содержание кислорода в воздухе. Воздух должен был составлять от 15 до 25%.

Уголь перестал формироваться Есть около 290 миллионов лет (поздний карбон). Такое прекращение образования древесного угля, по-видимому, можно объяснить появлением новых видов грибов, способных разлагать весь лигнин с помощью ферментов ( лигнин-пероксидазы ).

Антропогенное воздействие

Этот цикл помогает объяснить явление появления озона . Использование автомобилей выделяет диоксид азота (NO 2 ). Это, в результате разложения и повторного разложения с окружающим кислородом (O 2 ) форма озона (O 3 ). Однако этот озон вреден для здоровья и даже считается загрязнителем. Однако в верхних слоях атмосферы озон образует важный слой, фактически он действует как фильтр от УФ-лучей, испускаемых солнцем.

Читайте также: