Усилители и выпрямители конспект

Обновлено: 06.07.2024

1. Что такое трансформатор? 2. Из каких основных частей состоит трансформатор? 3. На каком роде тока работает трансформатор, и по чему? 4. Для чего применяют трансформатор? 5. Всегда ли вам удобно пользоваться переменным напряжением?

Преобразование переменного тока в пульсирующий называется выпрямлением, а сами преобразователи– выпрямителями . Диод - необходимая часть выпрямителей является электрическим вентилем – прибор, хорошо пропускающие ток в одном направлении и не пропускающие его (или плохо пропускающие) – в другом.

по схеме выпрямления – однополупериодные, двухполупериодные, мостовые, многофазные (трехфазные). По типу выпрямительного элемента – ламповые, полупроводниковые. По величине выпрямленного напряжения – низкого напряжения и высокого напряжения. По назначению –для питания цепей постоянного тока, цепей экранирующих сеток, цепей управляющих сеток, для зарядки аккумуляторов и др.

Номинальное напряжение постоянного тока – среднее значение выпрямленного напряжения, заданное техническими требованиями. Обычно указывается напряжение до фильтра U 0 и напряжение после фильтра – U. Определяется значением напряжения, необходимым для питаемых выпрямителем устройств. Пульсация – переменная составляющая напряжения или тока на выходе выпрямителя. Это качественный показатель выпрямителя. Частота пульсаций – частота наиболее резко выраженной гармонической составляющей напряжения или тока на выходе выпрямителя.

Процесс уменьшения пульсаций называется сглаживанием пульсаций и осуществляется сглаживающими фильтрами. Выпрямителем часто называют весь комплекс, в который входят как собственно выпрямитель, так и сглаживающий фильтр.

1 . Изучение материала лекции 2. Выполнение заданий в рабочей тетради Ярочкина, Г. В. Электротехника. № 9.1-9.7 3. Выполнение презентации по теме: Устройство и принципа работы

По теме: методические разработки, презентации и конспекты


Методическая разработка по информатике "Разработка и программирование задач с линейной и разветвляющейся структурой на языке Turbo Pascal"

Данная методическая разработка создана с целью оказания преподавателю методической помощи составления программ на языке программирования Turbo Pascal.


Данная методическая разработка предназначена для проведения внеклассного воспитательного мероприятия по правовому обучению обучающихся.

Методическая разработка "Гражданский и официальный брак" Методическая разработка занятия и методические рекомендации

Методическая разработка кураторского часа.


Методическая разработка "МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ по разработке и изданию учебно-методических материалов"
Методические рекомендации по самостоятельной работе Обществознание, Методическая разработка кураторского часа "Коррупция как особый вид преступлений", Методическая разработка"Выбор за нами".

Мкетодические разработки необходимы для реализации своих творческих способностей преподавателя и необходимиго обмена методическим опытом для молодых преподавателей и кураторов.


Классный час "Герои Великой Отечественной войны". Методическая разработка награждена Дипломом Министерства Образования,Науки и Молодёжи Республики Крым 3 Степени в региональном этапе 2 Всероссийского конкурса на лучшую методическую разработку.

Моя методическая разработка награждена Дипломом Министерства Образования ,Науки и Молодёжи Республики Крым 3 Степени в региональном этапе 2 Всероссийского конкурса на лучшую методическую разработку.

Виды выпрямителей и их характеристики. Выпрямителем называется устройство для преобразования пере­менного напряжения в постоянное. Основное назначение выпрями­теля заключается в сохранении направления тока в нагрузке при изменении полярности приложенного напряжения. Выпрямитель можно рассматривать как один из типов инверторов напряжения. В состав выпрямителя могут входить: силовой трансформатор СТ, вентильный блок ВБ, фильтрующее устройство ФУ и стабили­затор напряжения СН. Трансформатор СТ выполняет следующие фун­к­ции: преобразует значение напряжения сети, обеспечивает гальваническую изоляцию нагрузки от силовой сети, преобразует количество фаз силовой сети. В импульсных источниках питания трансформатор обычно отсутствует, так как его функции выполняет высокочастотный инвертор.

Обобщенная структурная схема выпрямителя

Вентильный блок ВБ является основным звеном выпрямителя, обеспечивая однонаправленное протекание тока в нагрузке. В качестве вентилей могут использоваться электровакуумные, газоразрядные или полупроводниковые приборы, обладающие односторонней электропроводностью, например, диоды, тиристоры, транзисторы и др. Идеальные вентильные элементы должны пропускать ток только в одном (прямом) направлении и совсем не пропускать его в другом (обратном) направлении. Реальные вентильные элементы отличаются от идеальных прежде всего тем, что они пропускают некоторый ток в обратном направлении и имеют падение напряжения при протекании прямого тока. Это сказывается на снижении КПД вентильного блока и снижении эффективности выпрямителя в целом.

Фильтрующее устройство ФУ используется для ослабления пульсаций выходного напряжения. В качестве фильтрующего устройства обычно используются фильтры нижних частот (ФНЧ), выполненные на пассивных R, L, С элементах или, иногда, с применением активных элементов — транзисторов, операционных усилителей и пр. Качество ФУ оценивают по его способности увеличивать коэффициент фильтрации q , равный отношению коэффициентов пульсации на входе и выходе фильтра.

Стабилизатор напряжения СН предназначен для уменьшения влияния внешних воздействий: изменения напряжения питающей сети, температуры окружающей среды, изменения нагрузки и др., — на выходное напряжение выпрямителя. Если к стабильности выходного напряжения не предъявляется особых требований, то стабилизатор может быть или совсем исключен или его функции переданы другим узлам. Например, в импульсных источниках питания функции стабилизатора может выполнять регулируемый инвертор (РИ) или регулируемый вентильный блок.

Кроме основных узлов, в состав выпрямителя могут входить различные вспомогательные элементы и узлы, предназначенные для повышения его надежности: узлы контроля и автоматики, узлы защиты и др., например, узлы автоматического переключения напряжения питающей сети 110-220 В.

Классификация выпрямителей. Для классификации выпрямителей используют различные признаки: количество выпрямленных полуволн (полупериодов) напряжения, число фаз силовой сети, схему вентильного блока, тип сглаживающего фильтра, наличие трансформатора и др.

По количеству выпрямленных полуволн различают однополупериодные и двухполупериодные выпрямители. По числу фаз питающего напряжения различают однофазные, двухфазные, трехфазные и шестифазные выпрямители. При этом под числом фаз питающего напряжения понимают число питающих напряжений с отличными друг от друга начальными фазами.

Питание электронной аппаратуры чаще всего осуществляется с помощью маломощных выпрямителей, работающих от однофазной сети переменного тока. Такие выпрямители называются однофазными. Они делятся:

а) на однополупериодные, в которых ток через вентиль проходит в течение одного полупериода переменного напряжения сети;

б) двухполупериодные, в которых ток проходит через вентиль в течение обоих полупериодов;

в) схемы с умножением напряжения.

Для питания мощных промышленных установок используют выпрямители средней и большой мощности, работающие от трехфазной сети. В современных выпрямителях в качестве вентилей чаще всего используются полупроводниковые диоды.

В электронной аппаратуре широко применяются преобразователи постоянного напряжения, позволяющие преобразовать постоянный ток одного напряжения в постоянный или переменный ток другого напряжения.

Схемы однофазных выпрямителей приведены на рисунке ниже .

Однофазный однополупериодный выпрямитель , схема которого приведена на рисунке - а, является простейшим. Такой выпрямитель пропускает на выход только одну полуволну питающего напряжения. Такие выпрямители находят ограниченное применение в маломощных устройствах, так как они характеризуются плохим использованием трансформатора и сглаживающего фильтра.

Двухполупериодный выпрямитель , приведенный на рисунке - б, представляет собой параллельное соединение двух однофазных выпрямителей, питаемых от двух половин вторичной обмотки w 2 и w 2 ' . С помощью этих полуобмоток создаются два противофазных питающих выпрямители напряжения. Форма выходного напряжения такого выпрямителя приведена на рисунке - б. Этот выпрямитель характеризуется лучшим использованием трансформатора и фильтра. Его часто называют выпрямителем со средней точкой вторичной обмотки трансформатора.

Однофазный мостовой выпрямитель (рисунок - в) является двухполупериодным выпрямителем, питаемым от однофазной сети. В отличие от предыдущей схемы его можно использовать для выпрямления напряжения сети и без трансформатора. К его недостаткам относится удвоенное число выпрямительных диодов, однако трансформатор в таком выпрямителе используется наиболее полно, так как нет подмагничивания магнитопровода постоянным током и ток во вторичной обмотке протекает в течение обоих полупериодов. Из-за увеличенного падения напряжения на выпрямительных диодах такие выпрямители редко используются при выпрямлении низких напряжений (меньше 5 В)

Однофазный выпрямитель с удвоением напряжения (рисунок - г) представляет собой последовательное соединение двух однофазных однополупериодных выпрямителей. В первом полупериоде при положительном напряжении на аноде диода VDI заряжается конденсатор С 1 а во втором полупериоде проводит диод VD2 и конденсатор С 2 заряжается напряжением противоположной полярности. Так как эти конденсаторы включены последовательно, то выходное напряжение почти удваивается. Конденсаторы С 1 и С 2 могут использоваться как элементы фильтра. Трансформатор в этой схеме используется так же полно, как и в мостовой. Эту схему можно получить из мостовой схемы, изображенной на рисунке - в, если заменить диоды VD3 и VD4 конденсаторами С 1 и С 2 . В связи с этим такой выпрямитель часто называют полумостовым. К достоинствам схемы можно отнести уменьшение вдвое выходного напряжения трансформатора, а к недостаткам — наличие двух конденсаторов С 1 и С 2 .

С хемы выпрямителей, питаемых от однофазной сети: одно­полупериодный (а), двухфазный двухполупериодный (б), однофазный мосто­вой (в) и однофазный с последовательным включением (схема удвоения) (г)

Форма вы­ходного напряжения такого выпрямителя приведена на рисунке ниже под буквой " б". Этот выпрямитель характеризуется лучшим использованием трансформатора и фильтра. Его часто называют выпрямителем со средней точкой вторичной обмотки трансформатора.

Формы напряжений на входе и выходе выпрямителей, питае­мых от однофазной сети, при резистивной нагрузке без фильтра: однополу­период­ного (а) и двухполупериодного (б)

Виды стабилизаторов и их основные характеристики. Стабилизатором напряжения называют устройство, поддерживающее с определенной точностью неизменным напряжение на нагрузке. Изменение напряжения на нагрузке может быть вызвано рядом причин: колебаниями напряжения первичного источника питания (сети переменного напряжения, аккумулятора, гальванического элемента), изменением нагрузки, изменением температуры окружающей среды и др.

По принципу работы стабилизаторы делят на параметрические и компенсационные . В свою очередь параметрические стабилизаторы бывают однокаскадными, многокаскадными и мостовыми. Компенсационные стабилизаторы могут быть с непрерывным или импульсным регулированием; и те и другие могут быть последовательного или параллельного типа.

Параметрические стабилизаторы осуществляют стабилизацию напряжения за счет изменения параметров полупроводниковых приборов: стабилитронов, стабисторов, транзисторов и др. Изменяемым параметром полупроводниковых стабилизаторов напряжения является их сопротивление или проводимость.

Компенсационные стабилизаторы представляют собой замкнутые системы автоматического регулирования напряжения на нагрузке, выполненные на полупроводниковых приборах. Выходное напряжение в этих стабилизаторах поддерживается равным или пропорциональным стабильному опорному напряжению, которое обычно создается одним из типов параметрических стабилизаторов. Компенсационные стабилизаторы содержат регулирующий элемент (обычно транзистор), который может включаться последовательно или параллельно нагрузке. Регулирующий элемент может работать в непрерывном или ключевом режимах. В импульсных стабилизаторах используется ключевой режим работы регулирующего элемента. В стабилизаторах с непрерывным регулированием регулирующий элемент работает в непрерывном режиме.

По выходной мощности стабилизаторы можно разделить на маломощные (до 1Вт), средней мощности (до 250 Вт) и большой мощности (свыше 250 Вт). Маломощные стабилизаторы используются в измерительной технике, аналого-цифровых и цифро-аналоговых преобразователях. Стабилизаторы средней мощности используются для питания маломощных электронных устройств. Мощные стабилизаторы применяют для питания лазерных установок, электронных микроскопов и др.

По точности поддержания выходного напряжения на нагрузке стабилизаторы делят на прецизионные (изменение напряжения не более 0,005%), точные (изменение напряжения от 0,01 до 0,005%), средней точности (изменение напряжения от 0,1 до 0,01%) и низкой точности (изменение напряжения от 1 до 0,1%). В прецизионных стабилизаторах для получения наивысшей точности поддержания выходного напряжения используются специальные устройства, исключающие влияние изменения температуры окружающей среды (термостаты или криостаты).

Основные параметры стабилизаторов напряжения. Параметры стабилизаторов напряжения позволяют сравнивать их по качеству работы, выбирать те, которые удовлетворяют требованиям эксплуатации электронных устройств. К таким параметрам относят: номинальное выходное напряжение U вых , диапазон изменения входного напряжения U вх.min и U вх.max , диапазон изменения тока нагрузки I н.min и I н.max , коэффициент полезного действия η, коэффициент нестабильности по напряжению K нU и коэффициент нестабильности по току K нI , коэффициент сглаживания пульсаций K СГ и быстродействие.

Номинальное напряжение стабилизации U вых – это выходное напряжение стабилизатора при нормальных условиях его эксплуатации (определенное входное напряжение, заданный ток нагрузки, установленная температура окружающей среды). Если стабилизатор позволяет регулировать выходное напряжение, то задается диапазон изменения выходного напряжения U вых.min и U вых.max . Диапазон изменения входного напряжения U вх позволяет установить пределы изменения напряжения на входе стабилизатора, при которых сохраняются точностные свойства стабилизатора.

Диапазон изменения тока нагрузки I н позволяет установить пределы изменения тока нагрузки, при котором сохраняются точностные свойства стабилизатора.

Коэффициент полезного действия стабилизатора η ст – это отношение мощности, отдаваемой в нагрузку Р н , к мощности Р пот , потребляемой от первичного источника питания:

Гост

ГОСТ

Классификация выпрямителей электрического тока и сферы их применения

Выпрямитель электрического тока – это устройство, которое предназначено для преобразования переменного электрического тока, поступающего на его вход, в постоянный электрический ток.

Выпрямители классифицируются по следующим признакам:

  1. Вид переключателя выпрямляемого тока. По данному признаку выпрямители делятся на механические синхронные с контактным переключателем и щеточноколлекторным коммутатором, а также электронные с управляемой и пассивной коммутацией.
  2. Мощность. По данному признаку выпрямители делятся на силовые и выпрямители сигналов.
  3. Степень использования полупериода переменного тока. По данному признаку выпрямители делятся на одно - и двухпериодные, а также полно- и неполноволновые.
  4. Схема выпрямления. По данному признаку выпрямители делятся на мостовые, трансформаторные и т.п.
  5. Количество используемых фаз. По данному признаку выпрямители делятся на одно-, двух-, трех- и многофазные.
  6. Тип электронного вентиля. По данному признаку выпрямители делятся на газотронные, ламповые диодные, полупроводниковые тиристорные и т.п.
  7. Количество каналов. По данному признаку выпрямители делятся на одно- и многоканальные.
  8. Управляемость. По данному признаку выпрямители делятся на управляемые и неуправляемые.
  9. Способ соединения. По данному признаку выпрямители делятся на параллельные, последовательные и параллельно-последовательные.
  10. Способ объединения. По данному признаку выпрямители делятся на объединенные кольцами или звездами, а также раздельные.

Выпрямительные установки широко используются для питания приводов прокатных станов, в железнодорожной тяге, в городском электротранспорте, в процессе электролиза. Выпрямители используются в блоках питания. Здесь их применение обусловлено тем, что в стандартных системах электроснабжения транспорта и зданий используется переменный ток. Нашли выпрямители свое применение также в составе электросиловых установок, сварочных аппаратах, вентильных блоках преобразовательных подстанций систем электроснабжения, а также в составе ректенн, которые в перспективе будут использоваться в системах беспроводной передачи электрической энергии, солнечных батареях и системах сбора энергии электромагнитных шумовых сигналов.

Усилители: основные технические показатели, структура и классификация

Усилитель – это прибор, усиливающий электрическую мощность.

К основным характеристикам усилителей относятся:

Готовые работы на аналогичную тему

  • Нелинейные искажения.
  • Выходные и входные данные.
  • Динамический диапазон.
  • Амплитудная характеристика.
  • Коэффициент усиления.
  • Переходная характеристика.
  • Коэффициент полезного действия.
  • Частотные характеристики (фазо-частотная и амплитудно-частотная).

Пример схемы усилителя с обратной связью представлен на рисунке ниже.

Рисунок 1. Схема усилителя с обратной связью. Автор24 — интернет-биржа студенческих работ

Усилитель представляет собой последовательность каскадов усиления, которые соединены между собой прямыми связями. В некоторых усилителях есть обратные связи (между каскадами и внутри них). Отрицательные обратные связи позволяют улучшить стабильность работы усилителя, а также снизить нелинейные и частотные искажения сигналов. В состав обратных связей могут входить элементы, зависящие от температуры, например, термисторы и позисторы, которые предназначены для выравнивания частотной характеристики. В входных и выходных цепях усилителей, а также между его каскадами могут быть включены потенциометры или аттенюаторы, предназначенные для регулирования усиления и фильтры, формирующие заданную частотную характеристику.

Электронный генератор

Электронный генератор – это устройство, которое преобразует электрическую энергию источника постоянного тока в энергию электрических колебаний расчетной формы и частоты.

Пример структурной схемы электронного генератора представлен на рисунке ниже.

Рисунок 2. Структурная схема электронного генератора. Автор24 — интернет-биржа студенческих работ

Широкое распространение электронные генераторы получили в производстве компьютерной техники, электроники и радиоприемников. Ими выдается сигнал, частота которого может достигать нескольких мегагерц, форма выходного напряжения может быть синусоидальной, прямоугольной или пилообразной. Контуром возбуждения получается возбуждение от внешнего источника тока, в результате чего появляются колебания, затухающие со временем, потому что энергия поглощается сопротивлением. Для того, чтобы колебания не затухали, в контуре усилителей восполняется энергия, данный процесс осуществляется положительной обратной связью. Данная связь подает в контур часть сигнала, совпадающего с сигналом обратной связи. Все усилители классифицируются по следующим признакам:


Типы выпрямителей переменного тока

Какие бывают выпрямители?

Ещё в начале ХХ века имел место очень принципиальный спор между корифеями электротехники. Какой ток выгоднее передавать потребителю на большие расстояния: постоянный или переменный? Научный спор выиграли сторонники передачи переменного тока по проводам высоковольтных линий от подстанции к потребителю. Эта система принята во всём мире и успешно эксплуатируется до сих пор.

Но большинство электронной техники и не только бытовой, но и промышленной питается постоянными напряжениями и это привело к созданию целой отрасли электрики – преобразование (выпрямление) переменного тока. После того как электронная лампа была забыта, главным элементом любого выпрямителя стал полупроводниковый диод.

Схемотехника выпрямителей весьма обширна, но самым простым является однополупериодный выпрямитель .

Однополупериодный выпрямитель.

Напряжение с вторичной обмотки силового трансформатора подаётся на один единственный диод. Вот схема.

Типовая схема однополупериодного выпрямителя

Поэтому выпрямитель и назван однополупериодным. Выпрямляется только один полупериод и на выходе получается импульсное напряжение. Форма его показана на рисунке.

Однополупериодное выпрямление

Схема проста и не требует большого количества элементов. Это и сказывается на качестве выпрямленного напряжения. При низких частотах переменного напряжения (например, как в электросети - 50 Гц) выпрямленное напряжение получается сильно пульсирующим. А это очень плохо.

Для того чтобы снизить величину пульсации выпрямленного напряжения приходится брать величину конденсатора С1 очень большую, порядка 2000 – 5000 микрофарад, что увеличивает размер блока питания, так как электролиты на 2000 - 5000 мкф имеют довольно большие размеры. Поэтому на низких частотах эта схема практически не используется. Зато однополупериодные выпрямители прекрасно зарекомендовали себя в импульсных блоках питания работающих на частотах 10 – 15 кГц (килогерц). На таких частотах величина ёмкости фильтра может быть очень небольшой, а простота схемы уже не столь сильно влияет на качество выпрямленного напряжения.

Примером использования однополупериодного выпрямителя может служить простой зарядник от сотового телефона. Так как зарядник сам по себе маломощный, то в нём применяется однополупериодная схема, причём как во входном сетевом выпрямителе 220V (50Гц), так и в выходном, где требуется выпрямить переменное напряжение высокой частоты со вторичной обмотки импульсного трансформатора.

Печатная плата простейшего зарядника сотового телефона

К несомненным достоинствам такого выпрямителя следует отнести минимум деталей, низкую стоимость и простые схемные решения. В обычных (не импульсных) блоках питания многие десятилетия успешно работают двухполупериодные выпрямители.

Двухполупериодные выпрямители.

Они бывают двух схемных решений: выпрямитель со средней точкой и мостовая схема, известная, как схема Гретца. Выпрямитель со средней точкой требует более сложного в исполнении силового трансформатора, хотя диодов там используется в два раза меньше чем в мостовой схеме. К недостаткам двухполупериодного выпрямителя со средней точкой можно отнести то, что для получения одинакового напряжения, число витков во вторичной обмотке трансформатора должно быть в два раза больше, чем при использовании мостовой схемы. А это уже не совсем экономично с точки зрения расходования медного провода.

Далее на рисунке показана типовая схема двухполупериодного выпрямителя со средней точкой .

Типовая схема двухполупериодного выпрямителя со средней точкой

Величина пульсаций выпрямленного напряжения меньше чем у однополупериодного выпрямителя и величину конденсатора фильтра так же можно использовать гораздо меньшую. Наглядно увидеть, как работает двухполупериодная схема можно по рисунку.

Двуполупериодное выпрямление

Как видим, на выходе выпрямителя уже в два раза меньше "провалов" напряжения - тех самых пульсаций.

Активно применяется схема выпрямителя со средней точкой в выходных выпрямителях импульсных блоков питания для ПК. Так как во вторичной обмотке высокочастотного трансформатора требуется меньшее число витков медного провода, то гораздо эффективнее применять именно эту схему. Диоды же применяются сдвоенные, т.е. такие, у которых общий корпус и три вывода (два диода внутри). Один из выводов - общий (как правило катод). По виду сдвоенный диод очень похож на транзистор.

Внешний вид сдвоенного диода

Наибольшую популярность приобрела в бытовой и промышленной аппаратуре мостовая схема . Взгляните.

Типовая схема мостового выпрямителя (схема Гретца)

Можно без преувеличения сказать, что это самая распространённая схема. На практике вы с ней ещё не раз встретитесь. Она содержит четыре полупроводниковых диода, а на выходе, как правило, ставится RC-фильтр или только электролитический конденсатор для сглаживания пульсаций напряжения.

Мостовой выпрямитель с фильтром на плате компьютерного блока питания

О данной схеме уже рассказывалось на странице про диодный мост. Стоит отметить, что и у мостовой схемы есть недостатки. Как известно, у любого полупроводникового диода есть так называемое прямое падение напряжения (Forward voltage drop - VF). Для обычных выпрямительных диодов оно может быть 1 - 1,2 V (зависит от типа диода). Так вот, при использовании мостовой схемы на диодах теряется напряжение, равное 2 x VF, т.е. около 2 вольт. Это происходит потому, что в выпрямлении одной полуволны переменного тока участвуют 2 диода (затем другие 2). Получается, что на диодном мосте теряется часть напряжения, которое мы снимаем со вторичной обмотки трансформатора, а это явные потери. Поэтому в некоторых случаях в составе диодного моста применяются диоды Шоттки, у которых прямое падение напряжения невелико (около 0,5 вольта). Правда, стоит учесть, что диод Шоттки не рассчитан на большое обратное напряжение и очень чувствителен к его превышению.

Большой интерес вызывает выпрямитель с удвоением напряжения .

Выпрямитель с удвоением напряжения.

Принцип удвоителя напряжения Латура-Делона-Гренашера основан на поочерёдном заряде-разряде конденсаторов С1 и С2 разными по полярности полуволнами входного напряжения. В результате между катодом одного диода и анодом второго диода возникает напряжение в два раза превышающее входное. Схема в студию:)

Типовая схема выпрямителя с удвоением

Стоит отметить, что данная схема применяется в блоках питания нечасто. Но её можно смело использовать, если необходимо вдвое увеличить напряжение, которое снимается со вторичной обмотки трансформатора. Это будет более логичным и правильным решением, чем перематывать вторичную обмотку трансформатора с целью увеличить выходное напряжение вторичной обмотки в 2 раза (ведь при этом придётся наматывать вторичную обмотку с вдвое большим числом витков). Так что, если не удалось найти подходящий трансформатор - смело применяем данную схему.

Развитием схемы стало создание умножителя на полупроводниковых диодах.

Умножитель напряжения.

Типовая схема умножителя напряжения

На рисунке изображён четырёхзвенный умножитель и на выходе мы получаем напряжение в четыре раза превышающее входное (U). Эти выпрямители получили большое распространение там, где нужно получить высокое напряжение при достаточно малом токе. Например, по такой схеме были выполнены источники высокого напряжения в старых телевизорах и осциллографах для питания анода электронно-лучевой трубки.

Сейчас такие источники питания используются в научных лабораториях, в детекторах элементарных частиц, в медицинской аппаратуре (люстра Чижевского) и в оружии самообороны (электрошокер). При повторении подобных конструкций и подборе деталей, следует учитывать рабочее напряжение , как диодов, так и конденсаторов исходя из напряжения, которое вы хотите получить. Весь умножитель, как правило, заливается специальным компаундом или эпоксидной смолой во избежание высоковольтных пробоев между элементами схемы.

Для нормальной работы некоторых устройств как, например, люстры Чижевского необходимы достаточно высокие напряжения. Как считают специалисты, излучатель отрицательных аэроионов, эффективен только при напряжении не менее 60 киловольт.

Трёхфазные выпрямители.

Типовая схема простейшего трёхфазного выпрямителя

Коэффициент пульсаций на нагрузке очень мал, что позволяет использовать конденсаторы фильтра небольшой ёмкости и малых габаритов.

Схема трёхфазного выпрямителя

Трёхфазные мощные выпрямители используются в электровозах, городском электротранспорте (трамвай, троллейбус, метро), в промышленных установках для электролиза. Так же промышленные системы очистки газовых смесей, буровое и сварочное оборудование используют трёхфазные выпрямители.

Читайте также: