Алгоритм адресации в глобальных сетях кратко

Обновлено: 02.07.2024

Для того, чтобы компьютеры могли идентифицировать друг друга в информационно-вычислительной сети, им присваиваются явные адреса. Основными типами адресов являются следующие:

  • MAC -адрес;
  • IP -адрес;
  • доменный адрес;
  • URL .

Физические адреса

MAC -адрес, который также называют физическим адресом, Ethernet- адресом, присваивается каждому сетевому адаптеру при его производстве. Его размер - 6 байт.

Этот сетевой адрес является уникальным, - фирмам-производителям выделены списки адресов, в рамках которых они обязаны выпускать карты. Адрес записывается в виде шести групп шестнадцатеричных цифр по две в каждой (шестнадцатеричная запись байта). Первые три байта называются префиксом (что определяет 2 24 различных комбинаций или почти 17 млн адресов), и именно они закреплены за производителем.

Адаптер "слушает" сеть, принимает адресованные ему кадры и широковещательные кадры с адресом FF:FF:FF:FF:FF:FF и отправляет кадры в сеть, причем в каждый момент времени в сегменте узла сети находится только один кадр.

Собственно, MAC -адрес соответствует не компьютеру, а его сетевому интерфейсу. Таким образом, если компьютер имеет несколько интерфейсов, то это означает, что каждому интерфейсу будет назначен свой физический адрес. Каждой сетевой карте соответствует собственный MAC -адрес и IP -адрес, уникальный в рамках глобальной сети.

MAC -адреса используются на физическом и канальном уровнях, т.е. в "однородной" среде. Для того, чтобы могли связываться друг с другом компьютеры, входящие в большие составные сети, используется другой вид адресов - IP- адреса.

IP -адресация

IP -адрес является основным видом адресации в Internet . Он обозначает не только компьютер, но и сегмент сети, в котором находится данный компьютер. Например, адрес 192.123.004.010 соответствует узлу номер 10 в сети 192.123.004. У другого узла в этом же сегменте может быть номер 20 и т.д. Сети и узлы в них - это отдельные объекты с отдельными номерами.

IP -адрес - представляет собой 32-разрядное двоичное число (например, 11000000 01111011 00001010). Для удобства оно разбивается на четыре восьмиразрядных поля, называемых октетами. TCP/IP представляет эти двоичные октеты их десятичными эквивалентами (в данном примере это 192.123.004.010), что облегчает использование IP -адресов для человека.

Классы IP -сетей

Эти четыре октета в разных сетях обозначают разные вещи. В некоторых организациях создается одна большая сеть, но с миллионами узлов. Здесь первый октет адреса используется для обозначения сети, а остальные три октета - для обозначения отдельных рабочих станций. Такой адрес называют адресом класса А. Самые частые потребители адресов класса А - поставщики сетевых услуг (провайдеры), которые обслуживают очень большие сети с тысячами конечных пунктов.

В некоторых организациях могут быть тысячи узлов, включенных в состав нескольких сетей. В таких случаях используются адреса класса В, в которых первые два октета (16 битов) используются для обозначения сети, а последние два - для обозначения отдельных узлов. Наиболее известные потребители адресов класса В - университеты и крупные учреждения.

Наконец, наиболее часто используется адрес класса С, в котором первые три октета (или 24 бита) служат для обозначения сегмента, а последний октет - для обозначения рабочих станций. Такие адреса лучше всего подходят для случая, когда имеется множество отдельных сетей, в состав каждой из которых входит всего несколько десятков узлов. Адреса такого типа чаще всего встречаются в локальных сетевых средах, где в одном сетевом сегменте в среднем бывает около 40 узлов.

При соединении сети класса А с сетью класса В маршрутизатору необходимо сообщить, как он должен отличать одну сеть от другой. В противном случае он подумает, что трафик, исходящий из сети класса С и предназначенный для узла класса, можно идентифицировать по последнему октету. На самом же деле узел класса А обозначается последними тремя октетами - а это большая разница. Не зная этого, маршрутизатор попытается найти трехоктетную сеть, к которой подключен однооктетный хост. На самом же деле ему нужно послать данные в однооктетную сеть, в которой находится трехоктетный хост.

Стек протоколов TCP/IP использует первые три бита первого октета для идентификации класса сети, позволяя устройствам автоматически распознавать соответствующие типы адресов. У адресов класса А первый бит установлен в 0, а остальные семь битов служат для идентификации сетевой часть адреса (как вы полмните, в адресах класса А первый октет служит для обозначения сети, а остальные три - для обозначения узлов). Поскольку можно использовать только семь битов, максимально возможное количество сетей - 128. Номера сетей 000 и 127 зарезервированы для использования программным обеспечением, поэтому это число уменьшается до 126 (001 - 126). Для обозначения узлов можно использовать 24 бита, поэтому для каждой из этих сетей максимальное число узлов составляет 16 777 216.

У адресов класса В первый бит всегда устанавливается в 1, а второй в 0. Поскольку для обозначения сетей здесь используются два октета, то для каждого сетевого сегмента остается, таким образом, 14 битов. Следовательно, максимально возможное число адресов этого класса - 16 384, в диапазоне от 128.001 до 191.254 (номера 000 и 255 зарезервированы).

В адресах класса С первые два бита всегда равны 1, а третий установлен в 0. В этих адресах для обозначения сетей используются первые три октета, следовательно, остается 21 бит. Диапазон возможных номеров сетей - от 192.001.001 до 223.254.254, или 2 097 152 сегмента. При этом, однако, для обозначения узлов остается только один октет, поэтому в каждом сегменте может быть всего 254 устройства.

В таблице 1 приведены характеристики адресов сетей различных классов. Адреса класса D предназначены для широковещательной рассылки пакетов сразу группе машин. Адреса класса Е пока не используются. Предполагается, что со временем они будут задействованы с целью расширения стандарта.

Таблица 1. Характеристика классов IP -адресов

Среди IP -адресов несколько зарезервировано под специальные случаи использования (табл. 2). Так, значение первого октета 127 зарезервировано для служебных целей, в основном, для тестирования сетевого оборудования, поскольку IP -пакеты, направленные на такой адрес, не передаются в сеть, а ретранслируются обратно управляющей надстройке сетевого программного обеспечения как только что принятые.

Таблица 2. Значение выделенных IP -адресов

Централизованным распределением IP -адресов занимаются государственные организации. В США - Стенфордский международный научно-исследовательский институт ( Stanford Research Institute) , расположенный в г. Мэнло-Парк, штат Калифорния. Услуга по присвоению новой локальной сети IP -адресов бесплатная, и занимает она приблизительно неделю.

В небольших локальных сетях, использующих стек TCP/IP , можно назначать IP -адреса компьютерам произвольно - в том случае, если данные компьютеры не имеют непосредственного (прямого) выхода в Internet

Маски подсетей

Часто перед администраторами локальных сетей встает необходимость разбиения вверенной им сети на несколько подсетей. Делается это с помощью маски подсети. Маска подсети заставляет сетевое программное обеспечение иначе интерпретировать IP -адреса машин, входящих в сеть.

Рассмотрим, например, адрес хоста 192.123.004.010. Это адрес класса С, в котором первые 24 бита обозначают номер сети. Остальные 8 битов обозначают хост. Можно установить сетевую маску так, чтобы первые 25 битов обозначали сеть, а остальные 7 - хост.

Последние 8 битов администратор локальной сети может использовать так, как ему нужно. Можно их использовать обычным образом, для обозначения хост-машин. Но есть и другой вариант: назначить некоторые из оставшихся 8 битов подсетям. По сути дела, сетевая часть адреса получает еще одно поле, а диапазон номеров хостов сокращается.

Рассмотрим воображаемую компанию, Windows Inc. , которая использует и сети Ethernet , и кольцевые сети с маркерным доступом. Ей выделен, однако, только один сетевой адрес класса С, 192.123.004. Вместо того чтобы использовать последний октет для обозначения 254 хостов в одной сети, компания решила ввести в адрес маску подсети, "позаимствовав" первый бит последнего октета. В результате создаются две подсети по 128 возможных хост-номера в каждой.

Изучая свои сетевые номера, Windows Inc. видит следующее:

*Номера 000 и 255 зарезервированы.

Следует, однако учесть, что устройства в сети не выполняют эту логическую разбивку автоматически. Основываясь на идентификаторе класса С в начале адреса, они продолжают считать, что последние 8 битов адреса обозначают хост. Поэтому о принятой маске нужно сообщить всем устройствам в сегменте сети.

В маске подсети используется очень простой алгоритм. Если бит маски установлен в 1, это часть номера сети. Если бит маски установлен в 0, это часть номера хоста. Следовательно, маска подсети для приведенного выше примера имеет вид 11111111 11111111 11111111 10000000.

Маска - это число, двоичная запись которого содержит единицы в тех разрядах, которые должны интерпретироваться как номер сети.

В таблице 3 приведены стандартные маски подсетей для различных классов адресов сетей.

Таблица 3. Стандартные маски подсетей

Маска подсети должна применяться при обработке адреса маршрутизаторами. Если ранее маршрутизатор просто проверял, не совпадает ли адрес сети получателя, например, 192.123.004, с адресом какой-либо непосредственно подсоединенной к маршрутизатору сети, то теперь он должен использовать маску подсети, чтобы выделить адрес сети получателя. Чтобы маска подсети работала, ее должны поддерживать все устройства данной подсети.

Проблемы 4-х байтовой адресации

Если сложить все возможные IP -адреса, то получится свыше 4,7 млрд. адресов хостов. Это очень много, но, к сожалению, четырехоктетной структуре присущи серьезные ограничения. Каждый раз, когда какой-то организации назначается адрес класса А, с ним уходит около 17 млн. адресов хостов. Если назначить все 126 адресов класса А, то свыше 3 млрд. из наличных 4,7 млрд. адресов окажутся занятыми. Если назначить все 16000 адресов класса В, уйдет еще миллиард. При этом не важно, используются ли выделенные адреса или нет: все они назначены конкретной сети и повторно использоваться не могут.

Самая большая проблема, однако, связана с классом С. Тому есть две причины. Во-первых, этих адресов меньше всего (имеется лишь около 500 млн. адресов узлов). Во-вторых, эти адреса самые популярные, потому что удовлетворяют размерам большинства локальных сетей. Каждый раз, когда сетевому сегменту выделяется адрес класса С, с ним уходят 254 возможных адреса узлов. Вспомним, что для каждой отдельной сети нужен новый номер. Поэтому люди, у которых три сегмента и всего 60 узлов, тратят впустую более 700 возможных адресов рабочих станций (3 сегмента ´ 254 адреса узлов = 762 адреса - 60 активных узлов = 702 незадействованных адреса). Понятно, что при таких темпах "расходования" наличные хост-номера фактически уже закончились.

По действующей схеме (протокол IPv4 ) может быть всего 2113662 сети. Если бы для обозначения сегмента все сети применяли первые 24 бита (не используя "классовые" биты), то максимальное число сетей составило бы 16777216, по 254 узла в каждой.

Вспомним, однако, что сети TCP/IP изначально рассчитаны на использование маршрутизаторов. Естественно, узлам и маршрутизаторам проще запомнить несколько сетей, чем множество. Необходимость обработки 16 миллионов адресов сетей быстро переполнила бы базы данных маршрутизаторов, и сетевой трафик существенно замедлился бы. Наличие классов сетей позволяет маршрутизаторам легко работать с большими сетями, причем без ущерба для производительности.

Следует также помнить, что первоначально Internet состояла, в основном, из крупных сетей, соединенный друг с другом. Было удобно дать один адрес сети milnet (это сеть несекретных военных компьютеров), а другой - сети NSFnet (это сеть Национального научного фонда США). Благодаря этому маршрутизаторам, для того чтобы передавать данные буквально на миллионы хост-машин, достаточно было запомнить только адрес другого маршрутизатора.

На сегодняшний день, однако истощение запаса адресов порождает огромные проблемы. При отсутствии адресов ни одна новая организация не сможет подключиться к Internet , а существующие сети не смогут расширяться. Для решения большинства этих проблем разработана новая версия протокола IP - IPv6 ( или IPng - IP next generation) .

Система доменных имен

DNS строится по иерархическому принципу, однако эта иерархия не является строгой. Фактически нет единого корня всех доменов Internet . В 80-е гг. были определены первые домены (национальные, США) верхнего уровня: gov, mil, edu, com, net. Позднее появились национальные домены других стран: uk ( Великобритания) , jp (Япония) , au (Австрия) , cn (Китай) и т.п. Для СССР был выделен домен su , однако после приобретения республиками Союза суверенитета многие из них получили собственные домены: ua - Украина , ru - Россия и т.п.

В настоящее время существуют домены верхнего уровня com - для коммерческих компаний, edu - для школ и университетов, org - для прочих организаций, net - для сетевых организаций и т.д.

Вслед за доменами верхнего уровня следуют домены, определяющие либо регионы, либо организации; следующие уровни иерархии могут быть закреплены за небольшими организациями, либо за подразделениями больших организациях.

DNS -серверы, реализующие перевод IP -адресов в доменные и обратно, устанавливаются обычно на машинах, которые являются шлюзами для локальных сетей. Вообще говоря, сервер имен может быть установлен на любой компьютер локальной сети. При выборе машины для установки сервера имен следует принимать в расчет то обстоятельство, что многие реализации серверов держат базы данных имен в оперативной памяти. При этом часто подгружается информация и с других серверов. Все это может вызвать задержки при разрешении запроса на адрес по имени машины, если для сервера имен будет использоваться маломощный компьютер.

Универсальная идентификация ресурсов ( URL )

Понятие URL

URL (Uniform Resource Locator - универсальный указатель ресурсов ) - система обозначений для однозначной идентификации компьютера, каталога или файла в Internet .

В систему URL заложены следующие принципы:

  • Расширяемость - новые адресные схемы должны легко вписываться в существующий синтаксис URL ; расширяемость достигается за счет выбора определенного порядка интерпретации адресов, который базируется на понятии "адресная схема". Идентификатор схемы стоит перед остатком адреса, отделен от него двоеточием и определяет порядок интерпретации остатка.
  • Полнота - по возможности любая из существовавших схем должна описываться посредством URL .
  • Читаемость - адрес должен легко пониматься человеком, что вообще характерно для технологии WWW , - документы вместе с ссылками могут разрабатываться в обычном текстовом редакторе.

Формат URL включает:

Для каждого вида протокола приложений выбирается свое подмножество полей из представленного выше списка. Прежде чем рассмотреть различные схемы представления адресов, приведем пример простого адреса URL :

Кроме подобной полной записи URL существует упрощенная, которая предполагает, что к моменту ее использования многие основные компоненты адреса ресурса уже определены (протокол, адрес машины в сети, некоторые элементы пути). В таком случае достаточно указывать только адрес, относительный определенных базовых ресурсов - относительный адрес.

Схемы URL

Рассмотрим несколько различных схем URL , с помощью которых можно обратиться к различным информационным ресурсам Internet .

  • Наиболее часто данная схема используется для доступа к публичным архивам FTP :
    ftp://astra.net.ru/pub/index01.txt
    В данном случае записана ссылка на архив astra.net.ru с идентификатором " anonymous " (доступ для любых пользователей).
  • Если необходимо указать идентификатор пользователя и его пароль, то можно это сделать перед адресом машины:
    ftp://login:password@/users/local/
    В данном случае эти параметры отделены от адреса машины символом " @ ", а друг от друга - двоеточием.

Схема file - используется в локальном режиме:
file:///C|/text/html/indes.htm
В данном примере приведено обращение к локальному документу на персональном компьютере с ОС Windows .

Существует еще несколько схем URL . Однако они реально на практике не используются или находятся в стадии разработки, поэтому останавливаться на них мы не будем.

Адресация современного Интернета основана на про­токоле IP (Internet Protocol), история которого нераз­рывно связана с транспортным протоколом TCP.

Концепция протокола IP представляет сеть как мно­жество компьютеров (хостов), подключенных к некото­рой интерсети. Интерсеть, в свою очередь, рассматрива­ется как совокупность физических сетей, связанных маршрутизаторами. Физические объекты (хосты, мар­шрутизаторы, подсети) идентифицируются при помощи специальных IP-адресов. Каждый IP-адрес представля­ет собой 32-битовый идентификатор. Принято записы­вать IP-адреса в виде 4-х десятичных чисел, разделен­ных точками.

Для этого 32-х битовый IP-адрес разбивается на че­тыре группы по 8 бит (1 байт), после чего каждый байт двоичного слова преобразовывается в десятичное число по известным правилам. Например, IP-адрес:

10010011 10000111 00001110 11100101 преобразовывается указанным способом к следующему виду: 147.135.14.229.

Классы адресов вычислительных сетей

Каждый адрес является совокупностью двух иденти­фикаторов: сети — NetID, и хоста — HostID. Все воз­можные адреса разделены на 5 классов, схема которых приведена на рисунке 5.

Из рисунка 5 видно, что классы сетей определяют как возможное количество этих сетей, так и число хос­тов в них. Практически используются только первые три класса:

Класс А определен для сетей с числом хостов до 16777216. Под поле NetID отведено 7 бит, под поле HostID — 24 бита.

Номер сети (8 бит) Номер узла (24 бит)
Номер сети (16 бит) Номер узла (16 бит)
Номер сети (24 бит) Номер узла (8 бит)
Адреса для многопунктовой адресации
Резерв адресов

Класс В используется для среднемасштабных сетей (NetID — 14 бит, HostlD — 16 бит). В каждой такой сети может быть до 65 536 хостов.

Класс С применяется для небольших сетей (NetId — 21 бит, HostID — 8 бит) с числом хостов до 255.

Система доменных имен

Постоянное расширение сети Internet привело к де­фициту уникальных адресов для вновь подключаемых узлов. С другой стороны, система адресации в такой сети должна быть универсальной и удобной для пользовате­ля. Последнее обстоятельство особенно было важно с началом использования ресурсов сети не только специа­листами, но и неподготовленными пользователями, не владеющими тонкостями адресации в сети. Решающим аргументом для перехода к альтернативным способам ад­ресации в сети, удобным для работы пользователей, было неудобство запоминания 32-х битового кода, идентифи­цирующего отдельный узел. Это неудобство проявилось сразу же, когда сеть использовалась узким кругом специ­алистов. Поэтому появилась альтернативные формы за­писи 32-х битового IP-адреса — десятичная (195.224.11.77) и шестнадцатеричная (0xffffff80) дот-нотации. После­дняя форма записи особенно была удобной для програм­мистов, часто применяющих шестнадцатеричный алфа­вит для записи кода программы.

Впоследствии с появлением в сети различных серви­сов (электронная почта и другие службы), а также с увеличением числа узлов и такая форма записи оказа­лась неудобной, поскольку достаточно сложно запом­нить несколько цифровых адресов, даже в десятичной дот-нотации. Это обусловило появление в сети ARPANET принципиально нового способа адресации, заключаю­щегося в присвоении узлам сети доменного имени. В данном случае правильнее говорить о новом способе именования узлов сети, поскольку доменное имя не яв­ляется логическим адресом, например, как IP-адрес или физическим адресом, как, например, шестибайтовый адрес сетевого интерфейса. Доменное имя — это только лишь удобная для пользователя форма идентификации узла вычислительной сети (сервис).

В более широком смысле под доменом понимается множество узлов вычислительной сети, которые администрируются и поддерживаются как одно целое.

Введение доменных имен поставило перед разработ­чиками задачу определения соответствия между домен­ным именем и логическим IP-адресом узла сети. Подоб­ная задача разработчиками ARPANET была решена, когда для определения соответствия между логическим IP-адресом и физическим адресом сетевого интерфейса в пределах локальной сети были введены протоколы ARP и RARP. Однако для глобальной сети решение такой задачи является более сложным.

Первоначально, когда ARPANET состояла из неболь­шого числа узлов, соответствие между доменными име­нами и IP-адресами узлов перечислялось в одном файле (hosts.txt) в виде таблицы соответствия цифрового ад­реса имени машины.

Авторство создания этих таблиц принадлежит Джо­ну Постелю. Именно он первым поддерживал файл hosts.txt, который можно было получить по FTP. Этот файл хранился в сетевом информационном центре Станфордского исследовательского института (SRI). Администраторы сетей передавали в SRI дополнения и изменения, происшедшие в конфигурации администрируемой ими сети. Периодически администраторы пере­писывали этот файл в свои системы.

В локальных сетях файлы hosts используются доста­точно успешно до сих пор. Практически все операцион­ные системы от различных версий Unix до Windows последних версий поддерживают эту систему соответ­ствия IP-адресов именам хостов.

Пользователь для обращения к узлу мог использо­вать как IP-адрес узла, так и его имя. Процедура ис­пользования имени заключается в следующем: сначала по имени в файле hosts находят IP-адрес, а затем по IP-адресу устанавливают соединение с удаленным инфор­мационным ресурсом.

С ростом сети ARPANET это стало чрезвычайно за­труднительно, поскольку файл увеличивался в разме­рах, а его пересылка по сети и хранение на каждом узле требовало значительных ресурсов. Однако главное неудобство заключалось в том, что такой способ не по­зволял оперативно учитывать все изменения в сети.

В 1984 году в сети ARPANET стала использоваться служба, получившая название системы доменных имен (Domain Name System — DNS). DNS была описана По­лом Мокапетрисом в двух документах: RFC-882 и RFC-883 (позже эти документы были заменены на RFC-1034 и RFC-1035).

В соответствии с RFC-1034 и RFC-1035, описываю­щими DNS, роль доменного имени в процессе установ­ки соединения осталась прежней. Это значит, что глав­ное, для чего используется DNS служба, — это получе­ние IP-адреса узла сети. Исходя из этого, любая реали­зация DNS является прикладным процессом, который работает над стеком протоколов межсетевого обмена TCP/IP. Таким образом, базовым элементом адресации в сетях TCP/IP с введением DNS остался IP-адрес, а доменное именование (система доменных имен) играет роль вспомогательного сервиса.

DNS состоит из трех основных частей:

■ пространство (множество) доменных имен (domain name space);

■ серверов доменных имен (domain name servers);

■ клиентов DNS (Resolver).

Пространство доменных имен имеет вид дерева (иерар­хии) узлов, как показано на рисунке 6 и подчиняется следующим правилам (RFC-1034):

■ имя корня — пустая строка, то есть полное имя обязательно завершается точкой1;

■ каждый узел дерева должен быть помечен про­стым именем, включающим допустимые символы;

■ прописные и строчные буквы в доменных именах не различаются;

■ допустимая длина простого имени не более 63 сим­волов;

■ доменные имена узлов в пределах одного домена должны быть уникальны;

■ максимальная длина полного имени — 255 симво­лов, включая точки;

■ максимальное число уровней дерева — 1271;

■ кроме полного (абсолютного) имени узла (FQDN, fully qualified domain name) допускается примене­ние относительного (относительно некоторого опор­ного узла) имени, в этом случае завершающая точ­ка отсутствует;

Полное доменное имя узла используется как ключе­вая информация для поиска IP-адреса узла в базе дан­ных, содержащей таблицы соответствия доменных имен и логических адресов.

Корень — это множество все узлов Internet. Дан­ное множество подразделяется на домены первого или верхнего уровня (top-level или TLD).

Корневой зоной Internet и системой корневых серве­ров управляет ICANN, в частности, ICANN делегирует (передает) права управления зонами первого уровня gTLD (generic top-level domains, домены верхнего орга­низационного уровня) и ccTLD (country code top-level domains, национальные домены).

Первоначально в ARPANET было семь доменов верх­него организационного уровня:

1. com (коммерческие организации);

2. edu (образовательные организации, в основном из США);

3. gov (правительственные организации США);

4. int (международные организации);

5. mil(военные организации США);


Рис. 6. Дерево доменных имен

6. net (организации, обеспечивающие сетевую инф­раструктуру);

7. org (некоммерческие организации).

В 90-х годах к ним были добавлены следующие до­мены:

8. aero (организации, связанные с авиацией);

9. аrра (используется для отображения адресов в имена);

10. biz (коммерческие организации);

11. coop (кооперативы);

12. info(разное);

13. museum (музеи);

14. name(персональные домены);

15. pro (лицензированные профессионалы).

Список доменов ccTLD базируется на стандарте двух-ьуквенных кодов государств и территорий (ISO 3166).

Примеры доменов верхнего уровня ccTLD, соответ­ствующие отдельным государствам, приведены в табли­це 4.

В Internet система доменных имен реализована в виде распределенной базы данных, включающей в себя серверы DNS, клиенты DNS (resolver), объединенные об­щим протоколом запросов к базе данных и обмена ин­формацией между серверами.

Примеры национальных доменов верхнего уровня

Страна Код Страна Код
Аргентина аг Кипр су
Армения am Киргизстан kg
Австрия at Казахстан kz
Азербайджан az Канада са
Белорусь by Индия id
Бельгия be Латвия lv
Болгария bg Литва It
Чехия cz Молдова md
Эстония ее Нидерланды nl
Финляндия fi Польша Pi
Франция fr Португалия Pt
Германия de Россия ru
Греция gr Словакия sk
Грузия ge Словения si
Дания dk Испания es
Венгрия hu Швеция se
Италия it Швейцария ch
Япония JP Узбекистан uz
Украина ua Туркменистан tm
Великобритания gb Соединенные Штаты us

Информация, соответствующая каждому доменному имени, хранится в записях ресурсов RR (resource records) DNS-сервера. Основным типом хранимой информации является IP-адрес. Одному доменному имени может соответствовать несколько IP-адресов (в случае использо­вания нескольких сетевых интерфейсов на компьюте­ре). Кроме этого, в записях ресурсов может храниться дополнительная информация, например, максимально допустимое время кэширования1 полученной информа­ции (TTL, time to live).

В системе доменных имен различают несколько ти­пов DNS-серверов.

В зависимости от типа отклика на запрос серверы делятся на авторитетные (authoritative) и неавторитет­ные (поп authoritative).

Авторитетный отклик (authoritative response) воз­вращают серверы, которые являются ответственными за зону, в которой описана информация, необходимая клиенту DNS2.

Неавторитетный отклик (поп authoritative response) возвращают серверы, которые не отвечают за зону, со­держащую необходимую клиенту информацию.

В зависимости от способа поддержания базы данных авторитетные DNS-серверы делятся на первичные (primary) и дублирующие (secondary)3.

Дублирующий сервер доменных имен также явля­ется ответственным за эту доменную зону. В его функ­ции входит дублирование первичного сервера на случай нарушения его работы. Кроме этого, дублирующий сер­вер, обрабатывая часть запросов, снимает нагрузку с первичного сервера.

Администратор дублирующего сервера не изменяет данные описания доменной зоны, а только обеспечива­ет синхронизацию базы данных дублирующего сервера с базой данных первичного сервера.

Примером такой организации является система кор­невых (root-servers) DNS-серверов Internet. Всего в сети Internet 131 корневых DNS-серверов (таблица 5).

Корневые серверы являются основой всей системы доменных имен, поскольку являются авторитетными серверами для корневой зоны и содержат ссылки на такие же серверы зон первого уровня или сами являют­ся авторитетными серверами некоторых зон первого уровня (например, com. или net.).

На запрос о домене корневой сервер возвращает как минимум имя и адрес уполномоченного сервера домена первого уровня, в который входит указанный в запросе узел. Обратившись по полученному адресу, можно по­лучить имя и адрес уполномоченного сервера домена второго уровня и т. д.

Благодаря такой организации в 2002 и 2003 годах с разницей в несколько месяцев Internet выдержал две глобальные атаки злоумышленников.

В первом случае осенью 2002 года массированная атака DoS (отказ в обслуживании), предпринятая про­тив 13 корневых DNS-серверов, нарушила работу вось­ми из тринадцати серверов. Соответственно, работоспо­собность сети сохранилась.

Во втором случае, в самом начале 2003 года (25 янва­ря), червь (вирус) SQL Slammer вызвал одну из круп­нейших и самых быстрораспространяющихся DoS атак. Примерно за 10 минут вирус распространился по всей сети и нарушил работу пяти из тринадцати корневых DNS-серверов.

Защита DNS-серверов любого уровня, а особенно кор­невых, является одной из проблем современной сети Internet.

DNS-клиенты обычно реализуются в виде набора под­программ1 , используемых программами, которым требу­ется сервис доменных имен, например, Internet Explorer. В этом случае DNS-клиент обращается к указанному при настройке DNS-серверу (серверам), интерпретирует ответ и возвращает результат запросившей программе.

Обобщенная схема работы системы доменных имен иллюстрируется рисунком 7.


поиска и возвращает ссылку на авторитетный сервер (или конечный ответ, если он сам является авторитет­ным для данного домена). Дальнейший поиск произво­дится самим клиентом.

История развития сети Интернет показывает, что DNS-сервер является объектом атак со стороны зло­умышленников, поскольку, выведя из строя этот сер­вер или изменив данные его базы, можно, нарушить работу сети. Проблемы информационной безопасности, связанные с использованием DNS-серверов, будут рас­смотрены далее.

Каждый компьютер в сети TCP/IP имеет адреса трех уровней:

  • Локальный адрес узла, определяемый технологией, с помощью которой построена отдельная сеть, в которую входит данный узел. Для узлов, входящих в локальные сети - это МАС-адрес сетевого адаптера или порта маршрутизатора, например, 11-А0-17-3D-BC-01. Эти адреса назначаются производителями оборудования и являются уникальными адресами, так как управляются централизовано. Для всех существующих технологий локальных сетей МАС-адрес имеет формат 6 байтов: старшие 3 байта - идентификатор фирмы производителя, а младшие 3 байта назначаются уникальным образом самим производителем. Для узлов, входящих в глобальные сети, такие как Х.25 или frame relay, локальный адрес назначается администратором глобальной сети.
  • IP-адрес, состоящий из 4 байт, например, 109.26.17.100. Этот адрес используется на сетевом уровне. Он назначается администратором во время конфигурирования компьютеров и маршрутизаторов. IP-адрес состоит из двух частей: номера сети и номера узла. Номер сети может быть выбран администратором произвольно, либо назначен по рекомендации специального подразделения Internet (Network Information Center, NIC), если сеть должна работать как составная часть Internet. Обычно провайдеры услуг Internet получают диапазоны адресов у подразделений NIC, а затем распределяют их между своими абонентами.

Номер узла в протоколе IP назначается независимо от локального адреса узла. Деление IP-адреса на поле номера сети и номера узла - гибкое, и граница между этими полями может устанавливаться весьма произвольно. Узел может входить в несколько IP-сетей. В этом случае узел должен иметь несколько IP-адресов, по числу сетевых связей. Таким образом IP-адрес характеризует не отдельный компьютер или маршрутизатор, а одно сетевое соединение.

Три основных класса IP-адресов

IP-адрес имеет длину 4 байта и обычно записывается в виде четырех чисел, представляющих значения каждого байта в десятичной форме, и разделенных точками, например:

128.10.2.30 - традиционная десятичная форма представления адреса,

10000000 00001010 00000010 00011110 - двоичная форма представления этого же адреса.

На рисунке 3.1 показана структура IP-адреса.

0 N сети N узла

1 0 N сети N узла

1 1 0 N сети N узла

1 1 1 0 адрес группы multicast

1 1 1 1 0 зарезервирован

Рис. 3.1. Структура IР-адреса

Адрес состоит из двух логических частей - номера сети и номера узла в сети. Какая часть адреса относится к номеру сети, а какая к номеру узла, определяется значениями первых битов адреса:

  • Если адрес начинается с 0, то сеть относят к классу А, и номер сети занимает один байт, остальные 3 байта интерпретируются как номер узла в сети. Сети класса А имеют номера в диапазоне от 1 до 126. (Номер 0 не используется, а номер 127 зарезервирован для специальных целей, о чем будет сказано ниже.) В сетях класса А количество узлов должно быть больше 216 , но не превышать 224.
  • Если первые два бита адреса равны 10, то сеть относится к классу В и является сетью средних размеров с числом узлов 28 - 216. В сетях класса В под адрес сети и под адрес узла отводится по 16 битов, то есть по 2 байта.
  • Если адрес начинается с последовательности 110, то это сеть класса С с числом узлов не больше 28. Под адрес сети отводится 24 бита, а под адрес узла - 8 битов.
  • Если адрес начинается с последовательности 1110, то он является адресом класса D и обозначает особый, групповой адрес - multicast. Если в пакете в качестве адреса назначения указан адрес класса D, то такой пакет должны получить все узлы, которым присвоен данный адрес.
  • Если адрес начинается с последовательности 11110, то это адрес класса Е, он зарезервирован для будущих применений.

В таблице приведены диапазоны номеров сетей, соответствующих каждому классу сетей.

Класс Наименьший адрес Наибольший адрес
A 01.0.0 126.0.0.0
B 128.0.0.0 191.255.0.0
C 192.0.1.0. 223.255.255.0
D 224.0.0.0 239.255.255.255
E 240.0.0.0 247.255.255.255

Соглашения о специальных адресах: broadcast, multicast, loopback

В протоколе IP существует несколько соглашений об особой интерпретации IP-адресов:

то он обозначает адрес того узла, который сгенерировал этот пакет;

то по умолчанию считается, что этот узел принадлежит той же самой сети, что и узел, который отправил пакет;

  • адрес 127.0.0.1 зарезервирован для организации обратной связи при тестировании работы программного обеспечения узла без реальной отправки пакета по сети. Этот адрес имеет название loopback.

В протоколе IP нет понятия широковещательности в том смысле, в котором оно используется в протоколах канального уровня локальных сетей, когда данные должны быть доставлены абсолютно всем узлам. Как ограниченный широковещательный IP-адрес, так и широковещательный IP-адрес имеют пределы распространения в интерсети - они ограничены либо сетью, к которой принадлежит узел - источник пакета, либо сетью, номер которой указан в адресе назначения. Поэтому деление сети с помощью маршрутизаторов на части локализует широковещательный шторм пределами одной из составляющих общую сеть частей просто потому, что нет способа адресовать пакет одновременно всем узлам всех сетей составной сети.

Отображение физических адресов на IP-адреса: протоколы ARP и RARP

В протоколе IP-адрес узла, то есть адрес компьютера или порта маршрутизатора, назначается произвольно администратором сети и прямо не связан с его локальным адресом, как это сделано, например, в протоколе IPX. Подход, используемый в IP, удобно использовать в крупных сетях и по причине его независимости от формата локального адреса, и по причине стабильности, так как в противном случае, при смене на компьютере сетевого адаптера это изменение должны бы были учитывать все адресаты всемирной сети Internet (в том случае, конечно, если сеть подключена к Internet'у).

Для определения локального адреса по IP-адресу используется протокол разрешения адреса Address Resolution Protocol, ARP. Протокол ARP работает различным образом в зависимости от того, какой протокол канального уровня работает в данной сети - протокол локальной сети (Ethernet, Token Ring, FDDI) с возможностью широковещательного доступа одновременно ко всем узлам сети, или же протокол глобальной сети (X.25, frame relay), как правило не поддерживающий широковещательный доступ. Существует также протокол, решающий обратную задачу - нахождение IP-адреса по известному локальному адресу. Он называется реверсивный ARP - RARP (Reverse Address Resolution Protocol) и используется при старте бездисковых станций, не знающих в начальный момент своего IP-адреса, но знающих адрес своего сетевого адаптера.

В локальных сетях протокол ARP использует широковещательные кадры протокола канального уровня для поиска в сети узла с заданным IP-адресом.

Узел, которому нужно выполнить отображение IP-адреса на локальный адрес, формирует ARP запрос, вкладывает его в кадр протокола канального уровня, указывая в нем известный IP-адрес, и рассылает запрос широковещательно. Все узлы локальной сети получают ARP запрос и сравнивают указанный там IP-адрес с собственным. В случае их совпадения узел формирует ARP-ответ, в котором указывает свой IP-адрес и свой локальный адрес и отправляет его уже направленно, так как в ARP запросе отправитель указывает свой локальный адрес. ARP-запросы и ответы используют один и тот же формат пакета. Так как локальные адреса могут в различных типах сетей иметь различную длину, то формат пакета протокола ARP зависит от типа сети. На рисунке 3.2 показан формат пакета протокола ARP для передачи по сети Ethernet.

Тип сети Тип протокола
Длина локального адреса Длина сетевого адреса Операция
Локальный адрес отправителя (байты 0 - 3)
Локальный адрес отправителя (байты 4 - 5) IP-адрес отправителя (байты 0-1)
IP-адрес отправителя (байты 2-3) Искомый локальный адрес (байты 0 - 1)
Искомый локальный адрес (байты 2-5)
Искомый IP-адрес (байты 0 - 3)

Рис. 3.2. Формат пакета протокола ARP

В поле типа сети для сетей Ethernet указывается значение 1. Поле типа протокола позволяет использовать пакеты ARP не только для протокола IP, но и для других сетевых протоколов. Для IP значение этого поля равно 080016.

Длина локального адреса для протокола Ethernet равна 6 байтам, а длина IP-адреса - 4 байтам. В поле операции для ARP запросов указывается значение 1 для протокола ARP и 2 для протокола RARP.

Узел, отправляющий ARP-запрос, заполняет в пакете все поля, кроме поля искомого локального адреса (для RARP-запроса не указывается искомый IP-адрес). Значение этого поля заполняется узлом, опознавшим свой IP-адрес.

В глобальных сетях администратору сети чаще всего приходится вручную формировать ARP-таблицы, в которых он задает, например, соответствие IP-адреса адресу узла сети X.25, который имеет смысл локального адреса. В последнее время наметилась тенденция автоматизации работы протокола ARP и в глобальных сетях. Для этой цели среди всех маршрутизаторов, подключенных к какой-либо глобальной сети, выделяется специальный маршрутизатор, который ведет ARP-таблицу для всех остальных узлов и маршрутизаторов этой сети. При таком централизованном подходе для всех узлов и маршрутизаторов вручную нужно задать только IP-адрес и локальный адрес выделенного маршрутизатора. Затем каждый узел и маршрутизатор регистрирует свои адреса в выделенном маршрутизаторе, а при необходимости установления соответствия между IP-адресом и локальным адресом узел обращается к выделенному маршрутизатору с запросом и автоматически получает ответ без участия администратора.

Отображение символьных адресов на IP-адреса: служба DNS

DNS (Domain Name System) - это распределенная база данных, поддерживающая иерархическую систему имен для идентификации узлов в сети Internet. Служба DNS предназначена для автоматического поиска IP-адреса по известному символьному имени узла. Спецификация DNS определяется стандартами RFC 1034 и 1035. DNS требует статической конфигурации своих таблиц, отображающих имена компьютеров в IP-адрес.

Протокол DNS является служебным протоколом прикладного уровня. Этот протокол несимметричен - в нем определены DNS-серверы и DNS-клиенты. DNS-серверы хранят часть распределенной базы данных о соответствии символьных имен и IP-адресов. Эта база данных распределена по административным доменам сети Internet. Клиенты сервера DNS знают IP-адрес сервера DNS своего административного домена и по протоколу IP передают запрос, в котором сообщают известное символьное имя и просят вернуть соответствующий ему IP-адрес.

Если данные о запрошенном соответствии хранятся в базе данного DNS-сервера, то он сразу посылает ответ клиенту, если же нет - то он посылает запрос DNS-серверу другого домена, который может сам обработать запрос, либо передать его другому DNS-серверу. Все DNS-серверы соединены иерархически, в соответствии с иерархией доменов сети Internet. Клиент опрашивает эти серверы имен, пока не найдет нужные отображения. Этот процесс ускоряется из-за того, что серверы имен постоянно кэшируют информацию, предоставляемую по запросам. Клиентские компьютеры могут использовать в своей работе IP-адреса нескольких DNS-серверов, для повышения надежности своей работы.

База данных DNS имеет структуру дерева, называемого доменным пространством имен, в котором каждый домен (узел дерева) имеет имя и может содержать поддомены. Имя домена идентифицирует его положение в этой базе данных по отношению к родительскому домену, причем точки в имени отделяют части, соответствующие узлам домена.

Корень базы данных DNS управляется центром Internet Network Information Center. Домены верхнего уровня назначаются для каждой страны, а также на организационной основе. Имена этих доменов должны следовать международному стандарту ISO 3166. Для обозначения стран используются трехбуквенные и двухбуквенные аббревиатуры, а для различных типов организаций используются следующие аббревиатуры:

Каждый домен DNS администрируется отдельной организацией, которая обычно разбивает свой домен на поддомены и передает функции администрирования этих поддоменов другим организациям. Каждый домен имеет уникальное имя, а каждый из поддоменов имеет уникальное имя внутри своего домена. Имя домена может содержать до 63 символов. Каждый хост в сети Internet однозначно определяется своим полным доменным именем (fully qualified domain name, FQDN), которое включает имена всех доменов по направлению от хоста к корню. Пример полного DNS-имени :

Автоматизация процесса назначения IP-адресов узлам сети - протокол DHCP

Как уже было сказано, IP-адреса могут назначаться администратором сети вручную. Это представляет для администратора утомительную процедуру. Ситуация усложняется еще тем, что многие пользователи не обладают достаточными знаниями для того, чтобы конфигурировать свои компьютеры для работы в интерсети и должны поэтому полагаться на администраторов.

Протокол Dynamic Host Configuration Protocol (DHCP) был разработан для того, чтобы освободить администратора от этих проблем. Основным назначением DHCP является динамическое назначение IP-адресов. Однако, кроме динамического, DHCP может поддерживать и более простые способы ручного и автоматического статического назначения адресов.

В ручной процедуре назначения адресов активное участие принимает администратор, который предоставляет DHCP-серверу информацию о соответствии IP-адресов физическим адресам или другим идентификаторам клиентов. Эти адреса сообщаются клиентам в ответ на их запросы к DHCP-серверу.

При автоматическом статическом способе DHCP-сервер присваивает IP-адрес (и, возможно, другие параметры конфигурации клиента) из пула наличных IP-адресов без вмешательства оператора. Границы пула назначаемых адресов задает администратор при конфигурировании DHCP-сервера. Между идентификатором клиента и его IP-адресом по-прежнему, как и при ручном назначении, существует постоянное соответствие. Оно устанавливается в момент первичного назначения сервером DHCP IP-адреса клиенту. При всех последующих запросах сервер возвращает тот же самый IP-адрес.

При динамическом распределении адресов DHCP-сервер выдает адрес клиенту на ограниченное время, что дает возможность впоследствии повторно использовать IP-адреса другими компьютерами. Динамическое разделение адресов позволяет строить IP-сеть, количество узлов в которой намного превышает количество имеющихся в распоряжении администратора IP-адресов.

DHCP обеспечивает надежный и простой способ конфигурации сети TCP/IP, гарантируя отсутствие конфликтов адресов за счет централизованного управления их распределением. Администратор управляет процессом назначения адресов с помощью параметра "продолжительности аренды" (lease duration), которая определяет, как долго компьютер может использовать назначенный IP-адрес, перед тем как снова запросить его от сервера DHCP в аренду.

Примером работы протокола DHCP может служить ситуация, когда компьютер, являющийся клиентом DHCP, удаляется из подсети. При этом назначенный ему IP-адрес автоматически освобождается. Когда компьютер подключается к другой подсети, то ему автоматически назначается новый адрес. Ни пользователь, ни сетевой администратор не вмешиваются в этот процесс. Это свойство очень важно для мобильных пользователей.

Однако использование DHCP несет в себе и некоторые проблемы. Во-первых, это проблема согласования информационной адресной базы в службах DHCP и DNS. Как известно, DNS служит для преобразования символьных имен в IP-адреса. Если IP-адреса будут динамически изменятся сервером DHCP, то эти изменения необходимо также динамически вносить в базу данных сервера DNS. Хотя протокол динамического взаимодействия между службами DNS и DHCP уже реализован некоторыми фирмами (так называемая служба Dynamic DNS), стандарт на него пока не принят.

Во-вторых, нестабильность IP-адресов усложняет процесс управления сетью. Системы управления, основанные на протоколе SNMP, разработаны с расчетом на статичность IP-адресов. Аналогичные проблемы возникают и при конфигурировании фильтров маршрутизаторов, которые оперируют с IP-адресами.

Наконец, централизация процедуры назначения адресов снижает надежность системы: при отказе DHCP-сервера все его клиенты оказываются не в состоянии получить IP-адрес и другую информацию о конфигурации. Последствия такого отказа могут быть уменьшены путем использовании в сети нескольких серверов DHCP, каждый из которых имеет свой пул IP-адресов.

Часто сталкиваюсь с тем, что дети не верят в то, что могут учиться и научиться, считают, что учиться очень трудно.

Лекция 05. Глобальная компьютерная сеть Интернет. Структура сети Интернет. Принципы адресации сети Интернет.

Сеть Internet (INTERconnection NETwork) является синтезом многих локальных, корпоративных и национальных сетей, обладающих часто собственными внутренними разнообразными линиями связи и протоколами. Компьютеры, подключенные к сети Интернет, могут иметь любые аппаратные и программные платформы, но при этом они должны поддерживать стек протоколов (семейство протоколов) связи TCP/IP. Объединяет их в единую глобальную сеть система серверов различной аппаратной и программной конфигурации. Эти сервера объединены между собой спутниковыми и оптоволоконными линиями связи, реже коаксиальными и иными кабелями.

Компоненты глобальной сети:

Компоненты глобальной сети

Единого владельца и центра управления сети Интернет не существует.

Для краткого названия сети Internet часто используют термин WEB (паутина) или просто Сеть (с заглавной буквы).

Подобно сети Internet, с начала 90-х годов развиваются сети типа Intranet. Под Intranet понимается любая (обычно корпоративная - в масштабах предприятия) компьютерная сеть, использующая протокол TCP/IP, обычные для Internet методы адресации и HTML-протокол передачи гипертекста, применяющая привычное для Internet программное обеспечение (например, на стороне сервера Microsoft Information Server, а на стороне клиента стандартные WEB-браузеры). Часто сеть Intranet имеет выход в Internet.

Проект создания глобальной сети стартовал в конце 60-х годов и финансировался правительством США в рамках военного агентства DARPA (Defence Advanced Research Project Agency). После запуска Советским Союзом искусственного спутника Земли в 1957 году Министерство обороны США посчитало, что на случай войны Америке нужна надёжная система передачи информации. Агентство передовых оборонных исследовательских проектов США (DARPA) предложило разработать для этого компьютерную сеть. Джозеф Ликлайдер высказал идею о создании Всемирной компьютерной сети.

Джозеф Ликлайдер

Он придеживался идеи создания объединения компьютеров в сеть со свободным доступом любого человека к её ресурсам. Он возглавил Агенство передовых оборонных исследовательских проектов (DARPA) и убеждал своих преемников в необходимости развития компьютерных сетей.

Разработка такой сети была поручена Калифорнийскому университету в Лос-Анджелесе, Стэнфордскому исследовательскому центру, Университету штата Юта и Университету штата Калифорния в Санта-Барбаре.

В 1957 году Министерство обороны США начало создание сети ARPANET (англ. Advanced Research Projects Agency Network) и нескольких других сетей, обслуживающих военно-космическую промышленность США. В 1969 году была создана как высоконадежная сеть передачи данных ARPANET - компьютерная сеть с применением технологии коммутации пакетов. В 1983 году ARPANet разделилась на две сети, одна - MILNET стала частью оборонной сети передачи данных США, другая - была использована для соединения академических и исследовательских центров, она постепенно развивалась и в 1990 году трансформировалась в Интернет.

В настоящее время сеть Internet объединяет многие глобальные сети и насчитывает миллионы серверов.

Основные типы серверов (и предоставляемые ими услуги) приведены ниже

Тип сервера

Предоставляемые услуги

Хранение больших объемов файлов для передачи (выгрузки) на локальные диски пользователей (редко наоборот)

Хранение только текстовой информации (статьи, документация, короткие заметки и т.д.) с той же целью; для поиска нужного документа используется многоуровневое меню, документы могут содержать гиперссылки

Обеспечение передачи и хранения электронной почты (письма, кроме текста, могут содержать дополнительные вложения в виде произвольных файлов - звуковых, изображения и др.)

Хранение конференций (каждая имеет свою тему), в конференциях хранятся статьи, программные файлы, мультимедиа и др.

(World Wide Web -

‘мировая паутина’)

Хранение любой допустимой для ЭВМ информации в формате гиперссылок (допускаются ссылки как на документы внутри сервера, так и на любые документы других серверов), допускают динамически формируемую информацию и интерактивный обмен данными с удаленным пользователем

Сервером является достаточно мощная ЭВМ со специализированным серверным программным обеспечением, призванным эффективно обеспечивать конкретные сетевые операции.

Для операционных систем Windows часто используется Microsoft Information Server. Для успешного функционирования этих серверов необходимо подключение к локальной сети по протоколу TCP/IP или к высокоскоростному каналу сети Internet. Создатели ПО успешно эксплуатируют серверы на локальной ЭВМ в целях отладки сложных WEB-сайтов. Обычно используется сервер Apache (существуют версии для LINUX, Solaris, SunOS 4.x и для Windows).

Серверы сети Internet хранят огромные объемы информации и обрабатывают запросы к этой информации для многих пользователей одновременно.

Одной из основных концепций сети Internet является ее открытость. Это означает, что любой пользователь (затратив минимум средств) может создать свою собственную WEB-страницу, WEB-сайт (набор логически связанных WEB-страниц) или WEB-сервер, на которых может размещать произвольную информацию. Причем в качестве пользовательской ЭВМ может выступать практически любой тип компьютера, оснащенный любой операционной системой.

В настоящее время сеть Internet используется для экспресс-информации, рекламы, операций купли-продажи, в банковском деле и др., в Сети размещено более миллиарда уникальных пользовательских страниц; новые применения Сети предлагаются ежемесячно.

Принципы адресации в сети Internet.

Каждое подключенное к сети Internet устройство (узел, host) однозначно адресуется 32-значным уникальным двоичным числом (разбиваемым точкой на 4 октета - например, 198.137.240.91). Адрес узла логически разделяется на две части, одна из которых называется идентификатором сети (Network ID), а другая - идентификатором узла (Host ID).

Глобальная сеть объединяет множество сетей, каждая из которых имеет свой идентификатор Network ID, в каждой сети может находиться некоторое количество узлов, каждый из которых имеет свой Host ID. Именно таким образом (с помощью пары чисел - Network ID и Host ID) можно адресовать любой подключенный к глобальной сети на базе протокола TCP/IP узел.

Существуют несколько классов адресов (A, B, C, D. ), для которых используется различная разрядность полей Network ID и Host ID.

Старшие разряды первого октета имеют специальное значение - они определяют принадлежность адреса к одному из 5 классов:

Читайте также: