Базальные ганглии физиология кратко

Обновлено: 02.07.2024

Термин базальные ядра (или, как их еще называют базальные ганглии) означает, что эти ядра расположены у основания больших полушарий, латеральнее промежуточного мозга. Они составляют примерно 3% от объема полушарий. По общей структуре они подобны стволовым ядрам и разбиты на отдельные группы прослойками белого вещества. Из-за этого они имеют несколько пестрый внешний вид, что отразилось в объединяющем их названии – полосатое тело (corpus striatum).

Кроме полосатого тела в состав базальных ганглиев также входят ограда - тонкая прослойка серого вещества, расположенная латеральнее чечевицеобразного ядра и отделенная от него перегородкой из белого вещества (наружной капсулой) и миндалевидное тело (миндалина) – расположенная под чечевицеобразным ядром в самом переднем отделе височной доли. К базальным ядрам относят также субталамические ядра и черную субстанцию.

Бледный шар состоит из крупных нейронов, напоминающих мотонейроны и мелких – вставочных нейронов. Большие нейроны дают начало быстропроводящим волокнам, которые заканчиваются в красном ядре и черной субстанции среднего мозга, ядрах промежуточного мозга и образуют основной эфферентный выход полосатого тела.

Хвостатое ядро и ограда состоят из мелких клеток и их аксоны направлены, в основном, к бледному шару.

Система этих ядер:

- участвует в образовании экстрапирамидной системы и связана с регуляцией сложных движений и автоматических движений.

- задействована в переработке сенсорной информации, под ее контролем находятся центры гипоталамуса.

- является высшим регуляторным центром вегетативных функций терморегуляции и углеводного обмена.

Хвостатое ядро участвует в формировании условных рефлексов, механизмов памяти, эмоциях. Стриатум не получает прямых входов от спинного мозга и от сенсорных ядер мозгового ствола. Основные входы эта структура получает от:

- коры больших полушарий. Все корковые проекции на стриатум организованы ипсилатерально (на одноименную сторону тела), за исключением полей 4, 6 и 8, которые образуют билатеральные проекции (на обе стороны тела)

- от некоторых ядер таламуса

- от черной субстанции

- от миндалевидного тела.

Бледный шар и черная субстанция являются основными эфферентными структурами стриарной системы. Эти структуры отсылают волокна к таламусу, в область среднего мозга и каудально в область моста. Их синаптические окончания оказывают тормозное синаптическое действие (медиатор – g - аминомасляная кислота).

13. Лимбическая система.

(синонимы: лимбический комплекс, висцеральный мозг, ринэнцефалон, тимэнцефалон) представлена рядом подкорковых структур головного мозга, принадлежащих, в основном, к древней и старой коре. К этой системе относится:

· Области старой коры: поясная, или лимбическая извилина, гиппокамп

· Некоторые образования новой коры: височные и лобные отделы, промежуточная лобно-височная зона

· Подкорковые структуры: бледный шар, хвостатое ядро, скорлупа, миндалевидное тело, перегородка, гипоталамус, ретикулярная формация среднего мозга, неспецифические ядра таламуса.

Функции лимбической системы заключаются в следующем:

· Регуляция работы внутренних органов. При поражении лимбической системы отмечается нарушения деятельности сердечно-сосудистой системы, пищеварительной системы; при поражении миндалевидных ядер – нарушение обменных процессов в миокарде; поражение свода мозга вызывает нарушение кровоснабжения желудочно-кишечного тракта (до язвы)

· Гиппокамп – высший центр обоняния

· Обеспечивает различные формы поведения. Разрушение миндалевидных ядер вызывает нарушения инстинкта продолжения рода

· Отвечает за эмоциональные реакции.

· Обеспечивает различные формы памяти. Поражение гиппокампа вызывает ретроградную амнезию (потеря памяти на предшествующие события).

· При поражении поясной извилины страдает запоминание, выработка практических навыков.

· Способствует проявлению условных рефлексов.

Миндалевидный комплекс представляет собой довольно крупное ядерное образование (у человека - около 10 х 8 х 5 мм), расположенное в глубине передней части височной доли над ростральным отделом нижнего рога бокового желудочка. Миндалина образует связи с гипоталамусом, преимущественно с той его частью, которая участвует в контроле функции гипофиза. На мембране нейронов этой части миндалины есть рецепторы к половым и стероидным гормонам надпочечников. Благодаря этому циркулирующие в крови гормоны контролируют активность этих нейронов, а они, в свою очередь, могут влиять на гипоталамус и, таким образом, на секрецию из гипофиза (обратная связь), а также участвовать в формах поведения, контролируемых этими гормонами.




Миндалина образует также обширные связи с обонятельной луковицей. Благодаря этим связям обоняние у животных участвует в контроле репродуктивного (размножение) поведения. Например, феромоны (видоспецифические химические посредники) влияют на половое поведение через обонятельную систему. Многие виды животных имеют даже дополнительную обонятельную систему (так называемый якобсонов орган), передающую специализированную информацию к структурам лимбической системы, связанную с половым поведением. У человека эта система плохо развита, но полностью отрицать ее существование нельзя. В пользу этого может указывать хотя бы тот факт, что парфюмерия для женщин и мужчин различна.

У приматов, в том числе у человека, повреждения миндалины снижают эмоциональную окраску реакций, кроме того, у них полностью исчезает агрессивность в поведении.

Гиппокамп располагается в медиальной части височной доли. Особое место в системе связей гиппокампа занимает участок новой коры в районе гиппокампа (так называемая энторинальная кора). Этот участок коры получает многочисленные афференты практически от всех областей неокортекса и других отделов головного мозга (миндалины, передних ядер таламуса и др.) и является основным источником афферентов к гиппокампу. Гиппокамп получает также входы от зрительной, обонятельной и слуховой систем. Самой крупной проводящей системой гиппокампа является свод, который связывает гиппокамп с гипоталамусом. Кроме этого, гиппокамп обоих полушарий связаны между собой комиссурой (plasterium).

Повреждение гиппокампа приводит к характерным нарушениям памяти и способности к обучению. В 1887 г. русский психиатр С. С. Корсаков описал грубые расстройства памяти у больных алкоголизмом (синдром Корсакова). Посмертно у них были обнаружены дегенеративные повреждения гиппокампа. Нарушение памяти проявлялось в том, что больной помнил события отдаленного прошлого, в том числе детства, но не помнил о том, что произошло с ним несколько дней или даже минут тому назад. Например, он не мог запомнить своего лечащего врача: если врач выходил из палаты на 5 мин, больной его не узнавал при повторном посещении.

Для объяснения принципов интегративной деятельности лимбической системы выдвинуто представление о циклическом характере процессов возбуждения по замкнутой сети структур, включающих гиппокамп, сосцевидные тела, свод мозга, передние ядра таламуса, поясную извилину – так называемый круг Пейпеца (в 1937 году американский нейроанатом описал замкнутую цепочку структур, начинающуюся и заканчивающуюся в гипоталамусе). Считается, что круг Пейпеца представляет собой центр эмоций. Циркулируя по этому кругу, возбуждение создает длительные эмоциональные состояния, пробегая сквозь центры страха и агрессии, наслаждения и отвращения.

Лимбическая система в мозге человека выполняет очень важную функцию, которая называется мотивационно-эмоциональной. Лимбическая система тесно связана с ретикулярной формацией ствола мозга, как структурно, так и функционально. Вместе они образуют лимбико-ретикулярный комплекс. В лимбическую систему стекается весь поток информации от интеро- и экстерорецепторов, включая рецепторные поля органов чувств. Здесь происходит первичный синтез информации о состоянии внутренней среды организма и воздействующих на него факторов внешней среды. Здесь формируются элементарные потребности (например, в пище, воде, самообороне). Эти потребности представляют собой биологические мотивации (мотив – побуждение) для определенного типа поведения (например, поиск пищи), которое сопровождается определенной эмоциональной окраской. В зависимости от достижения результата эмоции могут быть как положительными, так и отрицательными.

Удовлетворение биологических потребностей направлено на поддержание гомеостаза и, следовательно, на выживание биологической системы. Контроль за состоянием внутренней среды осуществляют вегетативная и эндокринная системы, а лимбическая система – обеспечивает регуляцию вегетативно-висцерально-гуморальных отношений. От состояния лимбической системы зависит уровень сознания, активность двигательных и психических функций, состояния бодрствования и сна.

Термин базальные ядра (или, как их еще называют базальные ганглии) означает, что эти ядра расположены у основания больших полушарий, латеральнее промежуточного мозга. Они составляют примерно 3% от объема полушарий. По общей структуре они подобны стволовым ядрам и разбиты на отдельные группы прослойками белого вещества. Из-за этого они имеют несколько пестрый внешний вид, что отразилось в объединяющем их названии – полосатое тело (corpus striatum).

Кроме полосатого тела в состав базальных ганглиев также входят ограда - тонкая прослойка серого вещества, расположенная латеральнее чечевицеобразного ядра и отделенная от него перегородкой из белого вещества (наружной капсулой) и миндалевидное тело (миндалина) – расположенная под чечевицеобразным ядром в самом переднем отделе височной доли. К базальным ядрам относят также субталамические ядра и черную субстанцию.

Бледный шар состоит из крупных нейронов, напоминающих мотонейроны и мелких – вставочных нейронов. Большие нейроны дают начало быстропроводящим волокнам, которые заканчиваются в красном ядре и черной субстанции среднего мозга, ядрах промежуточного мозга и образуют основной эфферентный выход полосатого тела.

Хвостатое ядро и ограда состоят из мелких клеток и их аксоны направлены, в основном, к бледному шару.

Система этих ядер:

- участвует в образовании экстрапирамидной системы и связана с регуляцией сложных движений и автоматических движений.

- задействована в переработке сенсорной информации, под ее контролем находятся центры гипоталамуса.

- является высшим регуляторным центром вегетативных функций терморегуляции и углеводного обмена.

Хвостатое ядро участвует в формировании условных рефлексов, механизмов памяти, эмоциях. Стриатум не получает прямых входов от спинного мозга и от сенсорных ядер мозгового ствола. Основные входы эта структура получает от:

- коры больших полушарий. Все корковые проекции на стриатум организованы ипсилатерально (на одноименную сторону тела), за исключением полей 4, 6 и 8, которые образуют билатеральные проекции (на обе стороны тела)

- от некоторых ядер таламуса

- от черной субстанции

- от миндалевидного тела.

Бледный шар и черная субстанция являются основными эфферентными структурами стриарной системы. Эти структуры отсылают волокна к таламусу, в область среднего мозга и каудально в область моста. Их синаптические окончания оказывают тормозное синаптическое действие (медиатор – g - аминомасляная кислота).

13. Лимбическая система.

(синонимы: лимбический комплекс, висцеральный мозг, ринэнцефалон, тимэнцефалон) представлена рядом подкорковых структур головного мозга, принадлежащих, в основном, к древней и старой коре. К этой системе относится:

· Области старой коры: поясная, или лимбическая извилина, гиппокамп

· Некоторые образования новой коры: височные и лобные отделы, промежуточная лобно-височная зона

· Подкорковые структуры: бледный шар, хвостатое ядро, скорлупа, миндалевидное тело, перегородка, гипоталамус, ретикулярная формация среднего мозга, неспецифические ядра таламуса.

Функции лимбической системы заключаются в следующем:

· Регуляция работы внутренних органов. При поражении лимбической системы отмечается нарушения деятельности сердечно-сосудистой системы, пищеварительной системы; при поражении миндалевидных ядер – нарушение обменных процессов в миокарде; поражение свода мозга вызывает нарушение кровоснабжения желудочно-кишечного тракта (до язвы)

· Гиппокамп – высший центр обоняния

· Обеспечивает различные формы поведения. Разрушение миндалевидных ядер вызывает нарушения инстинкта продолжения рода

· Отвечает за эмоциональные реакции.

· Обеспечивает различные формы памяти. Поражение гиппокампа вызывает ретроградную амнезию (потеря памяти на предшествующие события).

· При поражении поясной извилины страдает запоминание, выработка практических навыков.

· Способствует проявлению условных рефлексов.

Миндалевидный комплекс представляет собой довольно крупное ядерное образование (у человека - около 10 х 8 х 5 мм), расположенное в глубине передней части височной доли над ростральным отделом нижнего рога бокового желудочка. Миндалина образует связи с гипоталамусом, преимущественно с той его частью, которая участвует в контроле функции гипофиза. На мембране нейронов этой части миндалины есть рецепторы к половым и стероидным гормонам надпочечников. Благодаря этому циркулирующие в крови гормоны контролируют активность этих нейронов, а они, в свою очередь, могут влиять на гипоталамус и, таким образом, на секрецию из гипофиза (обратная связь), а также участвовать в формах поведения, контролируемых этими гормонами.

Миндалина образует также обширные связи с обонятельной луковицей. Благодаря этим связям обоняние у животных участвует в контроле репродуктивного (размножение) поведения. Например, феромоны (видоспецифические химические посредники) влияют на половое поведение через обонятельную систему. Многие виды животных имеют даже дополнительную обонятельную систему (так называемый якобсонов орган), передающую специализированную информацию к структурам лимбической системы, связанную с половым поведением. У человека эта система плохо развита, но полностью отрицать ее существование нельзя. В пользу этого может указывать хотя бы тот факт, что парфюмерия для женщин и мужчин различна.

У приматов, в том числе у человека, повреждения миндалины снижают эмоциональную окраску реакций, кроме того, у них полностью исчезает агрессивность в поведении.

Гиппокамп располагается в медиальной части височной доли. Особое место в системе связей гиппокампа занимает участок новой коры в районе гиппокампа (так называемая энторинальная кора). Этот участок коры получает многочисленные афференты практически от всех областей неокортекса и других отделов головного мозга (миндалины, передних ядер таламуса и др.) и является основным источником афферентов к гиппокампу. Гиппокамп получает также входы от зрительной, обонятельной и слуховой систем. Самой крупной проводящей системой гиппокампа является свод, который связывает гиппокамп с гипоталамусом. Кроме этого, гиппокамп обоих полушарий связаны между собой комиссурой (plasterium).

Повреждение гиппокампа приводит к характерным нарушениям памяти и способности к обучению. В 1887 г. русский психиатр С. С. Корсаков описал грубые расстройства памяти у больных алкоголизмом (синдром Корсакова). Посмертно у них были обнаружены дегенеративные повреждения гиппокампа. Нарушение памяти проявлялось в том, что больной помнил события отдаленного прошлого, в том числе детства, но не помнил о том, что произошло с ним несколько дней или даже минут тому назад. Например, он не мог запомнить своего лечащего врача: если врач выходил из палаты на 5 мин, больной его не узнавал при повторном посещении.

Для объяснения принципов интегративной деятельности лимбической системы выдвинуто представление о циклическом характере процессов возбуждения по замкнутой сети структур, включающих гиппокамп, сосцевидные тела, свод мозга, передние ядра таламуса, поясную извилину – так называемый круг Пейпеца (в 1937 году американский нейроанатом описал замкнутую цепочку структур, начинающуюся и заканчивающуюся в гипоталамусе). Считается, что круг Пейпеца представляет собой центр эмоций. Циркулируя по этому кругу, возбуждение создает длительные эмоциональные состояния, пробегая сквозь центры страха и агрессии, наслаждения и отвращения.

Лимбическая система в мозге человека выполняет очень важную функцию, которая называется мотивационно-эмоциональной. Лимбическая система тесно связана с ретикулярной формацией ствола мозга, как структурно, так и функционально. Вместе они образуют лимбико-ретикулярный комплекс. В лимбическую систему стекается весь поток информации от интеро- и экстерорецепторов, включая рецепторные поля органов чувств. Здесь происходит первичный синтез информации о состоянии внутренней среды организма и воздействующих на него факторов внешней среды. Здесь формируются элементарные потребности (например, в пище, воде, самообороне). Эти потребности представляют собой биологические мотивации (мотив – побуждение) для определенного типа поведения (например, поиск пищи), которое сопровождается определенной эмоциональной окраской. В зависимости от достижения результата эмоции могут быть как положительными, так и отрицательными.

Удовлетворение биологических потребностей направлено на поддержание гомеостаза и, следовательно, на выживание биологической системы. Контроль за состоянием внутренней среды осуществляют вегетативная и эндокринная системы, а лимбическая система – обеспечивает регуляцию вегетативно-висцерально-гуморальных отношений. От состояния лимбической системы зависит уровень сознания, активность двигательных и психических функций, состояния бодрствования и сна.

Базальные ганглии. Физиология и функции базальных ганглиев

Базальные ганглии, как и мозжечок, представляют другую вспомогательную двигательную систему, которая функционирует обычно не сама по себе, а в тесной связи с корой большого мозга и кортикоспинальной системой двигательного контроля. Действительно, большинство входящих сигналов базальные ганглии получают от коры большого мозга, а почти все выходящие из этих ганглиев сигналы возвращаются назад к коре.

На рисунке ниже показаны анатомические связи базальных ганглиев с другими структурами головного мозга.

Базальные ганглии. Физиология и функции базальных ганглиев

Анатомические связи базальных ганглиев с корой большого мозга и таламусом, показанные в трехмерном изображении

На каждой стороне мозга эти ганглии состоят из хвостатого ядра, скорлупы, бледного шара, черного вещества и субталамического ядра. Они располагаются в основном латеральнее таламуса и вокруг него, занимая большую часть внутренних регионов обоих полушарий большого мозга. Видно также, что почти все двигательные и чувствительные нервные волокна, связывающие кору большого мозга и спинной мозг, проходят через пространство, лежащее между основными структурами базальных ганглиев, хвостатым ядром и скорлупой. Это пространство называют внутренней капсулой мозга. Для данного обсуждения важно наличие тесной связи между базальными ганглиями и кортикоспинальной системой двигательного контроля.

а) Нервный контур базальных ганглиев. Как показано на рисунке ниже, анатомические связи между базальными ганглиями и другими элементами мозга, обеспечивающими двигательный контроль, сложные.

Базальные ганглии. Физиология и функции базальных ганглиев

Связь контура базальных ганглиев с кортикоспиномозжечковой системой для регуляции двигательной активности

Слева показаны моторная кора, таламус и действующие вместе с ними ствол мозга и мозжечковый контур. Справа представлен главный контур системы базальных ганглиев, демонстрирующий наиболее важные взаимосвязи внутри самих ганглиев и обширные входящие и выходящие пути, соединяющие другие регионы мозга и базальные ганглии.

В следующих статьих по физиологии на сайте мы сосредоточимся на двух главных контурах: контуре скорлупы и контуре хвостатого ядра.

Физиология и функции базальных ганглиев

а) Участие базальных ганглиев в выполнении сложных двигательных программ. Контур скорлупы. Одной из главных функций базальных ганглиев в двигательном контроле является их участие в регуляции выполнения сложных двигательных программ вместе с кортикоспинальной системой, например в движении при написании букв. При серьезном поражении базальных ганглиев корковая система двигательного контроля больше не может обеспечить эти движения. Вместо этого почерк человека становится грубым, как будто он впервые учится писать.

К другим сложным двигательным актам, требующим участия базальных ганглиев, относят резание ножницами, забивание гвоздей молотком, броски баскетбольного мяча через обруч, ведение мяча в футболе, бросание мяча в бейсболе, движения лопатой при копании земли, большинство процессов вокализации, управляемые движения глаз и практически любое из наших точных движений, в большинстве случаев выполняемых бессознательно.

б) Нервные пути контура скорлупы. На рисунке ниже показаны главные пути через базальные ганглии, участвующие в выполнении приобретенных форм двигательной активности.

Базальные ганглии. Физиология и функции базальных ганглиев

Контур скорлупы системы базальных ганглиев для подсознательного выполнения программ приобретенных движений

Эти пути в основном начинаются в премоторной коре и в соматосенсорных областях сенсорной коры. Затем они проходят в скорлупу (главным образом минуя хвостатое ядро), отсюда — к внутренней части бледного шара, далее — к переднему вентральному и вентролатеральному ядрам таламуса и, наконец, возвращаются к первичной моторной коре большого мозга и к областям премоторной коры и дополнительной коры, тесно связанным с первичной моторной корой. Таким образом, основные входы в контур скорлупы исходят из областей мозга, прилежащих к первичной моторной коре, но не из самой первичной коры.

Зато выходы из этого контура идут в основном к первичной моторной коре или к тесно связанным с ней областям премоторной и дополнительной моторной коры. В тесной связи с этим первичным контуром скорлупы функционируют вспомогательные контуры, идущие от скорлупы через внешнюю часть бледного шара, субталамус и черное вещество, возвращаясь в итоге к моторной коре через таламус.

в) Нарушения двигательных функций при поражении контура скорлупы: атетоз, гемибаллизм и хорея. Как участвует контур скорлупы в обеспечении выполнения сложных двигательных актов? Ответ не ясен. Однако когда часть контура поражается или блокируется, некоторые движения значительно нарушаются. Например, поражения бледного шара обычно ведут к спонтанным и часто постоянным волнообразным движениям кисти, руки, шеи или лица. Такие движения называют атетозом.

Поражение субталамического ядра часто ведет к появлению размашистых движений всей конечности. Это состояние называют гемибаллизмом. Множественные мелкие поражения в скорлупе ведут к появлению быстрых подергиваний в кистях, лице и других частях тела, что называют хореей.

Поражения черного вещества ведут к распространенному и чрезвычайно тяжелому заболеванию с характерными для него ригидностью, акинезией и тремором. Это заболевание известно как болезнь Паркинсона и подробно будет обсуждаться далее.

Учебный видео урок - базальные ядра, проводящие пути внутренней капсулы мозга

Редактор: Искандер Милевски. Дата обновления публикации: 18.3.2021

Определение понятия

Базальные ганглии (базальные ядра) – это стриопаллидарная система, состоящая из трёх пар крупных ядер, погружённых в белое вещество конечного мозга в основании больших полушарий, и связывающих сенсорные и ассоциативные зоны коры с двигательной корой.

Строение

Филогенетически древняя часть базальных ганглиев – бледный шар, более позднее образование – полосатое тело и наиболее молодая часть – ограда.

Бледный шар состоит из наружного и внутреннего сегментов; полосатое тело – из хвостатого ядра и скорлупы. Ограда расположена между скорлупой и островковой (инсулярной) корой. В функциональном отношении базальные ганглии включают в себя также субталамические ядра и черную субстанцию.

Функциональные связи базальных ядер

Возбуждающая афферентная импульсация поступает преимущественно в полосатое тело (в хвостатое ядро) в основном из трёх источников:

1) от всех областей коры напрямую и опосредовано через таламус;

2) от неспецифических ядер таламуса;

3) от черной субстанции.

Среди эфферентных связей базальных ганглиев можно отметить три главных выхода:

  • от полосатого тела тормозящие пути идут к бледному шару непосредственно и с участием субталамического ядра; от бледного шара начинается самый важный эфферентный путь базальных ядер, идущий преимущественно в двигательные вентральные ядра таламуса, от них возбуждающий путь идет в двигательную кору;
  • часть эфферентных волокон из бледного шара и полосатого тела идет к центрам ствола мозга (ретикулярная формация, красное ядро и далее в спинной мозг), а также через нижнюю оливу в мозжечок;
  • от полосатого тела тормозящие пути идут к черной субстанции и после переключения – к ядрам таламуса.

Следовательно, базальные ганглии являются промежуточным звеном. Они связывают ассоциативную и, частично, сенсорную кору с двигательной корой. Поэтому в структуре базальных ядер выделяют несколько параллельно действующих функциональных петель, связывающих их с корой больших полушарий.

Базальные ядра

Рис.1. Схема функциональных петель, проходящих через базальные ядра:

1 – скелетно-моторная петля; 2 – глазодвигательная петля; 3 – сложная петля; ДК – двигательная кора; ПМК – премоторная кора; ССК – соматосенсорная кора; ПФК – префронтальная ассоциативная кора; П8 – поле восьмой фронтальной коры; П7 – поле седьмой теменной коры; ФАК – фронтальная ассоциативная кора; ВЛЯ – вентролатеральное ядро; МДЯ – медиодорсальное ядро; ПВЯ – переднее вентральное ядро; БШ – бледный шар; ЧВ – черное вещество.

Скелетно-моторная петля соединяет премоторную, двигательную и соматосенсорную области коры со скорлупой. Импульсация от нее идет в бледный шар и черное вещество и далее через двигательное вентролатеральное ядро возвращается в премоторную область коры. Считают, что эта петля служит для регуляции таких параметров движения, как амплитуда, сила, направление.

Глазодвигательная петля соединяет области коры, контролирующие направление взгляда, с хвостатым ядром. Оттуда импульсация идет в бледный шар и черное вещество, из которых она проецируется соответственно в ассоциативное медиодорсальное и переднее релейное вентральное ядра таламуса, а из них возвращается в лобное глазодвигательное поле 8. Эта петля участвует в регуляции скачкообразных движений глаз (саккал).

Предполагается существование также сложных петель, по которым импульсация из лобных ассоциативных зон коры поступает в хвостатое ядро, бледный шар и черное вещество. Затем через медиодорсальное и вентральное переднее ядра таламуса возвращается в ассоциативную лобную кору. Считают, что эти петли участвуют в осуществлении высших психофизиологических функций мозга: контроле мотиваций, прогнозировании, когнитивной деятельности.

Функции

Функции полосатого тела

Влияние полосатого тела на бледный шар. Влияние осуществляется преимущественно тормозное медиатором ГАМК. Однако часть нейронов бледного шара дают смешанные ответы, а некоторые только ВПСП. То есть полосатое тело оказывает на бледный шар двоякое действие: тормозящее и возбуждающее, с преобладанием тормозящего.

Влияние полосатого тела на черное вещество. Между черным веществом и полосатым телом имеются двусторонние связи. Нейроны полосатого тела оказывают тормозящее влияние на нейроны черного вещества. В свою очередь, нейроны черного вещества оказывают модулирующее влияние на фоновую активность нейронов полосатого тела. Кроме влияния на полосатое тело черное вещество оказывает тормозящее действие на нейроны таламуса.

Влияние полосатого тела на таламус. Раздражение полосатого тела вызывает в таламусе появление высокоамплитудных ритмов, характерных для фазы медленного сна. Разрушение полосатого тела нарушает цикл сон-бодрствование уменьшением длительности сна.

Стимуляция полосатого тела. Стимуляция полосатого тела в различных его участках вызывает различные реакции: поворот головы и туловища в сторону, противоположную раздражению; задержку пищедобывательной деятельности; подавление ощущения боли.

Поражение полосатого тела. Поражение хвостатого ядра полосатого тела приводит к гиперкинезам (избыточным движениям) - хорее и атетозу.

Функции бледного шара

От полосатого тела бледный шар получает преимущественно тормозное и частично возбуждающее влияние. Но на двигательную кору, мозжечок, красное ядро и ретикулярную формацию он оказывает модулирующее влияние. На центр голода и насыщения бледный шар оказывает активирующее влияние. Разрушение бледного шара ведет к адинамии, сонливости, эмоциональной тупости.


Традиционный обзор базальных ганглиев всегда отводил важную роль этим структурам в двигательной активности. Общеизвестен факт , что болезни базальных ганглиев, например, такие как болезни Паркинсона и Гентингтона связаны с прогрессирующими нарушениями движений . Ранее полагали , что нейроны базальных ганглиев посылают свои аксоны исключительно в моторные области церебральной коры через таламус. Однако, в настоящее время известно, что базальные ганглии также имеют проекции в немоторные области церебрального кортекса, обеспечивая механизм посредством которого они могут учавствовать в широком диапазоне не моторных функций , а болезни базальных ганглиев связаны с комплексом бихевиоральных и нейропсихиатрических нарушений. Структурно - функциональные особенности отдельных ядер базальных ганглиев в литературе обычно описываются в общих чертах, неясным остается роль этих ядер в работе различных нейронных сетей.

Базальные ганглии состоят из нескольких , связанных между собою ядер. Принципиально здесь выделяют четыре структуры: полосатоке тело, бледный шар , черную субстанцию и субталамические ядра. Полосатое тело разделяется внутренней капсулой на хвостатое ядро и скорлупу. Полосатое тело ( striatum ) приниммает в себя основные проекции от церебрального кортекса , ствола мозга ( brain stem) и зрительного бугра ( thalamus). Бледный шар ( globus pallidus ) состоит из двух отдельных ядер , наружнего и внутреннего сегментов , каждая из которых имеет различные связи и функции. Внутренний сегмент - одно из основных структур , посылающих свои проекции , в то время как внутренний сегмент обеспечивает внутренние взаимодействия между ядрами базальных ганглиев. Черная субстанция , включает в себя два отдельных ядра ( pars compacta , pars reticulata). Продолжаясь вдоль вентральной области покрышки и другим областям среднего мозга , pars compacta или медиодорсальная часть черной субстанции , содержит дофаминергические нейроны , которые направляют свои проекцируются главным образом на полосатое тело и другие ядра базальных ганглиев. Pars reticulata или вентролатеральная часть черной субстанции , также посылает основные проекции из ядер базальных ганглиев. Pars reticulata черной субстанции и внутренний сегмент бледного шара разделяются внутреней капсулой. Субталамические ядра представляют собой небольшие ядра , расположенные между зрительным бугром и черной субстанцией. Эти ядра получают проекции от внешнего сегмента бледного шара , церебрального кортекса , таламуса и ствола мозга и , в свою очередь, посылают аксоны на оба сегмента бледного шара и pars reticulata черной субстанции. Кортикальные входящие пути от субталамических ядер имеют отношение к субталамопаллидарным проекциям и представлят собой гиперпрямые пути. Полосатое тело представляет собой основные ядра базальных ганглиев, принимающие аксоны нейронов других структур , и , в свою очередь, проецируют свои волокна на два внутренних ядра ( внутренний паллидарный сегмент и черная субстанцию) . Аксоны от полосатого тела ( striatum) направляются двумя различными путями : прямые моносинаптические связи и непрямые полисинаптические тракты , которые распространяются др внешнего паллидарного сегмента и от обоих выходящих ядер , направляясь прямо через как бы вставленные субталамические ядра. Выходящие пути ядер проецируются на таламус и области ствола мозга. Проекции от таламуса направляются к вентральным передним, вентральнолатеральным и интраламинарным ядрам. Таламические проекции направляются к лобной доле затем выходят из базальных ганглиев в некоторые области фронтальной доли и проходят в дальнейшем внутрь базальных ганглиев.

Читайте также: