Алкалиметрия и ацидиметрия кратко

Обновлено: 08.07.2024

Этот метод позволяет решать многие задачи, возникающие при клини­ческом анализе биологических жидкостей, как при постановке диагноза, так и при лечении больных. Определение кислотности желудочного сока, буферной емкости крови, исследование спинномозговой жидкости - примеры использо­вания ациди- и алкалиметрии.

С помощью этого метода можно анализировать лекарственные вещест­ва, устанавливать доброкачественность продуктов питания (например, моло­ка). Большое значение имеет рассматриваемый метод и при санитарно-гигиенической оценке объектов окружающей среды (контроль закисления или защелачивания природных водоёмов и почвы).

Ацидиметрия - титрование с помощью кислот.

Алкалиметрия - титро­вание с помощью оснований.

Реакции между кислотами и основаниями не сопровождаются, как пра­вило, какими-либо внешними эффектами (реагирует бесцветная кислота с бесцветным основанием, при этом получается бесцветная соль и вода), поэтому для фиксирования точки эвивалентности приходится использовать специальные вещества - индика­торы.

Кислотно-основные индикаторы - слабые кислоты или основания, сте­пень диссоциации которых определяется концентрацией протонов (Н + ) в растворе и особенностью ионизационных индикаторов является то, что их молекулы и ионы имеют различную окраску.

Таблица. Свойства индикаторов.

Название индикатора интервал изменения окраски в кислой среде в щелочной среде рКинд
Метилоранжевый 3,1-- 4,4 Красная Желтая 3,75
Нейтральный Красный (нейтральрот) 6,8 -- 8,0 То же То же 7,4
Лакмус 5,0 -- 8,0 То же Синяя 6,5
Фенолфталеин 8,0 – 9,8 Бесцветная Красная 9,0
Тимолфталеин 9,3 -- 10,5 То же Синяя 9,9
Метилкрасный (метилрот) 4,4 – 6,2 Красная Желтая 5,3

Лабораторные работы, выполняемые на занятии.

УСТАНОВЛЕНИЕ НОРМАЛЬНОСТИ И ТИТРА РАСТВОРА СОЛЯНОЙ КИСЛОТЫ ПО ТИТРОВАННОМУ РАСТВОРУ СОДЫ.

Принцип метода: в основе данного определения лежит реакция между раствором соды и соляной кислоты. Сода (Na2C03), обра­зованная сильным основанием и слабой кислотой, водный раствор которой в результате гидролиза имеет щелочную среду и поэтому хорошо титруется раствором кислоты:

М Na23 = 106 г/моль; М HC1= 36,5 г/моль

1. Приготовление мерной посуды для титрования:

a) Бюретки. Воду да бюретки слить, бюретку промыть 2-3 раза небольшими порциями соляной кислоты, заполнить бюретку раствором кислоты выше нулевой отметки, заполнить раствором кончик бюретки и установить уровень раствора в бюретке на нуле по нижнему мениску;

b) Пипетки. Пипетку промыть водопроводной, затем дистиллированной водой и 2-3 раза небольшими порциями титрованного раствора из ста­канчика, предварительно ополоснутого этим раствором;

c) Конические колбы для титрования. Колбу промывают водопроводной водой, а затем дистиллированной 2-3 раза.

2. Титрование

В коническую колбу для титрования из стаканчика, ополоснутого раствором соды, отмерить пипеткой точный объем титрованного раствора соды (v Na2C03, N Na2C03) и добавить 2-3 капли индикатора метилоранжа. Раствор соляной кислоты прибавлять по каплям из бюретки( процесс титрования). Изменение цвета индикатора - от желтого в растворе соды до оранжевого - свидетельствует о достижении точки эквивалентности. Записать результаты титрования по бюретке (с точно­стью до 0,02-0,03 мл). После этого прибавить еще одну, контрольную каплю раствора соляной кислоты из бюретки. Если при этом раствор изменит свою окраску на розовую, то точка эквивалентности была определена вер­но. Титрование повторить до получения трех сходящих результатов.

3. Запись результатов титрования:

На титрование vсоды (мл) пошло_____(мл) соляной кислоты

На титрование vсоды (мл) пошло_____(мл) соляной кислоты

На титрование vсоды (мл) пошло_____(мл) соляной кислоты

4. Расчет концентраций (N и Т) раствора соляной кислоты

5. Вывод по лабораторной работе

Задачи для самостоятельной работы:

1. Какое значение рН в точке эквивалентности реакции нейтрализации NH4OH соляной кислотой?

2. Какую окраску имеет индикатор метил-оранжевый при значениях рН: 3; 4; 7?

3. Какой объем 28%-раствора едкого натра (ρ =1,31 г/мл) надо взять для приготовления 3 литров 0,2Н раствора едкого натра.

4. Сколько граммов буры (Na2B4O7*10H2O) содержится в колбе на 200 мл, если на титрование 3 мл этого раствора пошло 2,4 мл раствора соляной кислоты с концентрацией 0,1 экв/л .

5. На нейтрализацию 20 мл раствора, содержащего в одном литре

20 г ще­лочи, было израсходовано 24 мл 0,25 Н раствора кислоты. Рассчитать эквивалент щелочи.

6. Определить титр 1 Н раствора соды (M Na2СО3 =106 г/моль).

7. 1 литр раствора соляной кислоты содержит 0,1243 экв НСl. Какой объем 1 Н и раствора КОН потребуется для нейтрализации 100 мл этого раство­ра?

8. Сколько граммов буры (Na2B4O7*10H2O) содержит 1 литр 0,1 Н раствора (М буры=380,6 г/моль).

Литература

1. Общая химия. Биофизическая химия. Химия биогенных элементов. Учебник для медицинских вузов. (Ю.А.Ершов, В.А.Попков, А.С.Берлянд и др. Ред.Ю.А.Ершов), 8 изд., 560 с.- М,: Высш.шк., 2010 г.

2. Практикум по общей химии. Биофизическая химия. Химия биогенных элементов. Учебное пособие для студентов медицинских вузов (Ред. В.А.Попков).- М., Высшая школа, 4 изд., 239 с., 2008 г.

3. Сборник задач и упражнений по общей химии. Учебное пособие. (С.А. Пузаков, В.А. Попков, А.А. Филиппова). М. : Высшая школа, 4 изд., 255 с., 2010г.

4. Общая химия. Учебник для медицинских вузов. (В.А. Попков, С.А. Пузаков), 976 с. - М, ГЭОТАР Медиа, 2007 г.

Занятие №3

ОКИСЛИТЕЛЬНО-ВОССТАНОВИТЕЛЬНЫЕ РЕАКЦИИ ОКСИДИМЕТРИЯ

Цель занятия:

Изучить теоретические основы перманганатометрии (части оксидиметрии).

План занятия

1. Разбор и закрепление теоретического материала.

2. Выполнение лабораторных работ:

а) Приготовление титрованного раствора оксалата натрия (Na2C204).

б) Установление нормальности и титра рабочего раствора перманганата

в) Определение содержания железа (II) в соединениях железа.

3. Решение задач по теме занятия.

4. Отчет по выполненной работе.

Основные вопросы, разбираемые на занятии:

1. Отличие методов оксидиметрии от метода нейтрализации и их классифи­кация.

2. Понятие эквивалента окислителя и восстановителя.

3. Сущность метода перманганатометрии. Рабочие растворы. Техника вы­полнения.

Ключевые вопросы темы

Окислительно-восстановительные реакции лежат в основе многих важнейших процессов в живой природе. Количественное определение окислите­лей и восстановителей является задачей оксидиметрии. В клинических и биохимических исследованиях оксидиметрически оп­ределяют содержание ферментов, (каталазы, пероксидазы), аскорбиновой кислоты, сахара в крови, мочевой кислоты в моче, ионов Ca 2+ в сыворотке крови и т.д.

В санитарно-технических исследованиях оксидиметрически определя­ют содержание активного хлора в питьевой воде, природных водоемов и т.д.

В зависимости от применяемых титрантов оксидиметрию разделяют на перманганатометрию (титрант - перманганат калия), йодометрию (титрант -йод и тиосульфат натрия), броматометрию (титрант - бромат калия), нитритометрию (титрант - нитрит натрия). Особенно широко в медицине и биологии применяют перманганатометрию и йодометрию.

СУЩНОСТЬ МЕТОДА ПЕРМАНГАНАТОМЕТРИИ

В нейтральной или щелочной среде КМn04 восстанавливается до МnO2, т.к. Мn 7+ переходит в Mn 4+ ,принимая три электрона.

В то же время этим методом можно определять и окислители, добав­ляя к ним известный избыток раствора восстановителя, например оксалата натрия, а затем определяя не вступивший в реакцию остаток (обратное перманганатометрическое титрование).

Одним из преимуществ перманганатометрического титрования являет­ся возможность фиксирования точки эквивалентности без использования индикатора, т.к. первая избыточная капля титранта окрашивает титруемый раствор в розовый цвет.

Особенностью перманганатометрического титрования является то, что

практически все реакции с участием иона (МnО4) ¯ в кислой среде ускоряются

ионами Mn +2 , т.е. продуктом реакции (так называемые автокаталитические реакции).

Задачи для самостоятельной работы

1. Составить молекулярное уравнение и электронный баланс реакции, протекающей между перманганатом калия и оксалатом натрия. Указать условия, при которых протекает эта реакция. Рассчитайте эквивалентную массу окислителя и восстановителя в данной реакции.

2. Составить молекулярное уравнение и электронный баланс реакции, протекающей между парманганатом калия и сульфатом железа (II). Указать условия, необходимые для протекания этой реакции. Рассчитайте эквивалентные массы окислителя и восстановителя.

3. Определить нормальность и титр кислогораствора КМn04, если в одном литре этого раствора содержится 0,3161 г чистого КМn04 .

4. На титрование одного мл раствора щавелевой кислоты, титр которого равен 0,0069 г/мл, пошло 1,2 мл раствора КМn04. Определить нормаль­ность раствора окислителя.

5. Какую навеску щавелевой кислоты надо растворить в колбе на 200 мл, чтобы приготовить 0,02 Н раствор.

6. Какой объем раствора, содержащего 0,556 г FeS04*7H20 в 500 мл, может быть окислен 10 мл 0,02 Н раствора КМп04?

7. Уравнять окислительно-восстановительную реакцию:

Определить эквивалент окислителя и восстановителя.

8. Уравнять окислительно-восстановительную реакцию:

Определить эквивалент окислителя и восстановителя.

9. Уравнять окислительно-восстановительную реакцию:

Определить эквивалент окислителя и восстановителя.

Литература

1. Общая химия. Биофизическая химия. Химия биогенных элементов. Учебник для медицинских вузов. (Ю.А.Ершов, В.А.Попков, А.С.Берлянд и др. Ред.Ю.А.Ершов), 8 изд., 560 с.- М,: Высш.шк., 2010 г.

2. Практикум по общей химии. Биофизическая химия. Химия биогенных элементов. Учебное пособие для студентов медицинских вузов (Ред. В.А.Попков).- М., Высшая школа, 4 изд., 239 с., 2008 г.

3. Сборник задач и упражнений по общей химии. Учебное пособие. (С.А. Пузаков, В.А. Попков, А.А. Филиппова). М. : Высшая школа, 4 изд., 255 с., 2010г.

4. Общая химия. Учебник для медицинских вузов. (В.А. Попков, С.А. Пузаков), 976 с. - М, ГЭОТАР Медиа, 2007 г.

В алкалиметрии в качестве титрантов используют растворы щелочей (NaOH, KOH, Ba(OH)2), в которых молярная концентрация эквивалента вещества колеблется в интервале от 0,01 моль/дм 3 до 0,2 моль/дм 3 . Их не готовят по точной массе рассчитанной навески, поскольку щелочи являются гигроскопичными и даже при правильном хранении содержат в качестве примесей небольшое количество воды и карбонатов, а получают разбавлением концентрированных растворов с последующей стандартизацией другим раствором, титр которого известен. Для этих целей обычно используют стандартные растворы щавелевой Н2С2О4 или янтарной Н2С4Н4О4 кислот:

Рабочие растворы щелочей сохраняют свою устойчивость, если их хранить не в стеклянной, а в парафинированной либо фторопластовой посуде. Необходимо также учитывать, что растворы щелочей поглощают СО2 из воздуха с образованием карбонатов. Вследствие этого их титр желательно устанавливать непосредственно перед проведением анализа.

Для стандартизации рабочих растворов в кислотно-основном титровании могут использоваться и те растворы НСl, H2SO4 либо NaOH, KOH, точный титр которых уже установлен с помощью первичных стандартов.

Стандартные растворы кислот и щелочей можно получить также из фиксаналов, выпускаемых промышленностью. Это значительно сокращает затраты времени и средств на подготовительной стадии анализа.

Определение точки эквивалентности в кислотно-основном титровании.
Кислотно-основные индикаторы

Характерной особенностью ацидо- и алкалиметрии является непрерывное изменение рН раствора в процессе титрования.

В точке эквивалентности среда может быть нейтральной, слабокислой или слабощелочной в зависимости от природы взаимодействующих между собой веществ.

Можно выделить в связи с этим три основных случая:

HCl + NaOH → NaСl + H2O

Продуктом данной реакции является соль, не подвергающаяся гидролизу. Значит, точка эквивалентности в этом случае будет находиться в нейтральной среде при рН = 7.

Образовавшаяся при этом соль в водном растворе будет подвергаться гидролизу по аниону:

Вследствие этого даже после полного расходования исходных веществ реакция среды в точке эквивалентности будет слабощелочной (рН>7).

Получившаяся соль в водном растворе станет подвергаться гидролизу по катиону:

Реакция среды в точке эквивалентности будет слабокислой (рН - + H3O +

Если индикатор – слабое основание Ind, то аналогичный процесс можно условно представить следующим образом:

Ind + H2O ↔ HInd + + OH -

Обе формы индикатора окрашены в разный цвет и их равновесное количественное соотношение в растворе определяется величиной рН среды. Изменение её значения приводит к смещению равновесия процесса диссоциации индикатора либо вправо, либо влево. В первом случае возрастает количество ионизированной формы индикатора, во втором – молекулярной или неионизированной формы. В соответствии с этим раствор приобретает окраску превалирующей формы индикатора.




Считается, что цвет одной формы индикатора доминирует, если её концентрация как минимум в 10 раз превышает концентрацию другой формы.

Таким образом, все кислотно-основные индикаторы изменяют окраску не скачкообразно, а плавно, т.е. в определённом интервале значений рН раствора, называемом интервалом перехода индикатора. Каждый индикатор имеет свой интервал перехода, который зависит от особенностей структуры его молекулы и её способности к ионизации. Значения интервалов перехода индикаторов, а также окраска той или иной его формы в растворе определяются опытным путём и приводятся в соответствующих справочниках в виде таблицы (табл. 21).

Таблица 21. Важнейшие кислотно-основные индикаторы

Для большинства индикаторов разница в крайних значениях рН интервала перехода не превышает двух единиц, а границы самого интервала перехода определяются соотношением рКа±1 для кислотного индикатора или рКв±1 для основного индикатора (рКа = -lgKa, а рКв = - lgKв). Ка и Кв являются константой диссоциации, соответственно, индикатора-кислоты и индикатора-основания. Часто в общем виде их обозначают как Кинд.

Изменение окраски становится отчётливо видным уже при рН среды, равной рКинд.. Значение рН, при котором обычно заканчивается титрование, называют показателем титрования рТ. Индикатор для титрования подбирают таким образом, чтобы его интервал перехода окраски включал то значение рН, какое должен иметь раствор в точке эквивалентности (Подробнее о подборе индикатора см. ниже).

Причина изменения цвета индикатора заключается в том, что присоединение или отдача протонов Н + его молекулами связаны с заменой в них одних хромофорных группировок атомов другими или с появлением новых хромофорных групп в результате внутримолекулярной перегруппировки.

Различают обратимые и необратимые индикаторы. Изменение окраски первых (например, фенолфталеина) в ту или иную сторону при изменении рН среды может быть повторено многократно. Необратимые индикаторы подвергаются необратимым химическим превращениям, при которых невозможен обратный переход одной хромофорной группировки атомов в другую.

Индикаторы, которые вводят в исследуемый раствор, называются внутренними, в отличие от внешних, реакцию с которыми проводят вне анализируемой смеси. В последнем случае одну или несколько капель анализируемого раствора помещают на бумажку, пропитанную индикатором, или смешивают их на белой фарфоровой пластинке с каплей индикатора.

Индикаторы, у которых окрашена только одна форма, называют одноцветными, в отличие от двухцветных,у которых обе формы имеют разные цвета. Индикаторы должны иметь интенсивную окраску, чтобы при незначительных концентрациях (порядка 10 -4 -10 -5 моль/дм 3 ) титруемый раствор был бы ими достаточно чётко окрашен.

Для превращения одной формы в другую индикаторы взаимодействуют с некоторой частью титранта или исследуемого вещества. Следовательно, количество использованного для анализа индикатора должно быть минимальным, чтобы существенно не влиять на результат анализа в ту или иную сторону.

Ацидиметрия используется для количественного определения оснований и солей, вступающих в необратимое взаимодействие с сильными кислотами.

В алкалиметрии в качестве титрантов используют растворы щелочей (NaOH, KOH, Ba(OH)2), в которых молярная концентрация эквивалента вещества колеблется в интервале от 0,01 моль/дм 3 до 0,2 моль/дм 3 . Их не готовят по точной массе рассчитанной навески, поскольку щелочи являются гигроскопичными и даже при правильном хранении содержат в качестве примесей небольшое количество воды и карбонатов, а получают разбавлением концентрированных растворов с последующей стандартизацией другим раствором, титр которого известен. Для этих целей обычно используют стандартные растворы щавелевой Н2С2О4 или янтарной Н2С4Н4О4 кислот:

Рабочие растворы щелочей сохраняют свою устойчивость, если их хранить не в стеклянной, а в парафинированной либо фторопластовой посуде. Необходимо также учитывать, что растворы щелочей поглощают СО2 из воздуха с образованием карбонатов. Вследствие этого их титр желательно устанавливать непосредственно перед проведением анализа.

Для стандартизации рабочих растворов в кислотно-основном титровании могут использоваться и те растворы НСl, H2SO4 либо NaOH, KOH, точный титр которых уже установлен с помощью первичных стандартов.

Стандартные растворы кислот и щелочей можно получить также из фиксаналов, выпускаемых промышленностью. Это значительно сокращает затраты времени и средств на подготовительной стадии анализа.

Определение точки эквивалентности в кислотно-основном титровании.
Кислотно-основные индикаторы

Характерной особенностью ацидо- и алкалиметрии является непрерывное изменение рН раствора в процессе титрования.

В точке эквивалентности среда может быть нейтральной, слабокислой или слабощелочной в зависимости от природы взаимодействующих между собой веществ.

Можно выделить в связи с этим три основных случая:

HCl + NaOH → NaСl + H2O

Продуктом данной реакции является соль, не подвергающаяся гидролизу. Значит, точка эквивалентности в этом случае будет находиться в нейтральной среде при рН = 7.

Образовавшаяся при этом соль в водном растворе будет подвергаться гидролизу по аниону:

Вследствие этого даже после полного расходования исходных веществ реакция среды в точке эквивалентности будет слабощелочной (рН>7).

Получившаяся соль в водном растворе станет подвергаться гидролизу по катиону:

Реакция среды в точке эквивалентности будет слабокислой (рН - + H3O +

Если индикатор – слабое основание Ind, то аналогичный процесс можно условно представить следующим образом:

Ind + H2O ↔ HInd + + OH -

Обе формы индикатора окрашены в разный цвет и их равновесное количественное соотношение в растворе определяется величиной рН среды. Изменение её значения приводит к смещению равновесия процесса диссоциации индикатора либо вправо, либо влево. В первом случае возрастает количество ионизированной формы индикатора, во втором – молекулярной или неионизированной формы. В соответствии с этим раствор приобретает окраску превалирующей формы индикатора.

Считается, что цвет одной формы индикатора доминирует, если её концентрация как минимум в 10 раз превышает концентрацию другой формы.

Таким образом, все кислотно-основные индикаторы изменяют окраску не скачкообразно, а плавно, т.е. в определённом интервале значений рН раствора, называемом интервалом перехода индикатора. Каждый индикатор имеет свой интервал перехода, который зависит от особенностей структуры его молекулы и её способности к ионизации. Значения интервалов перехода индикаторов, а также окраска той или иной его формы в растворе определяются опытным путём и приводятся в соответствующих справочниках в виде таблицы (табл. 21).

Таблица 21. Важнейшие кислотно-основные индикаторы

Для большинства индикаторов разница в крайних значениях рН интервала перехода не превышает двух единиц, а границы самого интервала перехода определяются соотношением рКа±1 для кислотного индикатора или рКв±1 для основного индикатора (рКа = -lgKa, а рКв = - lgKв). Ка и Кв являются константой диссоциации, соответственно, индикатора-кислоты и индикатора-основания. Часто в общем виде их обозначают как Кинд.

Изменение окраски становится отчётливо видным уже при рН среды, равной рКинд.. Значение рН, при котором обычно заканчивается титрование, называют показателем титрования рТ. Индикатор для титрования подбирают таким образом, чтобы его интервал перехода окраски включал то значение рН, какое должен иметь раствор в точке эквивалентности (Подробнее о подборе индикатора см. ниже).

Причина изменения цвета индикатора заключается в том, что присоединение или отдача протонов Н + его молекулами связаны с заменой в них одних хромофорных группировок атомов другими или с появлением новых хромофорных групп в результате внутримолекулярной перегруппировки.

Различают обратимые и необратимые индикаторы. Изменение окраски первых (например, фенолфталеина) в ту или иную сторону при изменении рН среды может быть повторено многократно. Необратимые индикаторы подвергаются необратимым химическим превращениям, при которых невозможен обратный переход одной хромофорной группировки атомов в другую.

Индикаторы, которые вводят в исследуемый раствор, называются внутренними, в отличие от внешних, реакцию с которыми проводят вне анализируемой смеси. В последнем случае одну или несколько капель анализируемого раствора помещают на бумажку, пропитанную индикатором, или смешивают их на белой фарфоровой пластинке с каплей индикатора.

Индикаторы, у которых окрашена только одна форма, называют одноцветными, в отличие от двухцветных,у которых обе формы имеют разные цвета. Индикаторы должны иметь интенсивную окраску, чтобы при незначительных концентрациях (порядка 10 -4 -10 -5 моль/дм 3 ) титруемый раствор был бы ими достаточно чётко окрашен.

Для превращения одной формы в другую индикаторы взаимодействуют с некоторой частью титранта или исследуемого вещества. Следовательно, количество использованного для анализа индикатора должно быть минимальным, чтобы существенно не влиять на результат анализа в ту или иную сторону.

Алкалиметрия и ацидиметрия — важнейшие титриметрические методы определения кислот или же оснований, основанные на реакции нейтрализации:

Титрование раствором щелочи называется алкалиметрией, а титрование раствором кислоты — ацидиметрией [1] .

Примечания

  1. ↑Ацидиметрия // Энциклопедический словарь Брокгауза и Ефрона: В 86 томах (82 т. и 4 доп.) — СПб. , 1890—1907.

Источники

Wikimedia Foundation . 2010 .

Полезное

Смотреть что такое "Алкалиметрия и ацидиметрия" в других словарях:

АЛКАЛИМЕТРИЯ И АЦИДИМЕТРИЯ — (от средневекового лат. alcali щелочь и лат. acidus кислый и . метрия) (кислотно основное титрование) методы количественного определения оснований и кислот, основанные на их нейтрализации раствором соответствующей кислоты или основания … Большой Энциклопедический словарь

алкалиметрия и ацидиметрия — (от ср. век. лат. alcali щёлочь и лат. acidus кислый и . метрия) (кислотно основное титрование), методы количественного определения оснований и кислот, основанные на их нейтрализации раствором соответствующей кислоты или основания. * * *… … Энциклопедический словарь

АЛКАЛИМЕТРИЯ И АЦИДИМЕТРИЯ — (от ср. век. лат. alcali щёлочь и лат. acidus кислый и . метрия)(кислотно основное титрование), методы количеств, определения оснований и к т, основанные на их нейтрализации р ром соотв. кислоты или основания … Естествознание. Энциклопедический словарь

АЦИДИМЕТРИЯ — см. Алкалиметрия и ацидиметрия … Большой Энциклопедический словарь

ацидиметрия — см. Алкалиметрия и ацидиметрия. * * * АЦИДИМЕТРИЯ АЦИДИМЕТРИЯ, см. Алкалиметрия и ацидиметрия (см. АЛКАЛИМЕТРИЯ И АЦИДИМЕТРИЯ) … Энциклопедический словарь

АЦИДИМЕТРИЯ — см. Алкалиметрия и ацидиметрия … Естествознание. Энциклопедический словарь

АЦИДИМЕТРИЯ — АЦИДИМЕТРИЯ, см. Алкалиметрия … Большая медицинская энциклопедия

ДЕКРУАЗИЛЬ Франсуа Антуан Анри — ДЕКРУАЗИЛЬ (Descroizil) Франсуа Антуан Анри (1751 1825), французский химик технолог. Один из основателей объемного анализа. Разработал (1805 06) алкалиметрию (см. АЛКАЛИМЕТРИЯ И АЦИДИМЕТРИЯ) и ацидиметрию (см. АЛКАЛИМЕТРИЯ И АЦИДИМЕТРИЯ). Ввел… … Энциклопедический словарь

Аналитическая химия — Содержание … Википедия

Волюмометрия — Титриметрический анализ (титрование) методы количественного анализа в аналитической и фармацевтической химии, основанные на измерении объема раствора реактива известной концентрации, расходуемого для реакции с определяемым веществом.… … Википедия

В основе кислотно-основного титрования лежит соединение Ионов H3O+ и гидроксид Ионов OH- с образованием малодиссоциирующих молекул воды. Этим методом, пользуясь титроваными растворами щелочей, определяют количество или концентрацию кислот. С помощью растворов кислот находят концентрацию оснований. Метод пригоден также для определения протолитически Кислых и щелочных солей. Поскольку реакция нейтрализации не сопровождается каким-нибудь внешним эффектом, например изменением окраски раствора, точку эквивалентности определяют с помощью индикаторов. Но обычно индикаторы изменяют окраску не строго в точке эквивалентности, а с некоторым отклонением от неё. Иначе говоря конечная точка титрования не всегда совпадает с точкой эквивалентности, она только более или менее соответствует точке эквивалентности. Поэтому даже при правильном выборе индикатора допускается погрешность, называемая индикаторной ошибкой титрования.

Алкалиметрия – это метод аналитического характера, с помощью которого определяется количество свободных кислот или солей в щелочных соединениях.

Чтобы определить количество кислоты (процесс нейтрализации) используют титрованный раствор щелочи NaOH или KOH.Так как щелочной раствор нестабилен и часто меняет титр, то приготовить точный титрованный раствор, взвесив все компоненты, практически невозможно. Щелочи не являются компонентами, из которых можно точно приготовить основу для титрования. Поэтому, в основном, используют в качестве основы титрования – кислоты: щавелевая или янтарная.Для каждой реакции нужно тщательно подбирать индикатор, особенно для солей, образованных при титровании.

В процессе алкалиметрии, происходит связывание ионов кислоты ионами щелочи, благодаря чему концентрация кислоты постепенно падает, а pH раствора постепенно растет. Когда достигается точка эквивалентности, процесс нейтрализации заканчивают. Это происходит при определенном показателе pH, который изменяется, в зависимости от вида реагирующей кислоты и основания.Этот метод широко используется в медицине: в лабораториях определяют кислотность желудочного сока. А в санлабораториях: определяют жесткость воды, кислотность безалкогольных напитков, молочных продуктов, квашеной капусты.

При ацидиметрическом титровании водных растворов в качестве титрантов используют растворы сильных кислот (НСl, реже НNO3 или H2SO4). Однако перечисленные реагенты не обладают свойствами, которые позволяли бы готовить из них стандартные растворы просто по точной навеске. Так, твердые щелочи гигроскопичны и всегда содержат примеси карбонатов. В случае НСl и других сильных кислот исходный реактив представляет собой не чистое вещество, а раствор с неточно известной концентрацией. Поэтому в методе нейтрализации вначале готовят раствор с приблизительно известной концентрацией, а потом стандартизуют его.

Точка эквивалентности (конечная точка титрования) в титриметрическом анализе момент титрования, когда число эквивалентов добавляемого титранта эквивалентно или равно числу эквивалентов определяемого вещества в образце. В некоторых случаях наблюдают несколько точек эквивалентности, следующих одна за другой, например, при титровании многоосновных кислот или же при титровании раствора, в котором присутствует несколько определяемых ионов.

На графике кривой титрования присутствует одна или несколько точек перегиба, соответствующих точкам эквивалентности. Точкой окончания титрования (подобна точке эквивалентности, но не то же самое) считают момент, при котором индикатор изменяет свой цвет при колориметрическом титровании.

Линия нейтральности—это горизонтальная линия, проходящая через точку со значением рН 7.

Кривая титрования - график зависимости параметра системы, связанного с концентрацией титруемого вещества, титранта или продукта реакции, от степени протекания процесса титрования (например, от количества добавленного титранта).

По оси абсцисс при построении кривых титрования обычно откладывают объём добавленного стандартного раствора титранта или степень оттитрованности (f).

f = f = (если

На оси ординат, в случае кривых титрования для кислотно-основного титрования, откладывают значение рН раствора.

В зависимости от определяемого вещества и титранта различают 4 основных случая кислотно-основного титрования и, соответственно, 4 типа кривых титрования:

  • титрование сильной кислоты сильным основанием,
  • титрование сильного основания сильной кислотой,
  • титрование слабой кислоты сильным основанием,
  • титрование слабого основания сильной кислотой.

Теоретически можно представить себе и титрование слабой кислоты слабым основанием или титрование слабого основания слабой кислотой. Однако, на практике (во всяком случае, в химических методах анализа) такое титрование не используется.

На величину скачка титрования влияет ряд факторов.

Если вам нужна помощь в написании работы, то рекомендуем обратиться к профессионалам. Более 70 000 авторов готовы помочь вам прямо сейчас. Бесплатные корректировки и доработки. Узнайте стоимость своей работы.

1. Концентрация кислоты. Чем ниже концентрация титруемой кислоты, тем меньше скачок титрования.

2. Температура. Величина константы автопротолиза воды, входящей в формулы расчета рН, зависит от температуры - с повышением температуры величина константа автопротолиза заметно возрастает. Поэтому с повышением температуры рН воды также водных растворов оснований уменьшается. Это приводит к смещению точки эквивалентности и ветви кривой за точкой эквивалентности в область меньших значений рН; в результате скачок титрования уменьшается. При изменении температуры рН растворов кислот и буферных смесей изменяется в меньшей степени.

3. Природа титруемой кислоты. Чем меньше константа диссоциации кислоты, тем выше рН растворов в начале титрования и в области буферного действия. Чем слабее титруемая кислота, тем сильнее сопряженное основание, образующееся при титровании Отсюда ясно, что с уменьшением константы диссоциации кислоты точки эквивалентности и начальная ветвь кривой титрования смещаются в область более высоких значений рН, однако за точкой эквивалентности кривая остается без изменений, и скачок титрования уменьшается.

Поможем написать любую работу на аналогичную тему

Кислотно-основное титрование. Ацидиметрия и алкалиметрия. Точка нейтральности и конечная точка титрования. Кривые титрования. Факторы, влияющие на скачок титрования.

Кислотно-основное титрование. Ацидиметрия и алкалиметрия. Точка нейтральности и конечная точка титрования. Кривые титрования. Факторы, влияющие на скачок титрования.

Кислотно-основное титрование. Ацидиметрия и алкалиметрия. Точка нейтральности и конечная точка титрования. Кривые титрования. Факторы, влияющие на скачок титрования.

Читайте также: