Амплитудная модуляция это кратко и понятно

Обновлено: 18.05.2024

Первый опыт передачи речи и музыки по радио методом амплитудной модуляции произвёл в 1906 году американский инженер Р. Фессенден. Несущая частота 50 кГц радиопередатчика вырабатывалась машинным генератором (альтернатором), для её модуляции между генератором и антенной включался угольный микрофон, изменяющий затухание сигнала в цепи. С 1920 года вместо альтернаторов стали использоваться генераторы на электронных лампах. Во второй половине 1930-х годов, по мере освоения ультракоротких волн, амплитудная модуляция постепенно начала вытесняться из радиовещания и радиосвязи на УКВ частотной модуляцией. С середины XX века в служебной и любительской радиосвязи на всех частотах внедряется модуляция с одной боковой полосой (ОБП), которая имеет ряд важных преимуществ перед АМ. Поднимался вопрос о переводе на ОБП и радиовещания, однако это потребовало бы замены всех радиовещательных приёмников на более сложные и дорогие, поэтому не было осуществлено. В конце XX века начался переход к цифровому радиовещанию с использованием сигналов с амплитудной манипуляцией. [1]

Определение


Здесь — некоторая константа, называемая коэффициентом модуляции. Формула (1) описывает несущий сигнал , модулированный по амплитуде сигналом с коэффициентом модуляции . Предполагается также, что выполнены условия:


Выполнение условий (2) необходимо для того, чтобы выражение в квадратных скобках в (1) всегда было положительным. Если оно может принимать отрицательные значения в какой-то момент времени, то происходит так называемая перемодуляция (избыточная модуляция). Простые демодуляторы (типа квадратичного детектора) демодулируют такой сигнал с сильными искажениями.

Пример



\omega_c

Допустим, что мы хотим промодулировать несущее колебание моногармоническим сигналом. Выражение для несущего колебания с частотой , начальную фазу положим равной нулю, имеет вид

U_c(t)=C\sin(\omega_c t).

\omega_s

Выражение для модулирующего синусоидального сигнала с частотой имеет вид

U_s(t)=U_0\sin(\omega_s t+\varphi),

\varphi

где — начальная фаза. Тогда, в соответствии с (1)

y(t)

Приведённая выше формула для может быть записана в следующем виде:

Радиосигнал состоит из несущего колебания и двух синусоидальных колебаний, называемых боковыми полосами, каждое из которых имеет частоту отличную от . Для синусоидального сигнала, использованного здесь, частоты равны и . Пока несущие частоты соседних радиостанций достаточно разнесены, и боковые полосы не перекрываются между собой, станции не будут влиять друг на друга.

См. также

Примечания

  1. Быховский М. А. Круги памяти (Очерки истории развития радиосвязи и вещания в XX столетии). — М .: МЦНТИ – Международный центр научной и технической информации, 2001. — С. 28–29. — (История электросвязи и радиотехники). — ISBN 5-93533-011-3

Ссылки

  • Амплитудная модуляция. Балансная амплитудная модуляция с подавлением несущей (double side band DSB) (рус.) . Архивировано из первоисточника 17 февраля 2012.Проверено 15 ноября 2010. (англ. )
  • Найти и оформить в виде сносок ссылки на авторитетные источники, подтверждающие написанное.

Wikimedia Foundation . 2010 .

Полезное

Смотреть что такое "Амплитудная модуляция" в других словарях:

АМПЛИТУДНАЯ МОДУЛЯЦИЯ — (AM), вид радиопередачи. Передачи на коротких, средних и длинных волнах осуществляются путем амплитудной модуляции. Передаваемые звуковые сигналы накладываются на радиосигнал с постоянной частотой, которую называют несущей. У полученного в… … Научно-технический энциклопедический словарь

АМПЛИТУДНАЯ МОДУЛЯЦИЯ — периодич. изменение амплитуды колебаний (электрич., механич. и др.), происходящее с частотой, намного меньшей, чем частота самих колебаний. А. м. применяют для радио и оптической связи радиолокации, акустич. локации и др. Напр., в радиовещании… … Физическая энциклопедия

АМПЛИТУДНАЯ МОДУЛЯЦИЯ — периодическое изменение амплитуды колебаний с частотой, значительно меньшей, чем частота самих колебаний. Применяется в радиотехнике (особенно в радиовещании), оптике, акустике и др … Большой Энциклопедический словарь

Амплитудная модуляция — процесс, при котором амплитуда несущего сигнала изменяется по определенному закону. Источник: ГОСТ Р 51317.4.3 99 (МЭК 61000 4 3 95). Государственный стандарт Российской Федерации. Совместимость технических средств электромагнитная.… … Официальная терминология

амплитудная модуляция — [IEV number 314 08 01] EN amplitude modulation process by which the amplitude of a periodic carrier wave is varied according to a specified law NOTE – The result of this process is an amplitude modulated signal. Source: 702 06 17 MOD [IEV… … Справочник технического переводчика

амплитудная модуляция — 06.01.22 амплитудная модуляция [ amplitude modulation]: Модуляция, при которой амплитуда гармонического несущего сигнала является заданной функцией, обычно линейной, мгновенных значений модулирующего сигнала. Источник … Словарь-справочник терминов нормативно-технической документации

амплитудная модуляция — периодическое изменение амплитуды колебаний с частотой, значительно меньшей, чем частота самих колебаний. Применяется в радиотехнике (особенно в радиовещании), оптике, акустике и др. * * * АМПЛИТУДНАЯ МОДУЛЯЦИЯ АМПЛИТУДНАЯ МОДУЛЯЦИЯ,… … Энциклопедический словарь

амплитудная модуляция — amplitudės moduliavimas statusas T sritis automatika atitikmenys: angl. amplitude modulation vok. Amplitudenmodulation, f rus. амплитудная модуляция, f pranc. modulation d amplitude, f … Automatikos terminų žodynas

амплитудная модуляция — amplitudės moduliavimas statusas T sritis Standartizacija ir metrologija apibrėžtis Veiksmas, kuriuo pagal tam tikrą dėsnį keičiama nešlio amplitudė. atitikmenys: angl. amplitude modulation vok. Amplitudenmodulation, f rus. амплитудная модуляция … Penkiakalbis aiškinamasis metrologijos terminų žodynas

амплитудная модуляция — amplitudės moduliavimas statusas T sritis fizika atitikmenys: angl. amplitude modulation vok. Amplitudenmodulation, f rus. амплитудная модуляция, f pranc. modulation d’amplitude, f … Fizikos terminų žodynas

Амплиту́дная модуляция — вид модуляции, при которой изменяемым параметром несущего сигнала является его амплитуда.


Амплитудная модуляция (АМ) – модуляция, при которой незатухающие колебания изменяются по амплитуде в соответствии с модулирующими его колебаниями более низкой частоты.

При амплитудной модуляции (АМ) амплитуда высокочастотного колебания (несущей) изменяется по закону модулирующего (первичного) сигнала.

При АМ спектр модулирующего сигнала переносится в область частот носителя, образуя верхнюю и нижнюю боковые составляющие спектра. Поскольку при таком преобразовании получаются новые частоты, процедура модуляции есть нелинейное преобразование. Но поскольку при АМ спектр модулирующего сигнала не изменяется, а лишь переносится в область высоких частом, АМ считается линейным видом модуляции.

Цель любой модуляции - неискаженная и при меньшем воздействии помех передача сигнала по данной линии связи.

Принципы преобразования спектра при АМ широко используются в технике,

например, при разработке схем радиовещательных и телевизионных приемников, систем многоканальной телефонии с частотным уплотнением линий связи и, в частности, лежат в основе устройства анализатора спектра.

Если в качестве первичного сигнала принять сигнал, имеющий формулу синусоиды, то амплитудно-модулированный сигнал будет иметь вид, изображенный на рисунке.


С качественной стороны амплитудная модуляция (AM) может быть определена как изменение амплитуды несущей пропорционально амплитуде модулирующего сигнала.

Гармоническое колебание высокой частоты w модулировано по амплитуде гармоническим колебанием низкой частоты W (t = 1/W — его период), t — время, A — амплитуда высокочастотного колебания, T — его период.


Амплитудная модуляция синусоидальным сигналом, w — несущая частота, W — частота модулирующих колебаний, Амакс и Амин — максимальное и минимальное значения амплитуды.

Для модулирующего сигнала большой амплитуды соответствующая амплитуда модулируемой несущей должна быть большой и для малых значений амплитуды Эта схема модуляции может быть осуществлена умножением двух сигналов.

Глубина амплитудной модуляции - максимальное относительное отклонение амплитуды от среднего

Спектральная плотность модулированного сигнала представляет два спектра модулирующей функции, построенных относительно частот w = w0 и w = -w0 (сдвинутых на частоты несущей).

Пример. Спектр однотональной модуляции



Радиосигнал состоит из несущего колебания и двух синусоидальных колебаний, называемых боковыми полосами.

При обычной амплитудной модуляции информация содержится в каждой из двух боковых полос

Несущий сигнал — сигнал, один или несколько параметров которого подлежат изменению в процессе модуляции. Степень изменения параметра определяется мгновенным значением информационного (модулирующего) сигнала.

В качестве несущего может быть использован любой стационарный сигнал. Чаще всего в качестве несущего сигнала используется высокочастотное (относительно информационного сигнала) гармоническое колебание, что обусловлено простотой демодуляции и узким спектром. Однако, в некоторых случаях целесообразно использовать другие виды несущего сигнала, например, прямоугольный.

Несущий сигнал часто называют просто несущая (от несущая частота), либо несущее (колебание). Все эти термины означают практически одно и то же. В английской терминологии несущий сигнал обозначается словом carrier.


Отношение U /U0 называют коэффициентом модуляции mАМ. Его часто выражают в процентах. Если U0>=Umax, то коэффициент mАМ будет изменяться от 0 до 1.

Коэффицие́нт амплиту́дной модуля́ции (коэффициент АМ, устар. глубина модуляции) — основная характеристика амплитудной модуляции — отношение разности между максимальным и минимальным значениями амплитуд модулированного сигнала к сумме этих значений, выраженное в процентах


АМ колебания представляют собой результат сложения трех высокочастотных колебаний; колебания с частотой f0 и с амплитудой U0 и двух колебаний с частотами f0 + F и f0 - F и амплитудой 0,5 mАМ*U0.

В системах с амплитудной модуляцией (АМ) модулирующая волна изменяет амплитуду высокочастотной несущей волны. Анализ частот на выходе показывает присутствие не только входных частот f0 и F, но также их сумму и разность: fн + F и fн - F. Если модулирующая волна является комплексной, как например сигнал речи, который состоит из множества частот, то суммы и разности различных частот займут две полосы, одна ниже, другая выше несущей частоты. Частоты fн + F и fн - F называются верхней и нижней боковой частотой соответственно.

Верхняя боковая полоса является копией изначального разговорного сигнала, только сдвинутого на частоту Fc. Нижняя полоса это инвертированная копия изначального сигнала, т.е. верхние частоты в оригинале являются нижними частотами в нижней боковой.

Нижняя боковая полоса это зеркальное отображение верхней боковой по отношению к частоте несущей Fc.

Система с АМ, которая передает обе боковых и несущую, известна, как двухполосная система (DSB - double sidebaud). Несущая не несет никакой полезной информации и может быть убрана, но с несущей или без, полоса сигнала DSB вдвое больше полосы изначального сигнала. Для сужения полосы возможно вытеснение не только несущей, но и одной из боковых, так как они несут одну информацию. Этот вид работы известен, как однополосная модуляция с подавленной несущей (SSB-SC - Single SideBand Suppressed Carrier).


Амплитудная модуляция сложного сигнала

Любая передающая радиостанция, работающая в режиме амплитудной модуляции, излучает не одну частоту, а целый набор (спектр) частот. В простейшем случае ( с синусоидальным сигналом) этот спектр содержит лишь три составляющие — несущую и две боковые. Если же модулирующий сигнал не синусоидальный, а более сложный, то вместо двух боковых частот в модулированном колебании будут две боковые полосы, частотный состав которых определяется частотным составом модулирующего сигнала.

Поэтому каждая передающая станция занимает в эфире определённый частотный интервал. Во избежание помех несущие частоты различных станций должны отстоять друг от друга на расстоянии, большем, чем сумма боковых полос. Ширина боковой полосы зависит от характера передаваемого сигнала: для радиовещания — 10 кгц, для телевидения — 6 Мгц. Исходя из этих величин, выбирают интервал между несущими частотами различных станций. Для получения амплитудно-модулированного колебания колебание несущей частоты и модулирующий сигнал подают на специальное устройство — модулятор.

Демодуляция сигнала АМ достигается путем смешивания модулированного сигнала с несущей той же самой частоты, что и на модуляторе.

Изначальный сигнал затем получают, как отдельную частоту (или полосу частот) и его можно отфильтровать от других сигналов. Несущая для демодуляции генерируется на месте и она может не совпадать каким либо образом с частотой несущей на модуляторе. Небольшая разница между двумя частотами является причиной несовпадения частот, что присуще телефонным цепям.

За счет амплитудной модуляции сложного сигнала происходит увеличение скорости передачи данных.

Амплитудная модуляция (AM) — наиболее распространенный тип модуляции. В системе с AM амплитуда несущей изменяется в соответствии с изменением сигнала или информации (рис. 14.1). В отсутствие сигнала амплитуда несущей имеет постоянный уровень, как показано на рис. 14.1(б). При модуляции синусоидальным сигналом амплитуда несущей увеличивается или уменьшается относительно своего немодулированного уровня по синусоидальному закону в соответствии с нарастанием или спаданием модулирующего сигнала. Чем больше амплитуда модулирующего сигнала, тем сильнее изменяется амплитуда несущей. Амплитудно-модулированная несущая (рис. 14.1(в)) имеет огибающую, в точности повторяющую форму модулирующего сигнала, и при демодуляции именно эта огибающая выделяется как полезный сигнал.

Глубина модуляции

(см. рис. 14.1). Например, если амплитуда сигнала равна 1 В, а амплитуда несущей — 2 В, то глубина модуляции составляет (1 В)/(2 В) • 100% = 50%. Такую глубину модуляции имеет АМ-несущая, показанная на рис. 14.1.

Амплитудная модуляция (глубина модуляции 50%)

Рис. 14.1. Амплитудная модуляция (глубина модуляции 50%);
(а) сигнал; (б) несущая; (в) модулированная несущая.

Перемодуляция

На рис. 14.2(а) показана АМ-несущая со 100%-ной глубиной модуляции. Глубина модуляции, превышающая 100%, приводит к искажениям (рис. 14.2(б)). По этой причине глубину модуляции ограничивают. Например, при передачах радиостанции Би-би-си она ограничена величиной 80%.

(а) Модуляция 100%; (б) перемодуляция

Рис. 14.2. (а) Модуляция 100%; (б) перемодуляция.

Боковые частоты

Можно показать, что амплитудно-модулированная несущая состоит из трех гармонических (синусоидальных) компонент с постоянными амплитудами и разными частотами. Этими тремя компонентами являются: сама несущая и два сигнала боковых частот f1 и f2. Каждый модулирующий гармонический сигнал порождает две боковые частоты. Пусть fs – частота модулирующего сигнала и fc – частота несущей, тогда

f1 = fc – fs, f2 = fc + fs,

где f1 и f2 – так называемые нижняя боковая и верхняя боковая частоты соответственно. Например, если частота несущей равна 100 кГц, а частота сигнала — 1 кГц, то

Нижняя боковая частота f1 = 100 – 1 = 99 кГц,
Верхняя боковая частота f2 = 100 + 1 = 101 кГц.
Амплитудно-модулированная несущая, т. е. несущая вместе с двумя сигналами боковых частот, может быть представлена в виде трех вертикальных стрелок, каждая из которых соответствует одному гармоническому сигналу (рис. 14.3). То, что изображено на этом рисунке, называется частотным спектром сигнала (в данном случае частотным спектром АМ-несущей).

Частотный спектр AM-несущей. Боковые полосы

Рис. 14.3. Частотный спектр AM-несущей. Рис. 14.4. Боковые полосы.

Боковые полосы

Информационные сигналы почти всегда имеют сложную форму и состоят из большого числа гармонических сигналов. Поскольку каждый гармонический сигнал порождает пару боковых частот, то сложный негармонический сигнал будет порождать многочисленные боковые частоты, что приведет к образованию двух полос частот по обе стороны от несущей (рис. 14.4). Это так называемые боковые полосы частот. Область частот между наибольшей верхней боковой частотой f2 и наименьшей верхней боковой частотой f4 называют верхней боковой полосой (ВБП). Аналогично область частот между наибольшей нижней боковой частотой f3 и наименьшей нижней боковой частотой f1 называют нижней боковой полосой (НБП).
Эти две боковые полосы расположены симметрично относительно несущей, и каждая из них содержит одну и ту же информацию. Несущая не несет никакой информации. Всю информацию несут боковые частоты.
При модуляции одиночным гармоническим сигналом принимается, что верхняя и нижняя боковые полосы простираются от несущей до верхней и нижней боковых частот соответственно (рис. 14.5).

Пример 1

Несущая с частотой 100 кГц промодулирована по амплитуде сигналом, занимающим полосу частот 400-3400 Гц. Определите ширину боковых полос.


Решение

Частота 3400 Гц, самая высокая в спектре сигнала, порождает две боковые частоты (рис. 14.6):
f1 = 100 000 - 3400 = 96 600 Гц,
f2 = 100 000 + 3400 = 103 400 Гц.

Боковые полосы и ширина полосы частот, занимаемой несущей при ее модуляции

Частота 400 Гц, самая низкая в спектре сигнала, порождает еще две боковые частоты:

f3 = 100 000 - 400 == 99 600 Гц,
f4 = 100 000 + 400 = 100 400 Гц.

Ширина верхней боковой полосы (ВБП): f2 – f4 = 103400 - 100400 = 3000 Гц.
Ширина нижней боковой полосы (НБП): f3 – f1 = 99 600 - 96 600 = 3000 Гц.

Другими словами, обе боковые полосы имеют одну и ту же ширину, равную разности значений наивысшей и наинизшей частот в спектре модулирующего сигнала: 3400 - 400 = 3000 Гц.
Боковые частоты для любой другой частоты в спектре сигнала будут находиться внутри верхней и нижней боковых полос.

Ширина полосы частот

Так как информацию несут только боковые частоты, то для качественной передачи этой информации ширина полосы частот, занимаемой в эфире АМ-системой, должна быть достаточно велика, чтобы вместить все имеющиеся боковые частоты. При модуляции гармоническим сигналом возникают две боковые частоты. Таким образом, полоса частот простирается от нижней боковой частоты f1 до верхней боковой частоты f2 (как показано на рис. 14.5).
Например, если модулирующий гармонический сигнал имеет частоту 1 кГц, то ВБП = НБП = 1 кГц и ширина полосы составит
НБП + ВБП = 2 • 1 кГц = 2 кГц.

Другими словами, в данном случае ширина полосы частот, занимаемой амплитудно-модулированной несущей, равна удвоенной частоте модулирующего сигнала.
В случае передачи сложного сигнала ширина полосы частот, занимаемой АМ-системой передачи информации, равна удвоенной наивысшей частоте в спектре модулирующего сигнала и, таким образом, включает в себя все боковые частоты.

Одно- и двухполосная передача

Поскольку одна боковая полоса содержит столько же информации, сколько и другая, передачу можно осуществлять с использованием только одной боковой полосы, и при этом не будет никакой потери информации. При однополосной передаче (SSB — по связной терминологии) одна из боковых полос — или нижняя, или верхняя — подавляется и передается только одна оставшаяся боковая полоса. При двухполосной (DSB) передаче передаются обе боковые полосы.
Однополосная передача занимает лишь половину той полосы частот, которая используется при двухполосной передаче, и по этой причине она применяется в телефонии и радиосвязи. При однополосной передаче в заданном диапазоне частот несущей можно расположить вдвое большее число информационных каналов, чем при двухполосной передаче. В силу простоты двухполосная передача используется всеми радиовещательными системами с AM. Поэтому, когда речь идет о связи с использованием AM, обычно имеется в виду двухполосная передача, если не оговорено обратное.


Пример 2

Несущая промодулирована по амплитуде периодическим сигналом в виде меандра с частотой 100 Гц. Пренебрегая гармониками выше пятой, установите ширину полосы частот, необходимую а) для DSB (двухполосной)-передачи и б) для SSB (однополосной)-передачи.

Решение

Сигнал в виде меандра с частотой 100 Гц содержит следующие гармоники:

основную гармонику =100 Гц,
гармонику 3-го порядка = 3 • 100 = 300 Гц,
гармонику 5-го порядка = 5 • 100 = 500 Гц.

Гармониками более высокого порядка пренебрегаем. Таким образом, в обрезанном спектре модулирующего сигнала максимальная частота fмакс = 500 Гц.
Ширина полосы для DSB-передачи = 2 • fмакс = 2•500 = 1000 Гц.
Ширина полосы для SSB-передачи = DSB/2 = 1000/2 = 500 Гц.

В этом видео рассказывается об амплитудной модуляции:

Пусть x(t) является гармоническим колебанием с частотой Ω, т.е. х(t) = XcosΩt. Тогда (Формула). Здесь x(t) — медленно меняющаяся во времени функция по сравнению с высокочастотным колебанием ω0, т. е. Ω — максимальное приращение амплитуды огибающей.

ВременнЫе диаграммы, иллюстрирующие процесс амплитудной модуляции тональным колебанием, показаны на рис. 4.1.

Амплитудная модуляция: определение, графики, схемы, формулы

Рис. 4.1. ВременнЫе диаграммы, иллюстрирующие амплитудную модуляцию:
а — первичный сигнал; б — высокочастотное несущее колебание; в — модулированный сигнал

Коэффициентом модуляции называется отношение амплитуды (Формула) огибающей к амплитуде (Формула) несущего колебания, т. е. (Формула). Обычно 0

Амплитудная модуляция: определение, графики, схемы, формулы

Раскроем данное выражение, что позволит определить спектр АМ-сигнала:

Из этого выражения видно, что АМ-колебание, спектр которого при модуляции одним гармоническим сигналом изображен на рис. 4.2, содержит три составляющие.

  • колебание несущей частоты ω0 с амплитудой U0;
  • колебания верхней боковой частоты ω0 + Ω с амплитудой (Формула);
  • колебания нижней боковой частоты ω0 − Ω с (Формула).

Из сказанного можно сделать следующие выводы.

  1. Ширина спектра равна удвоенной частоте модуляции Δω = 2Ω.
  2. Амплитуда несущего колебания при модуляции не изменяется, а амплитуды колебаний боковых частот пропорциональны глубине модуляции, т.е. амплитуде модулирующего сигнала.
  3. При m = 1 амплитуды колебаний боковых частот равны половине амплитуды несущего колебания, т.е. (Формула). При m = 0 боковые частоты отсутствуют, что соответствует немодулированному колебанию.

На практике однотональные АМ-сигналы используются крайне редко. Более реален случай, когда низкочастотный модулированный сигнал имеет сложный спектральный состав:

Здесь частоты (Формула) образуют упорядоченную возрастающую последовательность (Формула), а амплитуды Хk и фазы φk — произвольные.

В этом случае для АМ-сигнала можно записать следующее аналитическое соотношение:

где (Формула) — парциальные коэффициенты модуляции, представляющие собой коэффициенты модуляции соответствующих компонентов первичного сигнала.

Рис. 4.2. Спектр колебаний при амплитудной модуляции одним низкочастотным гармоническим сигналом

Амплитудная модуляция: определение, графики, схемы, формулы

Спектральное разложение производится так же, как и для однотонального АМ-сигнала:

Из этого разложения видно, что в спектре кроме несущего колебания содержатся группы верхних и нижних боковых колебаний. При этом спектр верхних боковых колебаний является копией спектра модулирующего сигнала, сдвинутой в область высоких частот на значение ω0, а спектр нижних боковых колебаний располагается зеркально относительно ω0.

Спектры исходного полосового сигнала и амплитудно-модулированного сигнала показаны на рис. 4.3.

Васильев Дмитрий Петрович

Определим мощность АМ-колебания, для чего рассмотрим вновь случай модуляции одной гармоники. Будем считать, что ω0 >> Ω. В этом случае амплитуда U(t) = U0(1 + mcosΩt) за период высокочастотного колебания практически не изменяется, поэтому среднюю мощность, выделяемую на сопротивлении 1 Ом в течение этого времени.

Амплитудная модуляция: определение, графики, схемы, формулы

Рис. 4.3. Спектры исходного полосового (а) и амплитудно-модулированного (б) сигналов

Из этой формулы видно, что, если m ≈ 1, при Ωt = 0 мощность (Формула), а при Ωt = π мощность (Формула).

Амплитудная модуляция: определение, графики, схемы, формулы

Таким образом, при 100%-й модуляции, когда m = 1, мощность АМ-колебания изменяется в пределах .

Найдем теперь среднее значение мощности за период низкой частоты. В этом случае средняя мощность всего АМ-колебания есть сумма мощностей несущей частоты и двух боковых частот — нижней и верхней, следовательно, при сопротивлении 1 Ом нагрузки средняя мощность несущей частоты

а каждая из боковых составляющих имеет мощность
Теперь несложно получить общую мощность АМ-сигнала за период колебания низкой частоты Ω:

Абрамян Евгений Павлович

Из этой формулы видно, что при 100%-й модуляции 66,6% всей мощности, излучаемой передатчиком, затрачивается на передачу несущей частоты и только 33,3% мощности приходится на оба колебания боковых частот, которые как раз и содержат полезную информацию.

Следовательно, для более эффективного использования мощности передатчика целесообразно передавать модулированный сигнал без колебания несущей частоты. Кроме того, для уменьшения ширины спектра, занимаемого сигналом, желательно передавать только одну из боковых полос, поскольку оба боковых колебания содержат одну и ту же информацию.

Читайте также: