Перпендикулярность двух плоскостей конспект кратко

Обновлено: 07.07.2024

  • Для учеников 1-11 классов и дошкольников
  • Бесплатные сертификаты учителям и участникам

Конспект урока по геометрии для учащихся 10 класса

Цель урока: введение понятия угла между плоскостями.

Образовательная: дать определение перпендикулярных плоскостей, доказать признак перпендикулярности двух плоскостей;

Развивающая: развитие внимания, познавательной активности, памяти, мышления ;

Воспитательная: воспитание аккуратности, внимательности, культуры математической речи.

Тип урока: урок усвоения новых знаний

Методы обучения: объяснительно-иллюстративный

Оборудование: компьютер, интерактивная доска.

Организационный момент (2 мин)

Актуализация знаний (5 мин)

Изучение нового материала (12 мин)

Закрепление изученного материала (21 мин)

Домашнее задание (2 мин)

Подведение итогов (3 мин)

1. Организационный момент.

Включает в себя приветствие учителем класса, подготовку помещения к уроку, проверку отсутствующих.

2. Актуализация опорных знаний.

Учитель: Точка А лежит на ребре двугранного угла. Верно ли, что ∠ ABC - линейный угол двугранного угла, если лучи АВ и АС перпендикулярны его ребру?

Учитель : Верно ли, что ∠ BAC - линейный угол двугранного угла, если лучи АВ и АС лежат в гранях двугранного угла?

Учитель : Верно ли, что ∠ BAC - линейный угол двугранного угла, если лучи АВ и АС перпендикулярны его ребру, а точки В а С лежат на гранях угла?

Учитель: Линейный угол двугранного угла равен 80°. Найдется ли в одной из граней угла прямая, перпендикулярная другой грани?

Учитель : ∠ ABC - линейный угол двугранного угла с ребром а. Перпендикулярна ли прямая а плоскости ABC ?

Учитель : ∠ ABC - линейный угол двугранного угла с ребром а. Перпендикулярна ли прямая а плоскости ABC ?

Учитель : Что называется двугранным углом?

Ученики : Двугранным углом называется фигура, образованная прямой и двумя полуплоскостями с общей границей, не принадлежащими одной плоскости.

3.Изучение нового материала.

Учитель : Открывайте тетради, записывайте сегодняшнее число и тему урока.

Запись на доске и в тетрадях:

Признак перпендикулярности плоскостей.

Учитель : При пересечении двух плоскостей образуются четыре двугранных угла. Углом между пересекающимися плоскостями называется линейный угол φ этого двугранного угла, который 0°

Учитель : Если φ = 90°, то плоскости называются перпендикулярными (взаимно перпендикулярными) (рис. 2).

Учитель: Приведите примеры взаимно перпендикулярных плоскостей.

Ученики : Плоскости стены и пола, стены и потолка комнаты.

Учитель : Ясно, что в этих случаях каждый из четырех двугранных углов, образованных пересекающимися плоскостями, прямой (рис. 2). Рассмотрим признак перпендикулярности двух плоскостей.

Теорема: Если одна из двух плоскостей проходит через прямую, перпендикулярную к другой плоскости, то такие плоскости перпендикулярны.

Дано: α, β, АВ лежит в плоскости α, АВ ⊥ β, АВ ∩ α = А (рис. 3). Доказать: α ⊥ β.

Доказательство: α ∩ β = АС, АВ ⊥ АС, так как АВ ⊥ β по условию. Проведем в плоскости β AD ⊥ AC . ∠ BAD - линейный угол двугранного угла. Но ∠ BAD = 90°, так как ВА ⊥ β. Значит, α ⊥ β. Запишите теорему и её доказательство в тетради и сделайте чертёж.

Запись на доске и в тетрадях:

Теорема: Если одна из двух плоскостей проходит через прямую, перпендикулярную к другой плоскости, то такие плоскости перпендикулярны.

Дано: α, β, АВ лежит в плоскости α, АВ ⊥ β, АВ ∩ α = А (рис. 3). Доказать: α ⊥ β.

Доказательство: α ∩ β = АС, АВ ⊥ АС, так как АВ ⊥ β по условию. Проведем в плоскости β AD ⊥ AC . ∠ BAD - линейный угол двугранного угла. Но ∠ BAD = 90°, так как ВА ⊥ β. Значит, α ⊥ β.

4.Закрепление изученного материала.

Учитель : При решении задач используются утверждения:

Плоскость, перпендикулярная к ребру двугранного угла, перпендикулярна к его граням (следствие).

Перпендикуляр, проведенный из любой точки одной из двух взаимно перпендикулярных плоскостей к линии их пересечения, есть перпендикуляр к другой плоскости (№ 178).

Учитель : Решим №172 у доски.

Дано: ΔАВС, ∠ С = 90°, АС лежит в плоскости α, угол между плоскостями α и ABC равен 60°, АС = 5 см, АВ = 13 см (рис. 4). Найти: расстояние от точки В до плоскости α.

http://compendium.su/mathematics/geometry10/geometry10.files/image1183.jpg

http://compendium.su/mathematics/geometry10/geometry10.files/image1184.jpg

Решение: Построим ВК ⊥ α. Тогда КС - проекция ВС на эту плоскость. ВС ⊥ АС по условию, значит, по теореме о трех перпендикулярах, КС ⊥ АС. Отсюда следует, что ∠ ВСК - линейный угол двугранного угла между плоскостью α и плоскостью треугольника , ∠ ВСК = 60°. Из ΔВСА по теореме Пифагора:

http://compendium.su/mathematics/geometry10/geometry10.files/image1186.jpg

Из ΔВКС:

Запись на доске и в тетрадях:

Дано: ΔАВС, ∠ С = 90°, АС α, угол между плоскостями α и ABC равен 60°, АС = 5 см, АВ = 13 см (рис. 4). Найти: расстояние от точки В до плоскости α.

http://compendium.su/mathematics/geometry10/geometry10.files/image1183.jpg

Решение: Построим ВК ⊥ α  КС - проекция ВС на эту плоскость. ВС ⊥ АС по условию, значит, по теореме о трех перпендикулярах, КС ⊥ АС  ∠ ВСК - линейный угол двугранного угла между плоскостью α и плоскостью треугольника , ∠ ВСК = 60°.

http://compendium.su/mathematics/geometry10/geometry10.files/image1184.jpg

Из ΔВСА:

http://compendium.su/mathematics/geometry10/geometry10.files/image1186.jpg

Из ΔВКС:

5.Подведение итогов.

Учитель: Что нового вы узнали сегодня на уроке?

Ученики : Узнали какие плоскости называются перпендикулярными, признак перпендикулярности плоскостей.

Двугранным углом называется фигура, образованная прямой а и двумя полуплоскостями с общей границей в виде прямой а, не принадлежащими одной плоскости. Перпендикуляры к ребру двугранного угла образуют линейный угол двугранного угла. Градусной мерой двугранного угла называется градусная мера его линейного угла.

Если угол между пересекающимися плоскостями равен 90 градусом, то плоскости перпендикулярны.

Признак перпендикулярности плоскостей: если одна из двух плоскостей проходит через прямую, перпендикулярную к другой плоскости, то такие плоскости перпендикулярны.

Следствие из признака перпендикулярности плоскостей: Плоскость, перпендикулярная к прямой, по которой пересекаются две данные плоскости, перпендикулярна к каждой из этих плоскостей.

Прямоугольный параллелепипед – фигура, у которой все боковые ребра перпендикулярны основанию.

Основная литература:

Атанасян Л.С., Бутузов В.Ф. Кадомцев С.Б. и др. Математика: алгебра и начала математического анализа, геометрия. Геометрия. 10–11 классы: учеб. для общеобразоват. организаций: базовый и углубл. уровни. – 4-е изд. – М.: Просвещение, 2017. – 255 с.

Дополнительная литература:

Глазков Ю.А., Юдина И.И., Бутузов В.Ф. Рабочая тетрадь по геометрии для 10 класса. Базовый и профильный уровень. – М.: Просвещение, 2017. – 160 с.

Теоретический материал для самостоятельного изучения

Двугранным углом называется фигура, образованная прямой а и двумя полуплоскостями с общей границей в виде прямой а, не принадлежащими одной плоскости. Полуплоскости, образующие двугранный угол, называются его гранями. Прямая а, которая является общей границей полуплоскостей, называется ребром двугранного угла (рис. 1а и 1б).

Двугранный угол с ребром CD, на разных гранях которого отмечены точки A и B называют двугранным углом CABD.

Перпендикуляры к ребру AO и BO образуют линейный угол двугранного угла AOB (рис. 1в). Так как луч ОА перпендикулярен прямой CD и луч OB перпендикулярен прямой CD, то плоскость АОВ перпендикулярна к прямой CD. Таким образом, плоскость линейного угла перпендикулярна к ребру двугранного угла. Двугранный угол имеет бесконечное множество линейных углов

Градусной мерой двугранного угла называется градусная мера его линейного угла. Так же как и плоские углы, двугранные углы могут быть прямыми, острыми и тупыми.

Все линейные углы двугранного угла равны друг другу.

Рассмотрим два линейных угла АОВ и А1О1В1 (рис. 1г). Лучи ОА и О1А1, лежат в одной грани и перпендикулярны к прямой ОО1, поэтому они сонаправлены. Точно так же сонаправлены лучи OB и O1B1. Поэтому углы АОВ и А1О1В1 равны как углы с сонаправленными сторонами.





Две пересекающиеся плоскости образуют четыре двугранных угла с общим ребром.

Если один из этих двугранных углов равен фи, то другие три угла равны соответственно 180 градусов минус фи, фи и 180 градусов минус фи (рис. 2 а). В частности, если один из углов прямой, то и остальные три угла прямые. Если угол между пересекающимися плоскостями равен 90 градусом, будем называть такие плоскости перпендикулярными (рис. 2б).


Для доказательства теоремы рассмотрим плоскости альфа и бетта такие (рис. 3), что плоскость альфа проходит через прямую АВ, перпендикулярную к плоскости бетта и пересекающуюся с ней в точке А. Докажем, что плоскости альфа и бетта перпендикулярны. Плоскости альфа и бетта пересекаются по некоторой прямой АС. При этом прямая АВ перпендикулярна прямой АС, так как по условию прямая АВ перпендикулярна плоскости бетта, это означает, что прямая АВ перпендикулярна к любой прямой, лежащей в плоскости бетта.

Проведем в плоскости бетта прямую AD, перпендикулярную к прямой АС. Тогда угол BAD — линейный угол двугранного угла, образованного при пересечении плоскостей альфа и бетта. Но угол BAD равен 90 градусов так как прямая АВ перпендикулярна плоскости бетта. Следовательно, угол между плоскостями альфа и бетта равен 90 градусов. Что и требовалось доказать.


Из этой теоремы вытекает важное следствие:

Плоскость, перпендикулярная к прямой, по которой пересекаются две данные плоскости, перпендикулярна к каждой из этих плоскостей.

На рисунке 4 представлен прямоугольный параллелепипед. У этой фигуры все боковые ребра перпендикулярны основанию.

Его основаниями служат прямоугольники ABCD и A1B1C1D1, а боковые ребра АА1,BB1,CC1 и DD1 перпендикулярны к основаниям. Отсюда следует, что ребро АА1 перпендикулярно к ребру АВ, т. е. боковая грань АА1В1В является прямоугольником. То же самое можно сказать и об остальных боковых гранях.

Таким образом, прямоугольный параллелепипед обладает следующими свойствами:

1) В прямоугольном параллелепипеде все шесть граней — прямоугольники.

2) Все двугранные углы прямоугольного параллелепипеда — прямые.

3) Квадрат диагонали прямоугольного параллелепипеда равен сумме квадратов трех его измерений.

Измерениями прямоугольного параллелепипеда называются длины трех ребер, имеющих общую вершину.

Докажем последнее свойство.


Так как ребро СС1 перпендикулярно к основанию ABCD, то угол АСС1, прямой. Из прямоугольного треугольника АСС1, по теореме Пифагора получаем

Но АС — диагональ прямоугольника ABCD, поэтому АС 2 равно АВ 2 + АD 2 . Кроме того, ребро СС1 равно ребру АА1. Следовательно, AC1 равно АВ 2 + AD 2 + АА1 2 . Что и требовалось доказать.

Следствием из этого свойства является то, что диагонали прямоугольного параллелепипеда равны.

Стоит отметить, что если у прямоугольного параллелепипеда все три измерения равны, то он называется, а все его грани являются равными друг другу квадратами.

Примеры и разбор решения заданий тренировочного модуля

Пример 1. В прямоугольном параллелепипеде ABCDA1B1C1D1 (рис. 5) боковая грань DD1C1C – квадрат, DC равно 4 см, BD1 равно 6 см. Найдите BC и докажите, что плоскости BCD1 и DC1 B1 взаимно перпендикулярны.

Сначала найдем BC. Воспользуемся тем свойством прямоугольного параллелепипеда, что квадрат его диагонали равен сумме квадратов трех его измерений.

Тогда диагональ BD1 в квадрате равна AD в квадрате плюс DD1 в квадрате плюс DC в квадрате. BD1 – известно из условия, DD1 и DC – стороны квадрата и тоже известны из условия, тогда отсюда мы можем выразить ребро AD, которое ребру BC.Отсюда находим, что BC равно 2 сантиметрам.

Для доказательства перпендикулярности плоскостей BCD1 и DC1 B1 воспользуемся признаком перпендикулярности плоскостей. Этот признак звучит следующим образом: если одна из двух плоскостей проходит через прямую, перпендикулярную к другой плоскости, то такие плоскости перпендикулярны.

Заметим, что плоскость BCD1 проходит через диагональ грани DD1 C1CCD1. Эта диагональ перпендикулярна плоскости DC1 B1 в соответствии с признаком перпендикулярности прямой и плоскости, так как CD1 перпендикулярна второй диагонали квадрата – C1D и перпендикулярна ребру прямоугольного параллелепипеда C1 B1. Что и требовалось доказать.


Тестовый вопрос №2. В прямом двугранном угле дана точка A. Расстояния от точки A до граней угла: AA1=6 см и AB1=8 см. Определите расстояние от точки A до ребра двухгранного угла.


Отрезки AA1 и AB1 перпендикулярны граням двугранного угла, поэтому AA1BB1 – прямоугольник. Искомое расстояние – диагональ этого прямоугольника, которую найдем с помощью теоремы Пифагора: сантиметров.

Тестовый вопрос №10. В прямоугольном параллелепипеде ABCDA1B1C1D1 длины рёбер: AB = 2, BC=3, AA1 = 4. Найдите площадь сечения параллелепипеда плоскостью, проходящей через точки A, B и C​1​​.

Решение. Нарисуем рисунок.


В рассматриваемом прямоугольном параллелепипеде проведем отрезок BC​1​​. Затем построим плоскость на прямых BC​1​​ и AB. Так как плоскости прямоугольного параллелепипеда AA1D1D и BB1C1C параллельны, поэтому искомым сечением является прямоугольник ABC1D1.

Нам известны отрезки AA1 и BC, из них по теореме Пифагора вычислим длину отрезка BC1: .

Гост

ГОСТ

Понятие перпендикулярных плоскостей

При пересечении двух плоскостей у нас получается $4$ двугранных угла. Два угла равны $\varphi $, а два другие равны $^0-\varphi $.

Углом между плоскостями называется минимальный из двугранных углов, образованных этими плоскостями.

Две пересекающиеся плоскости называются перпендикулярными, если угол между этими плоскостями равен $90^\circ$ (рис. 1).

Перпендикулярные плоскости

Рисунок 1. Перпендикулярные плоскости

Признак перпендикулярности двух плоскостей

Если прямая плоскости перпендикулярна другой плоскости, то эти плоскости перпендикулярны друг другу.

Доказательство.

Пусть нам даны плоскости $\alpha $ и $\beta $, которые пересекаются по прямой $AC$. Пусть прямая $AB$, лежащая в плоскости $\alpha $ перпендикулярна плоскости $\beta $ (рис. 2).


Так как прямая $AB$ перпендикулярна плоскости $\beta $, то она перпендикулярна и прямой $AC$. Проведем дополнительно прямую $AD$ в плоскости $\beta $, перпендикулярно прямой $AC$.

Получаем, что угол $BAD$ - линейный угол двугранного угла, равный $90^\circ$. То есть, по определению 1, угол между плоскостями равен $90^\circ$, значит, данные плоскости перпендикулярны.

Теорема доказана.

Из этой теоремы следует следующая теорема.

Если плоскость перпендикулярна прямой, по которой пересекаются две другие плоскости, то она перпендикулярна и этим плоскостям.

Доказательство.

Пусть нам даны две плоскости $\alpha $ и $\beta $, пересекающиеся по прямой $c$. Плоскость $\gamma $ перпендикулярна прямой $c$ (рис. 3)


Так как прямая $c$ принадлежит плоскости $\alpha $ и плоскость $\gamma $ перпендикулярна прямой $c$, то, по теореме 1, плоскости $\alpha $ и $\gamma $ перпендикулярны.

Так как прямая $c$ принадлежит плоскости $\beta $ и плоскость $\gamma $ перпендикулярна прямой $c$, то, по теореме 1, плоскости $\beta $ и $\gamma $ перпендикулярны.

Теорема доказана.

Для каждой из этих теорем справедливы и обратные утверждения.

Примеры задач

Пусть нам дан прямоугольный параллелепипед $ABCDA_1B_1C_1D_1$. Найти все пары перпендикулярных плоскостей (рис. 5).


Решение.

По определению прямоугольного параллелепипеда и перпендикулярных плоскостей видим следующие восемь пар перпендикулярных между собой плоскостей: $(ABB_1)$ и $(ADD_1)$, $(ABB_1)$ и $(A_1B_1C_1)$, $(ABB_1)$ и $(BCC_1)$, $(ABB_1)$ и $(ABC)$, $(DCC_1)$ и $(ADD_1)$, $(DCC_1)$ и $(A_1B_1C_1)$, $(DCC_1)$ и $(BCC_1)$, $(DCC_1)$ и $(ABC)$.

Готовые работы на аналогичную тему

Пусть нам даны две взаимно перпендикулярные плоскости. Из точки одной плоскости проведен перпендикуляр к другой плоскости. Доказать, что эта прямая лежит в данной плоскости.

Доказательство.

Пусть нам даны перпендикулярные плоскости $\alpha $ и $\beta $, пересекающиеся по прямой $c$. Из точки $A$ плоскости $\beta $ проведен перпендикуляр $AC$ к плоскости $\alpha $. Предположим, что $AC$ не лежит в плоскости $\beta $ (рис. 6).


Рассмотрим треугольник $ABC$. Он является прямоугольным с прямым углом $ACB$. Следовательно, $\angle ABC\ne ^0$.

Но, с другой стороны, $\angle ABC$ является линейным углом двугранного угла, образованного этими плоскостями. То есть двугранный угол, образованный этими плоскостями не равняется 90 градусам. Получаем, что угол между плоскостями не равен $90^\circ$. Противоречие. Следовательно, $AC$ лежит в плоскости $\beta $.

Определение . Двугранным углом называется фигура, образованная двумя полуплоскостями, не принадлежащими одной плоскости, и их общей прямой а (а – ребро).


Рассмотрим две полуплоскости α и β (рис. 1). Их общая граница – l . Указанная фигура называется двугранным углом. Две пересекающиеся плоскости образуют четыре двугранных угла с общим ребром.

Двугранный угол измеряется своим линейным углом. На общем ребре l двугранного угла выберем произвольную точку. В полуплоскостях α и β из этой точки проведем перпендикуляры a и b к прямой l и получим линейный угол двугранного угла.

Прямые a и b образуют четыре угла, равных φ, 180° - φ, φ, 180° - φ. Напомним, углом между прямыми называется наименьший из этих углов.


Определение . Углом между плоскостями называется наименьший из двугранных углов, образованных этими плоскостями. φ – угол между плоскостями α и β, если

Определение . Две пересекающиеся плоскости называются перпендикулярными (взаимно перпендикулярными), если угол между ними равен 90°.


На ребре l выбрана произвольная точка М (рис. 2). Проведем две перпендикулярные прямые МА = а и МВ = b к ребру l в плоскости α и в плоскости β соответственно. Получили угол АМВ. Угол АМВ – это линейный угол двугранного угла. Если угол АМВ равен 90°, то плоскости α и β называются перпендикулярными.

Прямая b перпендикулярна прямой l по построению. Прямая b перпендикулярна прямой а , так как угол между плоскостями α и β равен 90°. Получаем, что прямая b перпендикулярна двум пересекающимся прямым а и l из плоскости α. Значит, прямая b перпендикулярна плоскости α.

Аналогично можно доказать, что прямая а перпендикулярна плоскости β. Прямая а перпендикулярна прямой l по построению. Прямая а перпендикулярна прямой b , так как угол между плоскостями α и β равен 90°. Получаем, что прямая а перпендикулярна двум пересекающимся прямым b и l из плоскости β. Значит, прямая а перпендикулярна плоскости β.

Теорема (Признак перпендикулярности двух плоскостей): Если одна из двух плоскостей проходит через прямую, перпендикулярную к другой плоскости, то такие плоскости перпендикулярны.

Дано:


Доказать:


Пусть плоскости α и β пересекаются по прямой АС (рис. 3). Чтобы доказать, что плоскости взаимно перпендикулярны, нужно построить линейный угол между ними и показать, что этот угол равен 90°.

Прямая АВ перпендикулярна по условию плоскости β, а значит, и прямой АС, лежащей в плоскости β.

Проведем прямую АD перпендикулярно прямой АС в плоскости β. Тогда ВАD –линейный угол двугранного угла.

Прямая АВ перпендикулярна плоскости β, а значит, и прямой АD, лежащей в плоскости β. Значит, линейный угол ВАD равен 90°. Значит, плоскости α и β перпендикулярны, что и требовалось доказать.

Следствие : Плоскость, перпендикулярная к прямой, по которой пересекаются две данные плоскости, перпендикулярна к каждой из этих плоскостей (рис. 4).

Дано:


Доказать:


Прямая l перпендикулярна плоскости γ, а плоскость α проходит через прямую l . Значит, по признаку перпендикулярности плоскостей, плоскости α и γ перпендикулярны.

Прямая l перпендикулярна плоскости γ, а плоскость β проходит через прямую l . Значит, по признаку перпендикулярности плоскостей, плоскости β и γ перпендикулярны.

Читайте также: