Резина конспект по материаловедению

Обновлено: 05.07.2024

Резиной называется продукт специальной обработки (вулканизации) смеси каучука и серы с различными добавками.

Резина как технический материал отличается от других материалов высокими эластическими свойствами, которые присущи каучуку – главному исходному компоненту резины. Она способна к очень большим деформациям (относительное удлинение достигает 1000%), которые почти полностью обратимы.
При комнатной температуре резина находится в высокоэластическом состоянии и ее эластические свойства сохраняются в широком диапазоне температур.

Модуль упругости лежит в пределах 1…10 МПа, т. е. он в тысячи и десятки тысяч раз меньше, чем для других материалов. Особенностью резины является ее малая сжимаемость (для инженерных расчетов резину считают несжимаемой). При эксплуатации толстостенных деталей (например, шин) вследствие низкой теплопроводности материала нарастание температуры в массе резины снижает ее работоспособность.

Кроме отмеченных особенностей для резиновых материалов характерны высокая стойкость к истиранию, газо- и водонепроницаемость, химическая стойкость, электроизоляционные свойства и низкая плотность.

В результате совокупности технических свойств резиновых материалов их применяют для амортизации и демпфирования, уплотнения и герметизации в условиях воздушных и жидкостных сред, химической защиты деталей машин, в производстве тары для хранения масел и горючего, различных трубопроводов (шлангов), для покрышек и камер колес самолетов, автотранспорта и т. д.

Основой всякой резины служит каучук натуральный (НК) или синтетический (СК), который и определяет основные свойства резинового материала. Для улучшения физико-механических свойств каучуков вводятся различные добавки.
Вулканизующие вещества (сера, селен) участвуют в образовании пространственно-сеточной структуры резин. Ускорители процесса вулканизации: полисульфиды, окислы свинца, магния и др. влияют как на режим вулканизации, так и на физико-механические свойства вулканизатов. Ускорители проявляют свою наибольшую активность в присутствии окислов некоторых металлов (цинка и др.), называемых активаторами.

Противостарители (антиоксиданты) замедляют процесс старения резины, который ведет к ухудшению ее эксплуатационных свойств.

Пластификаторы облегчают переработку резиновой смеси, увеличивают эластические свойства каучука, повышают морозостойкость резины.
В качестве пластификаторов используют парафин, вазелин, стеариновую кислоту, битумы, дибутилфталат, растительные масла. Количество пластификаторов 8…30% от массы каучука.

  • Для учеников 1-11 классов и дошкольников
  • Бесплатные сертификаты учителям и участникам

Лекция к урокам № 43-44.

Тема: Резина. Резино-технические изделия.

Содержание: исходное сырьё для получения резины, технология производства резинотехнических ихделий, их применение в машиностроении.

Синтетические каучуки (эластомеры) получают путем полимеризации из мономеров с участием катализаторов (ускорителей процесса). Первый советский синтетический каучук был получен С. Д. Лебедевым из технического спирта. В настоящее время выпускают несколько видов синтетических каучуков (эластомеров), в том числе изопреновый, мало отличающийся от натурального. Для изделий медицинского назначения применяется салоксановый (силиконовый) каучук, основная полимерная цепь которого состоит из атомов кремния и кислорода. Он термостоек и физиологически инертен. Сырьем для изготовления синтетических каучуков служат нефть, природный газ, каменный уголь.

Резины различных видов и марок относятся к группе эластичных материалов – эластомеров. Резины подразделяются на формовые и неформовые. К неформовым относится большая группа так называемых сырых резин. Сырые резины выпускаются под номерами (10, 11, 14 и т. д.) в виде разнотолщинных пластин, покрытых тальком (для предохранения от слипания), или в виде рулонов с тканевой прокладкой (из миткаля), которая также предохраняет резину от слипания.

Неформовая сырая резина получается путем вулканизации из резиновых смесей, изготавливаемых на основе синтетических каучуков или натурального. Основным вулканизирующим веществом является сера, но еще применяют селен и теллур. В зависимости от марок сырая резина используется для получения различных формовых изделий с определенными свойствами. Например, из сырой резины получают техническую листовую резину нескольких типов: кислотощелочестойкую, теплостойкую, морозостойкую, пищевую и т. д. Морозостойкая резина сохраняет свои свойства при температуре до —45 °C. Техническую листовую резину толщиной 3–4 мм применяют для изготовления уплотнительных прокладок во фланцевых соединениях трубопроводов, транспортирующих холодную воду, а резину с тканевой прокладкой (из синтетической ткани) – и при транспортировании горячей воды температурой до +100 °C.

Из сырых резин получают различные резиновые изделия – муфты, кольца, клапаны, различные прокладки и т. д., применяя следующие методы формования: прессование, экструзию и литье под давлением. Процесс прессования резиновых изделий проходит в вулканизационных гидравлических прессах под давлением 100–300 атм. и при температуре +140–160 °C.

К резинам, предназначенным для изготовления отдельных групп изделий, предъявляют дополнительные требования, обеспечивающие выполнение изделиями их функционального назначения и надежность в работе. В настоящее время промышленность выпускает резину листовую трех марок: тепломорозокислотощелочестойкую (ТМКЩ); ограниченномаслобензостойкую (ОМБ); повышенномаслобензостойкую (ПМБ), которые в свою очередь подразделяются по твердости применяемой резины: мягкая (М) для работы при температурах от–45 °C до +90 °C; средней твердости (С) – при температурах от —60 °C до +80 °C, повышенной твердости (П) – при температурах от —60 °C до +80 °C.

Герметики (герметизирующие составы) применяются практически повсеместно – в строительстве, в системе ЖКХ, машиностроении, мебельном производстве, в быту, при различных ремонтных работах. Герметики представляют собой полимерные композиции в виде паст, замазок или жидкостей, которые после нанесения на поверхность сразу или спустя некоторое время густеют в результате вулканизации полимерной основы.

Для приготовления герметиков применяют жидкие синтетические каучуки и специальные добавки. Промышленностью выпускаются герметики разных видов: строительные фасадные, шовно—тиоколовые и акрилатные, строительные каучукосиликоновые, акриловые. В последние годы в Россию завозится множество марок герметиков, производимых зарубежными фирмами: DAP, KVADRO, KIMTEC, KRASS.

По сравнению с другими аналогичными материалами герметики обладают влагостойкостью, газонепроницаемостью, долговечностью Герметики, так же как и резины, относятся к группе эластомеров.

Наиболее широко применяются тиоколовые герметики, для которых характерна универсальность. Промышленность России выпускает следующие марки тиоколовых герметиков:

1) У–30М. Поставляют комплектно в составе пасты—герметика черного цвета У–30, вулканизатора № 9 и ускорителя вулканизации – дифенилгуанидина, смешиваемых непосредственно перед употреблением в соотношении 100: 7: 0,35 массовых частей. Предназначен для герметизации металлических (кроме латунных, медных, серебряных) и других соединений, работающих в среде разбавленных кислот и щелочей, жидкого топлива и на воздухе во всех климатических условиях при температурах от —60 °C до + 130 °C;

2) УТ–31 – светло—серая паста У–31, вулканизатор № 9 и ускоритель вулканизации, применяется для герметизации металлических (кроме латунных, медных, серебряных) и других соединений, работающих на воздухе и в среде жидких топлив при температурах от —60 °C до +130 °C и до + 150 °C – кратковременно на воздухе.

Для герметизации различных соединений, швов, работающих при температурах от +200 °C до +300 °C, предназначены теплостойкие силоксановые герметики, изготавливаемые на основе жидких силоксановых каучуков. Марки силокса—новых герметиков следующие: эластосил 11–01, силпен. ВПТ–2Л, КЛ–4, КЛТ–30, КЛСЕ, ВГО–2, КЛВАЕ и др. Выпускаются также теплотопливостойкие герметики, изготавливаемые на основе фторсодержащих каучуков, следующих марок: ВГФ–1, ВГФ–2, 51–Г–1 и др.

Резина – эластичный материал, получаемый вследствие вулканизации каучука с добавлением активатора, обычно серы. В основном используется для изготовления автомобильных шин, камер, мячей, спортивных снарядов, лодок, шлангов.

История появления

Изначально резина изготавливалась исключительно из натурального каучука. Это сок гевеи, произрастающей в Южной Америки. С древних пор его использовали индейские племена для изготовления мячей, а также непромокаемых чулок. На территорию Европы каучук попал только в первой половине 18 века. Исследовав его качества, тогдашние промышленники придумали использовать получаемую из него массу только для изготовления ластиков для стирания карандаша.

Вся проблема в том, что эластичный каучук после обработки становился твердым. Лишь в 1823 году был найден способ и пропорции компонентов, при котором он сохранял эластичность. Тогда примитивную резину начали применять для пропитки тканей с целью обеспечения их водонепроницаемости.

Полноценную же резину впервые получили лишь 1839 году, когда была разработана технология вулканизации. Новый материал сразу получил признание и начал использоваться для изготовления уплотнителей и изоляции.

Состав резины

Для производства резины требуется провести полимеризацию каучука, но не просто нагревом, а с добавлением серы. Создаваемая ею среда позволяет сделать вулканизацию, благодаря чему масса становится не твердой, а эластичной.

Вещество, полученное этим способом, уже является резиной, но с совершенно не такой, какой ее знают сейчас. Она имеет мутный сложно определяемый цвет, сильно подвержена эффекту старения и обладает многими другими недостатками. Для ее улучшения первоначальный состав был усовершенствован.

Сейчас в него входит:
  • Каучук.
  • Регенерат.
  • Вулканизирующие вещества.
  • Ускорители вулканизации.
  • Наполнители.
  • Размягчители.
  • Противостарители.
  • Красители.

Регенерат – это вторсырье. В состав практически всей резины, кроме высококачественной медицинской и подобной ей, входят уже отработанные резиновые изделия. Их наличие снижает необходимую концентрацию каучука, который является самым дорогостоящим компонентом состава.

В качестве вулканизирующего вещества обычно применяется сера. Она включается в 1-35%. Причем от ее количества зависит уровень эластичности. У самой тягучей ее всего 1-4%. Процесс вулканизации достаточно продолжителен. Чтобы его ускорить, используются добавки, обычно каптакс или окись свинца. Их нужно совсем немного 0,5-2%. Причем они не только работают как ускорители, но и уменьшают температуру вулканизации.

Современная резина не является чистым вулканизированным каучуком. В ее состав входят различные наполнители, доля которых может доходить до 80%. От того какой из них применяется, зависят качества резины.

Всего используется 3 типа наполнителей:
  • Активные.
  • Неактивные.
  • Специальные.

В качестве активного применяется сажа или свинцовые белила. Такие наполнители укрепляют резину, делают ее более прочной, но при этом в некоторой мере позволяют ей сохранить эластичность. С ними она становится более прочной на разрыв и истирание. Автомобильные покрышки являются ярким примером резины, которая изготовлена на основании сажи.

К неактивным наполнителям для резины можно отнести тальк и мел. С ними получается менее прочный и стойкий материал, но более дешевый. Талька и мела много, их несложно добыть, намного проще, чем производить сажу. Такой наполнитель просто увеличивает объем резины.

Специальные наполнители это каолин и асбест. С ними резина приобретает нехарактерные для себя свойства, такие как температурная или химическая стойкость. Применение в качестве наполнителя диатомита делает ее улучшенным электроизолятором.

Размягчители в составе резины как понятно из названия делают ее более мягкой. Это дает характерную упругость, гибкость. Противостарители же снижают склонность материала к эффекту старения. С ними растрескивание резины со временем проявляется в меньшей мере.

Где используется резина

Применение резины получило широкое распространение благодаря ее упругости, долговечности, устойчивости отдельных ее видов к воздействию масла, бензина. Даже в обычном легковом автомобиле используется 200 видов резиновых деталей. Это шланги, приводные ремни, манжеты, втулки и т.д.

Из резины производят десятки тысяч наименований продукции. Большая доля этого сырья идет на изготовление автомобильных шин. Из нее делают коврики, тротуарную плитку, жгуты, транспортировочные ленты и т.д.

Виды резины

Изменяя соотношение компонентов, а также видов каучука и наполнителя, можно получать совершенно разные по своим качествам типы резины. Одни ее образцы отличаются великолепной тягучестью и упругостью, другие жесткостью, температурной устойчивостью, стойкостью к истиранию.

Таким образом, различают много видов резины, которые можно разделить на несколько объединенных групп:
  • Армированная.
  • Пористая.
  • Твердая.
  • Мягкая.

Армированной называют резину, внутри которой имеются армирующие включения. Это может быть металлическая сетка, спираль, трос, нитка. Сталь обычно покрывается тонким слоем латуни, что обеспечивает ее устойчивость к коррозии. Армирующее включение размещается в массе, которая еще не является резиной, и поддается вулканизации. После срабатывания серы в условиях высокой температуры и происходит надежное закрепление сетки, проволоки и т.д. Обычно армированными делают резиновые изделия, такие как шины, ремни, ленты транспортеров, трубы высокого давления и т.п. Также армируют и рулонную резину, но обычно ниткой или проволокой, так как они позволяют сохранить хорошую гибкость.

Пористая резина имеет внутри небольшие поры. Это достигается за счет свойства каучука абсорбировать на себе пузырьки газа. Для изготовления данной резины через подготовленную массу пропускают газ, который задерживается в ее толще. Для этого необходимо включение большего количества каучука, размягчителей и меньшего наполнителей. Пористая резина бывает губчатая и однородная. У первой поры получаются крупными и открытыми. У однородной они представляют собой внутренние закрытые ячейки. Пористую резину используют при изготовлении амортизаторов, прокладок, в частности уплотнителей для окон. Она отличается высокой мягкостью, отлично заполняет неровности при сжатии. Кроме этого пористость снижает вес резины, уменьшает теплопроводность.

Для твердой резины характерно присутствие большого количества серы при вулканизации. За счет этого происходит ее отвердевание. Одним из ее видов выступает эбонит. Он отличается высокой прочностью и жесткостью, благодаря чему может применяться для изготовления корпусов электроприборов вместо пластика. Эбонит меньше подвержен растрескиванию при ударах или понижении температуры, при этом обладает лучшей электроизоляцией. Для твердой резины характерна большая масса. Так, эбонит имеет плотность в среднем 1300 кг/м³.

Мягкие резины занимают основной ассортимент всей продукции производимой из каучука. Они имеют различную степень эластичности и упругости. Из них делают прокладки, медицинские жгуты, мембраны, манжеты и т.д.

Свойства резины

Для резины характерны уникальные качества, которых лишены прочие материалы. В связи с этим она и получила столь высокое значение.

К ее главным свойствам относят:
  • Эластичность.
  • Непроницаемость.
  • Выраженная химическая стойкость.
  • Электроизоляция.
  • Малая теплопроводност.

Самым выдающимся качеством резины выступает высокая эластичность. Она может подвергаться любым деформациям, в том числе и растяжению. При этом после механического воздействия практически полностью возвращает свою первоначальную форму, причем мгновенно. Она обладает высоким сопротивлением к разрыву. Выраженная упругость позволяет ее применять для изготовления, к примеру, оружия для подводной охоты, жгутов для остановки кровотечений на конечностях.

Резина является непроницаемым материалом для воды, газов. Не удивительно, что из нее делают водонепроницаемые сапоги, перчатки. Но нужно отметить, что большинство видов резины все же могут пропустить сквозь себя агрессивные жидкости если будут с ними долго контактировать. Те просто ее растворят. Так, зачастую она боится бензина, масла. Но в целом ее химическая стойкость более чем высокая.

Материал выступает отличным электроизолятором. Именно поэтому защитные перчатки для электриков делают из резины. Кроме этого самая лучшая изоляция для гибких проводов также изготавливается из нее. Резину используют для получения уплотнителей на окна, так как она обладает низкой теплопроводностью, особенно если имеет пористую структуру.

Важные недостатки резины:
  • Низкая теплостойкость и морозостойкость.
  • Эффект старения.

Под воздействием высоких температур резина начинает сильно размягчаться, приобретает текучесть. В холод она наоборот затвердевает, от чего ее упругость снижается. В таких условиях ее действительно можно разорвать, приложив усилие, которое она с легкостью переносит при нормальной температуре.

Для резины характерным является эффект старения. Она теряет свои качества под воздействием света, воздуха, тепла, особенно бензина и масла. Это проявляется растрескиванием, появлением белесого цвета, потерей упругости. Для решения этой проблемы в ее состав добавляют различные добавки. Чем их больше и они лучше, тем меньше проявляется эффект старения. Большинство видов резиновых изделий без проблем служат десятки лет, так что эта проблема почти решена.

Резина – пластмассы с редкосетчатой структурой, в которых связующим выступает полимер, находящейся в высокопластическом состоянии.

В резине связующим являются натуральные (НК) или синтетические (СК) каучуки.

На рис. 1 и 2 показаны область применения каучуков и получаемые изделия.

Применение каучуков

Рис. 1 Применение каучуков

Изделия, где используются каучуки

Рис. 2 Изделия, где используются каучуки

Каучуку присуща высокая пластичность, обусловленная особенностью строения их молекул. Линейные и слаборазветвлённые молекулы каучуков имеют зигзагообразную или спиралевидную конфигурацию и отличаются большой гибкостью (рис. 3, верхний). Чистый каучук ползёт при комнатной температуре и особенно при повышенной, хорошо растворяется в органических растворителях. Такой каучук не может использоваться в готовых изделиях. Для повышения упругих и других физико-механических свойств в каучуке формируют редкосетчатую молекулярную структуру. Это осуществляют вулканизацией – путём введения в каучук химических веществ – вулканизаторов, образующих поперечные химические связи между звеньями макромолекул каучука (рис. 3, нижний). В зависимости от числа возникших при вулканизации поперечных связей получают резины различной твёрдости – мягкие, средней твёрдости, твёрдые.

Структуры каучука и резины

Рис. 3 Структуры каучука и резины

Механические свойства резины определяют по результатам испытаний на растяжение и на твёрдость. При вдавливании тупой иглы или стального шарика диаметром 5 мм по значению измеренной деформации оценивают твёрдость (рис. 4).

Определение твёрдости резины протектора

Рис. 4 Определение твёрдости резины протектора

При испытании на растяжение определяют прочность Ϭz (МПа), относительное удлинение в момент разрыва εz (%) и остаточное относительное удлинение Ѳz (%) (рис. 5).

Лабораторная установка для проведения механических испытаний резины

Рис. 5 Лабораторная установка для проведения механических испытаний резины

В процессе эксплуатации под воздействием внешних факторов (свет, температура, кислород, радиация и др.) резины изменяют свои свойства – стареют. Старение резины оценивают коэффициентом старения Кстар, который определяют, выдерживая стандартизованные образцы в термостате при температуре -70 о С в течение 144 час, что соответствует естественному старению резины в течение 3 лет. Морозостойкие резины определяется температурой хрупкости Тхр, при которой резина теряет эластичность и при ударной нагрузке хрупко разрушается.

Для оценки морозостойкости резин используют коэффициент Км, равный отношению удлинения δм образца при температуре замораживания к удлинению δо при комнатной температуре.

Состав резины

Резины являются сложной смесью различных ингредиентов, каждый из которых выполняет определённую роль в формировании её свойств (рис. 6). Основу резины составляет каучук. Основным вулканизирующим веществом является сера.

состав резины

Рис. 6 Компоненты, которые входят в состав резины

Вулканизирующие вещества (сера, оксиды цинка или магния) непосредственно участвуют в образовании поперечных связей между макромолекулами. Их содержание в резине может быть от 7 до 30 %.

Наполнители по воздействию на каучуки подразделяют на активные, которые повышают твёрдость и прочность резины и тем самым увеличивают её сопротивление к изнашиванию и инертные, которые вводят в состав резин в целях их удешевления.

Пластификаторы присутствия в составе резин (8 – 30%), облегчают их переработку, увеличивают эластичность и морозостойкость.

Противостарители замедляют процесс старения резин, препятствуют присоединению кислорода. Кислород способствует разрыву макромолекул каучука, что приводит к потере эластичности, хрупкости и появлению сетки трещин на поверхности.

Красители выполняют не только декоративные функции, но и задерживают световое старение, поглощая коротковолновую часть света. Наибольшее распространение получили сорта натурального каучука янтарного цвета и светлого тона.

Обычно приняты классификация и наименование каучуков синтетических по мономерам, использованным для их получения (изопреновые, бутадиеновые, бутадиен-стирольные и т.п.), или по характерной группировке (атомам) в основной цепи или боковых группах (напр., полисульфидные, уретановые, кремнийорг), фторкаучуки.

каучуков синтетических по мономерам

Каучуки синтетические подразделяют также по другим признакам, например, по содержанию наполнителей – на ненаполненные и наполненные каучуки, по молекулярной массе (консистенции) и выпускной форме – на твердые, жидкие и порошкообразные.

Получение и применение каучуков

Более широкое применение в производстве резин получили синтетические каучуки, отличающиеся разнообразием свойств. Синтетические каучуки получают из спирта, нефти, попутных газов нефтедобычи, природного газа и т.д. (рис. 7).

Схема получения синтетических каучуков

Рис. 7 Схема получения синтетических каучуков

СКБ – бутадиеновый каучук, чаще идёт на изготовление специальных резин (рис. 8).

Уплотнители - упругие прокладки трубчатого или иного сече- ния

Рис. 8 Уплотнители — упругие прокладки трубчатого или иного сечения

СКС – бутадиенстирольный каучук. Каучук СКС – 30, наиболее универсальный и распространённый, идёт на изготовление автомобильных шин, резиновых рукавов и других резиновых изделий (рис. 9). Каучуки СКС отличаются повышенной морозостойкостью (до -77 о С).

Изделия из каучука СКС

Рис. 9 Изделия из каучука СКС

СКИ – изопреновый каучук. Промышленностью выпускается каучуки СКИ-3 – для изготовления шин, амортизаторов; СУИ-3Д – для производства электроизоляционных резин; СКИ-3В – для вакуумной техники (рис. 10).

Вакуумный выключатель-прерыватель и электрозащитные перчатки

Рис. 10 Вакуумный выключатель-прерыватель (а), электрозащитные перчатки (б)

СКН – бутадиеннитрильный каучук. В зависимости от содержания нитрила акриловой кислоты бутадиеннитрильные каучуки разделяют на марки СКН-18, СКН-26, СКН-40. Они стойки в бензине и нефтяных маслах. На основе СКН производят резины для топленных и масляных шлангов, прокладок и уплотнителей мягких топливных баков (рис. 11).

СКТ – синтетический каучук теплостойкий имеет рабочую температуру от -60 до +250 о С, эластичный. На основе этих каучуков производят резины, предназначенные для изоляции электрических кабелей и для герметизирующих и уплотняющих прокладок (рис. 12).

Масляные шланги и уплотнители топливных баков

Рис. 11 Масляные шланги и уплотнители топливных баков

Уплотняющая прокладка и изоляция электрических кабелей

Рис. 12 Уплотняющая прокладка и изоляция электрических кабелей

Технология формообразования деталей из резины

Из сырой резины методами прессования и литья под давлением изготавливают детали требуемой формы и размеров. Каждый метод имеет только ему присущие технологические возможности и применяется для изготовления определённого вида деталей.

Прессование. Детали из сырой резины формуют в специальных прессформах на гидравлических прессах под давлением 5 – 10 МПа (рис. 13).

Гидравлический пресс и готовые изделия

Рис. 13 Гидравлический пресс и готовые изделия

В том случае, если прессование проходило в холодном состоянии, отформованное изделие затем подвергают вулканизации. При горячем прессовании одновременно с формовкой протекает вулканизация. Методом прессования изготавливают уплотнительные кольца, муфты, клиновые ремни.

Литьё под давлением. При этом более прогрессивном методе форму заполняют предварительно разогретой пластичной сырой резиновой смесью под давлением 30 – 150 МПа. Резиновая смесь приобретает форму, соответствующую рабочей полости пресс-формы. Прочность резиновых изделий увеличивается при армировании их стенок проволокой, сеткой, капроновой или стеклянной нитью (рис. 14).

Резиновые изделия с увеличенной прочностью

Рис. 14 Резиновые изделия с увеличенной прочностью

Сложные изделия – автопокрышки, гибкие бронированные шланги и рукава – получают последовательно. Сначала наматывают на полый металлический стержень слои резины, затем изолирующие и армирующие материалы (рис. 15).

Бронированные шланги и устройство автопокрышки

Рис. 15 Бронированные шланги и устройство автопокрышки

Сборку этих изделий выполняют на специальных дорновых станках (рис. 16).

дорновый станок литья под давлением резины

Рис. 16 Один из разновидностей дорновых станков литья под давлением резины

Вулканизация. В результате вулканизации – завершающей операции технологического процесса – формируются физико-механические свойства резины. Горячую вулканизацию проводят в котлах, вулканизационных прессах, пресс-автоматах (рис. 17), машинах и вулканизационных аппаратах непрерывного действия под давлением при строгом температурном режиме в пределах 130 – 150 о С. Вулканизационной средой могут быть горячий воздух, водяной пар, горячая вода, расплав соли. Основной параметр вулканизации – время – определяется составом сырой резины, температурой вулканизации, формой изделий, природой вулканизационной среды и способом нагрева.

Вулканизацию можно проводить и при комнатной температуре (рис. 18). в этом случае сера отсутствует в составе сырой резины, а изделие обрабатывают в растворе или парах дихлорида серы или в атмосфере сернистого газа.

Пресс-автомат для вулканизации резины

котёл для вулканизации резины

Рис. 17 Пресс-автомат и котёл для вулканизации резины

Вулканизация (ремонт) шин при комнатной температуре

Рис. 18 Вулканизация (ремонт) шин при комнатной температуре

В результате вулканизации увеличиваются прочность и упругость резины, сопротвление старению, действию различных органических растворителей, изменяются электроизоляционные свойства.

На фото 1 и 2 показано сборочное оборудование Нижнекамского завода и цех вулканизации шин ЦМК (цельнометаллокордных покрышек).

цех вулканизации шин

цех вулканизации шин

Главное преимущество цельнометаллокордных покрышек — возможность их двукратного восстановления путем наварки протектора. Это позволяет в конечном итоге удвоить срок их службы и довести до 500 тыс. км пробега. Помимо ресурсосбережения достигается значительный экологический эффект — вдобавок к уменьшению выхлопных газов сокращаются и отходы в виде изношенных покрышек.

Читайте также: