Автоколебательный генератор незатухающих электромагнитных колебаний кратко

Обновлено: 05.07.2024

Незатухающие электромагнитные колебания в цепи поддерживаются действием внешнего периодического напряжения.

Незатухающие электромагнитные колебания в цепи поддерживаются действием внешнего периодического напряжения. Однако возможен способ получения незатухающих колебаний, при котором сама колебательная система регулирует поступление энергии в колебательный контур для компенсации потерь энергии на резисторе.

Системы, в которых генерируются незатухающие колебания за счет поступления от источни­ка внутри системы, называются автоколебательными. Колебания, существующие в системе без воздействия на нее внешних периодических сил, называются автоколебаниями.

Примером автоколебательной системы является генератор на транзисторе (см. Генератор на транзисторе). К механическим автоколебательным системам относятся обычные часы с маятником или балансиром (колесиком с пружиной, совершающей крутильные колебания). Источником энергии в часах служит потенциальная энергия поднятой гири или сжатой пружины.

Основные элементы автоколебательных систем:

Автоколебания

  1. Источник энергии, за счет которого поддерживаются незатухающие колебания.
  2. Колебательная система, т. е. та часть автоколебательной системы, в которой непосредственно происходят колебания.
  3. Устройство, регулирующее поступление энергии от источника в колебательную систему, — клапан.

Обратная связь, с помощью которой колебательная система управляет клапаном.

Генератор электромагнитных колебаний представляет собой один из примеров автоколебательных систем.

Получение незатухающих колебаний в контуре.

Если конденсатор колебательного контура заряжен, то в кон­туре возникают затухающие колебания. Электрическая энергия W переходит во внутреннюю энергию:.

Пополнять энергию колебательного контура можно, подзаря­жая конденсатор. Для этого контур подключают к источнику то­ка. Контур подключается к источнику тока только в те интерва­лы времени, когда пластина конденсатора, присоединенная к по­ложительному полюсу источника, заряжена положительно.

Если источник постоянного тока будет все время подключен к контуру, то в энергия поступает в контур, а следующую

возвращается в источник, т. е. колебания затухают.

Частота колебаний, возникающих в контуре, определяется его параметрами (индуктивностью и емкостью), а амплитуда колебаний – напряжением на источнике (его эдс).

Незатухающие колебания установятся в том случае, если контур будет подключаться к источнику только в первую полови­ну периода. Для выполнения такого условия ключ должен замы­кать и размыкать цепь с частотой, соответствующей частоте электромагнитных колебаний контура. Однако механический ключ инертен.

Безынерционным ключом является транзистор. Транзистор обеспечивает поступление энергии к колебательному контуру, если напряжение на электронном переходе меняется синфазно с напряжением на контуре.

Безынерционным ключом является транзистор

Генератор высокочастотных колебаний на транзисторе

Первая четверть периода. По­ложительно заряженная пласти­на конденсатора, соединенная с коллектором, разряжается. Ток в колебательном контуре возрас­тает до максимального значе­ния. В катушке связи возникает индукционный ток такого направ­ления, что база имеет отрицательный потенциал относительно эмиттера. Переходы база — коллектор и эмиттер — база пря­мые. Транзистор открыт. Энергия от источника поступает через транзистор в колебательный контур (ключ замкнут).

Вторая четверть периода. Ток в контуре убывает. Верхняя пластина заряжается отрицательно. В катушке связи ток меняет направление. На базе положи­тельный потенциал. Переход коллектор—база обратный. Тока в цепи нет (ключ разомкнут).

Третья четверть периода. Конденсатор разряжается. Ток рас­тет до максимального значения, направлен от нижней пластины к верхней. В катушке связи ток направлен так, что база получает положительный потенциал. Переход база — коллектор обратный. Тока в цепи нет (ключ разомкнут).

Четвертая четверть периода. Ток в контуре, не меняя направления, убывает. Верхняя пластина заряжается положительно.

В катушке связи ток меняется по направлению. Заряд на ба­зе отрицательный. Переходы база — коллектор и эмиттер — ба­за прямые. Энергия поступает от источника в колебательный контур (ключ замкнут).

Таким образом, происходят незатухающие электромагнитные колебания за счет поступления энергии от источника в колеба­тельный контур в течение 1/2 Т.

Автоколебания. Генератор незатухающих колебаний (на транзисторе)

Свободные электромагнитные колебания в реальном колебательном контуре всегда затухающие. Для того чтобы они были незатухающими, нужно создать устройство, с помощью которого компенсировались бы потери энергии при каждом полном колебании в контуре. Широко применимы так называемые автоколебания — незатухающие колебания, поддерживаемые в системе за счет постоянного внешнего источника энергии, причем сама система управляет им, обеспечивая согласованность поступления энергии определенными порциями в нужный момент времени.

Любая автоколебательная система состоит из следующих четырех частей (рис. 1): 1) колебательная система; 2) источник энергии, за счет которого компенсируются потери; 3) клапан — некоторый элемент, регулирующий поступление энергии в колебательную систему определенными порциями в нужный момент; 4) обратная связь — управление работой клапана за счет процессов в самой колебательной системе.


Генератор на транзисторе — пример автоколебательной системы. На рисунке 2 приведена упрощенная схема такого генератора, в котором роль "клапана" играет транзистор. Колебательный контур подключен к источнику тока последовательно с транзистором. Эмиттерный переход транзистора через катушку Lсв индуктивно связан с колебательным контуром. Эту катушку называют катушкой обратной связи.


При замыкании цепи через транзистор проходит импульс тока, который заряжает конденсатор С колебательного контура, в результате чего в контуре возникают свободные электромагнитные колебания малой амплитуды. Ток, протекающий по контурной катушке L, индуцирует на концах катушки обратной связи переменное напряжение. Под действием этого напряжения электрическое поле эмиттерного перехода периодически то усиливается, то ослабляется, а транзистор то открывается, то запирается. В те промежутки времени, когда транзистор открыт, через него проходят импульсы тока. Если катушка Lсв подключена правильно (положительная обратная связь), то частота импульсов тока совпадает с частотой колебаний, возникших в контуре, и импульсы тока приходят в контур в те моменты, когда конденсатор заряжается (когда верхняя пластина конденсатора заряжена положительно). Поэтому импульсы тока, проходящие через транзистор, подзаряжают конденсатор и пополняют энергию контура, и колебания в контуре не затухают.

Если при положительной обратной связи медленно увеличивать расстояние между катушками Lсв и L, то с помощью осциллографа можно обнаружить, что амплитуда автоколебаний уменьшается, и автоколебания могут прекратиться. Это значит, что при слабой обратной связи энергия, поступающая в контур, меньше энергии, необратимо преобразуемой во внутреннюю. Таким образом, обратная связь должна быть такой, чтобы: 1) напряжение на эмиттерном переходе изменялось синфазно с напряжением на конденсаторе контура — это фазовое условие самовозбуждения генератора; 2) обратная связь обеспечивала бы поступление в контур столько энергии, сколько ее необходимо для компенсации потерь энергии в контуре — это амплитудное условие самовозбуждения.

Частота автоколебаний равна частоте свободных колебаний в контуре и зависит от его параметров.

Уменьшая L и С, можно получить высокочастотные незатухающие колебания, используемые в радиотехнике.

Амплитуда установившихся автоколебаний, как показывает опыт, не зависит от начальных условий и определяется параметрами автоколебательной системы — напряжением источника, расстоянием между Lсв и L, сопротивлением контура.

Литература

Аксенович Л. А. Физика в средней школе: Теория. Задания. Тесты: Учеб. пособие для учреждений, обеспечивающих получение общ. сред, образования / Л. А. Аксенович, Н.Н.Ракина, К. С. Фарино; Под ред. К. С. Фарино. — Мн.: Адукацыя i выхаванне, 2004. — C. 394-395.

Свободные электромагнитные колебания в реальном колебательном контуре всегда затухающие. Для того чтобы они были незатухающими, нужно создать устройство, с помощью которого компенсировались бы потери энергии при каждом полном колебании в контуре. Широко применимы так называемые автоколебания — незатухающие колебания, поддерживаемые в системе за счет постоянного внешнего источника энергии, причем сама система управляет им, обеспечивая согласованность поступления энергии определенными порциями в нужный момент времени.

Любая автоколебательная система состоит из следующих четырех частей (рис. 1): 1) колебательная система; 2) источник энергии, за счет которого компенсируются потери; 3) клапан — некоторый элемент, регулирующий поступление энергии в колебательную систему определенными порциями в нужный момент; 4) обратная связь — управление работой клапана за счет процессов в самой колебательной системе.


Генератор на транзисторе — пример автоколебательной системы. На рисунке 2 приведена упрощенная схема такого генератора, в котором роль "клапана" играет транзистор. Колебательный контур подключен к источнику тока последовательно с транзистором. Эмиттерный переход транзистора через катушку Lсв индуктивно связан с колебательным контуром. Эту катушку называют катушкой обратной связи.



1. Источник энергии, за счет которого поддерживаются незатухающие колебания (в генераторе на транзисторе это источник постоянного напряжения).
2. Колебательная система — та часть автоколебательной системы, непосредственно в которой происходят колебания (в генераторе на транзисторе это колебательный контур).
3. Устройство, регулирующее поступление энергии от источника в колебательную систему, — клапан (в рассмотренном генераторе роль клапана выполняет транзистор).
4. Устройство, обеспечивающее обратную связь, с помощью которой колебательная система управляет клапаном (в генераторе на транзисторе предусмотрена индуктивная связь катушки контура с катушкой в цепи эмиттер — база).

В генераторе на транзисторе вырабатываются незатухающие колебания различных частот. Без таких систем не было бы ни современной радиосвязи, ни телевидения, ни ЭВМ.

Билет № 10

1.Статика изучает условия равновесия тел.


Виды равновесия

Устойчивое равновесие. Если тело вывести из устойчивого равновесия, то появляется сила, возвращающая его в положение рав­новесия. Устойчивому равновесию соответствует минимальное значение потенциальной энергии

Неустойчивое равновесие. Если тело вывес­ти из неустойчивого равновесия, то возни­кает сила, удаляющая тело от положения равновесия. Неустойчивому равновесию соответствует максимальное значение потенциальной энергии .

Безразличное равновесие. При выведении тела из состояния безразличного равновесия дополнительных сил не возникает. Пример: шар на плоскости.

Момент силы. Правило моментов

Момент силы М (Н· м) – физическая величина, модуль которой равен произведению модуля силы на плечо силы

М = F· d.

Плечо силы d (M)– кратчайшее расстояние между осью вращения и линией действия силы. Т.е. из точки вращения опускается перпендикуляр на линию действия силы. При необходимости линию продлить.

Знаки моментов. Если сила вызывает вращение тела по ча­совой стрелке, то такой момент считают положительным:

Если сила вызывает вращение тела против часовой стрелки, в таком случае момент отрицательный.

Тело находится в равновесии при выполнении сразу двух условий.

1. Сумма сил, действующих на тело, равна нулю.

2. Правило моментов: тело, имеющее неподвижную ось вращения, находится в равновесии, если алгебраическая сумма моментов всех приложенных к телу сил относительно этой оси равна нулю:

Или: сумма моментов сил, вызывающих вращение тела по часовой стрелке, равна сумме моментов сил, вызывающих вращение тела против часовой стрелки:

Механический вечный двигатель, производящий энергию из ничего, невозможен.

Центр тяжести тела – точка, относительно которой момент сил тяжести всех точек тела равен нулю. В случае однородного поля силы тяжести центр тяжести совпадает с центром масс).

2. Переменный ток. Сопротивления в цепи переменного тока.




Вынужденные электромагнитные колебания в электрической цепи представляют собой переменный электрический ток.

§ Переменный электрический ток — это ток, сила и направление которого периодически меняются.

Наибольшее распространение получил гармонический переменный ток, представляющий собой вынужденные электрические колебания, происходящие в цепях под действием напряжения, гармонически меняющегося с частотой ω по закону синуса или косинуса:

u=Um⋅sinωt или u=Um⋅cosωt ,

где u – мгновенное значение напряжения, Um – амплитуда напряжения, ω – циклическая частота колебаний. Если напряжение меняется с частотой ω, то и сила тока в цепи будет меняться с той же частотой, но колебания силы тока не обязательно должны совпадать по фазе с колебаниями напряжения. Поэтому в общем случае

i=Im⋅sin(ωt+φ) ,

где φ – разность (сдвиг) фаз между колебаниями силы тока и напряжения. Принцип получения переменного тока основан на явлении электромагнитной индукции — индуцировании электродвижущей силы в прямоугольном контуре (проволочной рамке), находящейся в однородном вращающемся магнитном поле.

Переменный ток обеспечивает работу электрических двигателей в станках на заводах и фабриках, приводит в действие осветительные приборы в наших квартирах и на улице, холодильники и пылесосы, отопительные приборы и т.п. Частота колебаний напряжения в сети равна 50 Гц. Такую же частоту колебаний имеет и сила переменного тока. Это означает, что на протяжении 1 с ток 50 раз поменяет свое направление. Частота 50 Гц принята для промышленного тока во многих странах мира. В США частота промышленного тока 60 Гц.

Читайте также: