Наночастицы в живой и неживой природе конспект

Обновлено: 07.07.2024

Глоссарий по теме:

Техника это совокупность средств труда и производства, а также, приёмов, служащих для создания материальных ценностей.

Нанотехнология – это особая область на основе синтеза знаний фундаментальной и прикладной науки и техники, которая представляет собой совокупность методов производства и использования продуктов с заданной атомной и молекулярной структурой через контролируемое манипулирование отдельными частицами – атомами и молекулами.

Наноматериалы представляют собой материалы, созданные на основе или с использованием наночастиц или/и путем применения нанотехнологий, обладающие уникальными свойствами за счет присутствия этих частиц. К наноматериалам относятся объекты, размеры которых в интервале от 1 до 100 нм.

Наночастицы – общий термин для обозначения ультрадисперсных изолированных объектов, обозначающий частицы вещества, размерами до 1 нанометра.

Основная и дополнительная литература по теме урока:

2. Аль-Ани, Н. М. Философия техники: очерки истории и теории: учебное пособие / Н. М. Аль-Ани. – СПб, 2004. – 184 с.

Открытые электронные ресурсы по теме урока:

Теоретический материал для самостоятельного изучения

Нанотехнологии сегодня можно назвать одним из этапов и одновременно направлений развития техники. Техника – это совокупность средств труда и производства, а также, приёмов, служащих для создания материальных ценностей.

На современном этапе скорость развития техники настолько велика, что трудно предсказать направление ее развития, а так же и то, во благо или во зло будут использованы новые и новые технические изобретения. А одним из новых направлений совершенствования техники является развитие нанотехнологий.

Нанотехнология – это особая область на основе синтеза знаний фундаментальной и прикладной науки и техники, которая представляет собой совокупность методов производства и использования продуктов с заданной атомной и молекулярной структурой через контролируемое манипулирование отдельными частицами – атомами и молекулами.

Нанотехнологии сегодня используются в медицине, строительстве, промышленном производстве, а сама область исследования нанотехнологий – одна из наиболее интенсивно развивающихся на современном этапе.

Эрик К. Дрекслер в 1980-х годах называл нанотехнологиями новую область прикладной и теоретической науки. На современном этапе нанотехнологии получают практическое развитие и применение в различных областях.

Одним из ключевых направлений в развитии нанотехеологий выступает создание и получение продукции с совершенно новыми свойствами – наноматериалов и ее применение.

Наноматериалы представляют собой материалы, созданные на основе или с использованием наночастиц или/и путем применения нанотехнологий, обладающие уникальными свойствами за счет присутствия этих частиц. К наноматериалам относятся объекты, размеры которых в интервале от 1 до 100 нм.

К наиболее популярным объектам исследования в области нанотехнологий относят наночастицы, нановолокна, нанопорошки, нанопленки.

Наночастицы – общий термин для обозначения ультрадисперсных изолированных объектов, обозначающий частицы вещества, размерами до 1 нанометра.

Часто наночастициы образуют скопления, выстроенные по определенной схеме. Наиболее характерным примером являются фуллерены – структурированные соединения углерода. В молекулах фуллеренов атомы углерода располагаются в вершинах шести- и пятиугольников, из которых состоит поверхность шара или эллипсоида. Наиболее полно изученный представитель семейства фуллеренов – фуллерен C60, в котором углеродные атомы образуют усечённый икосаэдр, напоминающий футбольный мяч.

На основе фуллеренов синтезируются углеродные нанотрубки. Углеродная нанотрубка – это аллотропная модификация атомов углерода, в виде пустой цилиндрической структуры диаметром от десятых до нескольких десятков нанометров и длиной от микрометра до нескольких сантиметров. Углеродные нанотрубки применимы в разных областях – в технике, в качестве прочных материалов, сверхпроводников тока, основы кабелей, в медицине – в качестве искусственных мышц и нервов, в информационной технике – как компоненты компьютерных матриц и т.д.

Основными направлениями в развитии нанотехнологий являются:

- получение прочных и легких материалов, которые используют в технике, биотехнологии, медицине, охране окружающей среды, космосе;

- создание датчиков и индикаторов на производстве;

- создание лекарственных препаратов и новых средств их доставки в организм;

- формирование новых средств и методов исследований и мониторинга в разных областях;

- разработка методов очистки окружающей среды – воды, воздуха, почв и т.д.;

- разработка миниатюрных космических аппаратов для запуска и глубокого изучения космоса.

В области нанохимии из реагентов, созданных на основе упорядоченных наночастиц, создают различные композитные и сенсорные материалы, твёрдые электролиты.

Применение нанотехнологий в области коммуникации позволяет улучшать качество каналов связи и систем отображения информации. В практической медицине наночастицы используют в качестве лекарств, контейнеров для их доставки, медицинских нанороботов, искусственных геномов, регенерации тканей тела.

Особую роль наноматериалы играют в области энергетики, особенно на современном этапе, когда необходима разработка альтернативных источников энергии. Нанотехнологии в сфере энергетики направлены на совершенствование топливных конструкционных материалов, охраны природной среды при генерации энергии (создание тонких нанофильтров), развитие безопасной атомной энергетики, развитие мониторинга с помощью нанодатчиков.

Большое значение имеют наноструктуированные металлы, полимеры и керамика в строительстве и промышленности. В компьютерной технике сегодня разрабатываются наномикросхемы.

Нановолокнистые материалы сегодня используют при создании различных типов стрелкового оружия, ракет и самолётов.

На современном этапе можно выделить ряд проблем развития нанотехнологий, в частности:

3. Необходимость определения того круга наноматериалов, который следует переводит в масштаб промышленного производства – это наиболее часто используемые, наиболее востребованные материалы.

4. Выявление определенного круга направлений исследований в области нанотехнологий, которые являются приоритетными, требуют финансирования, разработки программ и поддержки государства.

5. Сложность работы с наноматериалами – исследования наноматериалов, их создание возможно при использовании специальных сканирующих микроскопов, которые позволяют зрительно увеличивать объекты в тысячи раз.

Решение перечисленных проблем лежит на стыке исследований множества наук – физики, химии, биологии, технических дисциплин и т.д.

Нанотехнология – это особая область на основе синтеза знаний фундаментальной и прикладной науки и техники, которая представляет собой совокупность методов производства и использования продуктов с заданной атомной и молекулярной структурой через контролируемое манипулирование отдельными частицами – атомами и молекулами.

Примеры и разбор решения заданий тренировочного модуля:

1. Особая область на основе синтеза знаний фундаментальной и прикладной науки и техники, которая представляет собой совокупность методов производства и использования продуктов с заданной атомной и молекулярной структурой это:

1) биосферная функция;

Правильный ответ: 2) нанотехнология.

Современная тенденция к миниатюризации показала, что вещество может иметь совершенно новые свойства, если взять очень маленькую частицу этого вещества.

ВложениеРазмер
lekcii_3._nanochasticy.docx 80.12 КБ

Предварительный просмотр:

Наночастицы - это гигантские псевдомолекулы, имеющие сложное внутреннее строение, во многих случаях ядро и оболочку, часто - внешние функциональные группы и т.п. Их уникальные магнитные свойства возникают при размерах 2-30 нм. Ограничение по размерам связано с тем, что наночастицы, будучи, как всякие частицы, частью целого, при достижении некоторых размеров начинают резко отличаться от породившего их целого; оценки показывают, что существенные различия начинают возникать, как правило, при размерах частиц ниже ≈ 30 нм.

Нанообъекты делятся на 3 основных класса: трёхмерные частицы, получаемые взрывом проводников, плазменным синтезом, восстановлением тонких плёнок и т. д.; двумерные объекты — плёнки, получаемые методами молекулярного наслаивания, CVD , ALD, методом ионного наслаивания и т. д.; одномерные объекты — вискеры, эти объекты получаются методом молекулярного наслаивания, введением веществ в цилиндрические микропоры и т. д. Также существуют нанокомпозиты — материалы, полученные введением наночастиц в какие-либо матрицы. На данный момент обширное применение получил только метод микролитографии, позволяющий получать на поверхности матриц плоские островковые объекты размером от 50 нм, применяется он в электронике; метод CVD и ALD в основном применяется для создания микронных плёнок. Прочие методы в основном используются в научных целях. В особенности следует отметить методы ионного и молекулярного наслаивания, поскольку с их помощью возможно создание реальных монослоёв .

Особый класс составляют органические наночастицы как естественного, так и искусственного происхождения.

Поскольку многие физические и химические свойства наночастиц, в отличие от объемных материалов, сильно зависят от их размера, в последние годы проявляется значительный интерес к методам измерения размеров наночастиц в растворах: анализ траекторий наночастиц , динамическое светорассеяние , седиментационный анализ , ультразвуковые методы .

Один из важнейших вопросов, стоящих перед нанотехнологией — как заставить молекулы группироваться определённым способом, самоорганизовываться, чтобы в итоге получить новые материалы или устройства. Этой проблемой занимается раздел химии — супрамолекулярная химия . Она изучает не отдельные молекулы, а взаимодействия между молекулами, которые способны упорядочить молекулы определённым способом, создавая новые вещества и материалы. Обнадёживает то, что в природе действительно существуют подобные системы и осуществляются подобные процессы. Так, известны биополимеры , способные организовываться в особые структуры. Один из примеров — белки , которые не только могут сворачиваться в глобулярную форму , но и образовывать комплексы — структуры, включающие несколько молекул белков . Уже сейчас существует метод синтеза, использующий специфические свойства молекулы ДНК . Берётся комплементарная ДНК ( кДНК ), к одному из концов подсоединяется молекула А или Б. Имеем 2 вещества: ----А и ----Б, где ---- — условное изображение одинарной молекулы ДНК. Теперь, если смешать эти 2 вещества, между двумя одинарными цепочками ДНК образуются водородные связи, которые притянут молекулы А и Б друг к другу. Условно изобразим полученное соединение: ====АБ. Молекула ДНК может быть легко удалена после окончания процесса.

Проблема образования агломератов

Примеры уникальных свойств некоторых наночастиц

Свойства у наночастицы серебра на самом деле уникальные.

Во-первых, это феноменальная бактерицидная и антивирусная активность. Об антимикробных свойствах, присущих ионам серебра, человечеству известно уже очень давно. Многие уже слышали о целительных способностях церковной “святой воды”, получаемой путем прогонки обычной воды сквозь серебряный фильтр. Такая вода не содержит многих болезнетворных бактерий, которые могут присутствовать в обычной воде. Поэтому она может храниться годами, не портясь и не “зацветая”.

Кроме того, такая вода содержит некоторую концентрацию ионов серебра, способных нейтрализовать вредные бактерии и микроорганизмы, чем и объясняется ее благотворное влияние на здоровье человека.

Вирусы атакуют клетку. Скорость, с которой вирус атакует клетку, превышает скорость пули

Установлено, что наночастицы серебра в тысячи раз эффективнее борются с бактериями и вирусами, чем серебряные ионы. Как показал эксперимент, ничтожные концентрации наночастиц уничтожали все известные микроорганизмы (в том числе и вирус СПИДа), не расходуясь при этом.

В настоящий момент проводятся исследования возможностей использования наночастиц серебра в фармацевтических препаратах. Но уже сейчас они находят огромное количество применений.

Например, фирма “Гелиос” выпускает зубную пасту “Знахарь” с наночастицами серебра, эффективно защищающую от различных инфекций. Также небольшие концентрации наночастиц добавляют в некоторые кремы из серии “элитной” косметики для предотвращения их порчи во время использования. Добавки на основе серебряных наночастиц применяются в качестве антиаллергенного консерванта в кремах, шампунях, косметических средствах для макияжа и т.д. При использовании наблюдается также противовоспалительный и заживляющий эффект.

Ткани, модифицированные серебряными наночастицами, являются, по сути, самодезинфицирующимися. На них не может “ужиться” ни одна болезнетворная бактерия или вирус. Наночастицы не вымываются из ткани при стирке, а эффективный срок их действия составляет более шести месяцев, что говорит о практически неограниченных возможностях применения такой

ткани в медицине и быту. Материал, содержащий наночастицы серебра, незаменим для медицинских халатов, постельного белья, детской одежды, антигрибковой обуви и т.д., и т.п.

Наночастицы способны долго сохранять бактерицидные свойства после нанесения на многие твердые поверхности (стекло, дерево, бумага, керамика, оксиды металлов и др.). Это позволяет создать высокоэффективные дезинфицирующие аэрозоли длительного срока действия для бытового применения. В отличие от хлорки и других химических средств обеззараживания, аэрозоли на основе наночастиц не токсичны и не вредят здоровью людей и животных.

Люди всегда искали способы борьбы с инфекциями, передаваемыми воздушно-капельным путем-гриппом, туберкулезом, менингитами, вирусным гепатитом и т. п. Но, увы, воздух в наших квартирах, офисах и особенно в местах массового скопления людей (больницы, общественные учреждения, школы, детские сады, казармы, тюрьмы и т. п.) перенасыщен патогенными микроорганизмами, выдыхаемыми зараженными людьми.

Традиционные способы профилактики не всегда справляются с этой проблемой, поэтому нанохимики предложили для ее решения очень элегантный способ: добавить в лакокрасочные материалы, покрывающие стены заведений, наночастицы серебра. Как оказалось, на покрашенных такими красками стенах и потолках не может “жить” большинство патогенных микроорганизмов.

Наночастицы, добавленные в угольные фильтры для воды, практически не вымываются с ней, как это происходит в случае обычных серебряных ионов. Это говорит о том, что срок

действия таких фильтров будет несоизмеримо больше, а качество очистки воды возрастет на порядок.

Короче говоря, крошечные, незаметные, экологически чистые серебряные наночастицы могут применяться везде, где необходимо обеспечить чистоту и гигиену: от косметических

средств до обеззараживания хирургических инструментов или помещений. При этом, как уверяют ведущие российские ученые в данной области, стоимость средств и материалов, созданных на их основе, будет не намного дороже традиционных аналогов, и с развитием нанотехнологий они станут доступны каждому. Фирма Samsung уже добавляет наночастицы серебра в сотовые телефоны, стиральные машины, кондиционеры и другую бытовую технику.

Помимо обеззараживающих свойств, наночастицы серебра обладают также высокой электропроводностью, что позволяет создавать различные проводящие клеи. Проводящий клей может быть использован, например, в микроэлектронике для соединения мельчайших электронных деталей.

Наночастицы оксида цинка также обладают рядом уникальных свойств (в том числе и бактерицидных ), среди которых особый интерес вызывает способность поглощать широкий спектр электромагнитного излучения , включая ультрафиолетовое, инфракрасное, микроволновое и радиочастотное.

Такие частицы могут служить, например, для защиты против УФ-лучей, придавая новые функции стеклам, пластмассам, краскам, синтетическим волокнам и т.д. Эти частицы также можно использовать для приготовления солнцезащитных кремов, мазей и других препаратов, так как они безопасны для человека и не раздражают кожу.

Способность наночастиц оксида цинка к рассеянию электромагнитных волн может использоваться в тканях одежды для придания ей свойств невидимости в инфракрасном диапазоне за счет поглощения излучаемого человеческим телом тепла. Это позволяет изготавливать камуфляжи, невидимые в широком диапазоне частот – от радио до ультрафиолета. Такая одежда просто незаменима в военных или антитеррористических операциях, поскольку позволяет вплотную подойти к противнику без риска быть замеченным приборами ночного видения.

Наночастицы оксида цинка высокой чистоты, предназначенные для использования в электронике, катализаторах, медицинских продуктах, продуктах личной гигиены.

Наночастицы диоксида кремния (SiO 2 ) обладают удивительным свойством: если их нанести на какой-либо материал, то они присоединяются к его молекулам и позволяют поверхности отторгать грязь и воду . Самоочищающиеся нанопокрытия на основе этих частиц защищают стекла, плитку, дерево, камень и т.д. Частицы грязи не могут прилипнуть или проникнуть в защищаемую поверхность, а вода легко стекает с нее, унося любые загрязнения (рис. 4).

Принцип действия самоочищающихся нанопокрытий .

Ткань после нанесения покрытия свободно пропускает воздух, но не пропускает влагу. Можно забыть про трудновыводимые пятна от кофе, жира, грязи и пр. Покрытие устойчиво к трению, гибко, не портится от солнечного света, температуры и стирки.

В течение тысячелетий человек использовал в быту и технике макроскопические тела, состоящие из большого числа атомов, будь это каменный топор или авиалайнер. Первая научно-техническая революция - индустриальная, или энергетическая, - условно отсчитывается с получения Дж. Уаттом в 1769 г. основного патента на усовершенствованный паровой двигатель, который привел к резкому увеличению производительности труда во всех видах производства, добыче ископаемых, в сельском хозяйстве и на транспорте. До этого источником энергии была энергия ветра, падающей воды и (очень часто) просто мышечная сила животных и людей.

Третья научно-техническая революция

Появление и развитие нанотехнологии означали начало третьей научно-технической революции, которая на наших глазах постепенно охватывает все области цивилизации: технику, медицину, экологию, освоение космоса и т. п. и, по мнению специалистов, изменит облик мира уже к концу первого - началу второго десятилетия XXI в.

Наноматериалами называются макроскопические материалы, если элементами их структуры являются наноструктуры, наноразмерные элементы.

Природные и искусственные наночастицы

Фактически человек давно использовал микро- и наноструктуры в технике. Это мельчайшие частицы железа и углерода в стали, катализаторы с развитой по­верхностью, мелкие частицы в различных эмульсиях или в композиционных материалах. Итальянские уче­ные выяснили, что знаменитая цветная глазурь на средневековой керамике из города Дерута содержит наночастицы металлов (серебра, меди и др.). Наночастицы металлов определили и красоту средневековых витражей.

Природные наночастицы, в частности, образуют разные функциональные части живых организмов: ДНК, различные белки и пр. На рисунке 1 представлена фотография магнитных наночастиц внутри бакте­рии, эти частицы помогают ей ориентироваться в магнитном поле Земли. Аналогичные магнитные частицы с пока неясной функцией имеются и в мозгу человека.

Вообще, структурные объекты наноразмеров, составляющие части макроскопических тел, являются скорее правилом. Однако нанотехнология впервые объединила все эти разнообразные структуры по размерному принципу, а единый принцип, подход сразу дает иные перспективы для исследования и применения. Достаточно вспомнить кибернетику и синергетику.

До недавнего времени физика и химия изучали два крайних случая — отдельные атомы и молекулы или макроскопические объекты, содержащие большое число частиц. Для привычных нам макроскопических тел действуют статистические законы усреднения их свойств, как действует в демографии большого города статистическое усреднение возраста, роста, образования и других показателей населения. Наноструктуры занимают промежуточное положение между отдельными атомами, свойства которых описываются квантовой механикой, и макроскопическими телами, в которых свойства отдельных атомов усреднены.

Свойства наночастиц

Многие физические законы, справедливые для макрообъектов, для наночастиц нарушаются. Например, несправедливы известные формулы сложения сопротивлений проводников при их параллельном и последовательном соединении. Вода в нанопорах горных пород не замерзает при температуре -20-30 °С, а температура плавления наночастиц золота существенно меньше температуры плавления массивных образцов.

В последние годы во многих публикациях приводятся эффектные примеры влияния размеров частиц того или иного вещества на его свойства - электрические, магнитные, оптические. Так, цвет рубинового стекла зависит от содержания и размеров коллоидных (микроскопических) частиц золота. Коллоидные растворы золота могут дать целую гамму цвета - от оранжевого (размер частиц менее 10 нм) и рубинового (10-20 нм) до синего (около 40 нм). В лондонском музее Королевского института хранятся коллоидные растворы золота, которые получены еще М. Фарадеем, впервые связавшим вариации их цвета с размером частиц.

Общая причина отличия свойств наносистем от свойств макроскопических систем - это сопоставимость их размеров с длиной волн, определяющих эти свойства. Поэтому наночастички железа при комнатной температуре ведут себя не как ферромагнетики, а как парамагнетики.

Наконец, еще одна особенность наноструктур, важ­ная для электроники, - вместе с уменьшением размеров системы уменьшается время протекания в ней разнообразных процессов, т. е. увеличивается быстродействие.

Необычные свойства наноструктур затрудняют их тривиальное техническое использование и одновременно открывают совершенно неожиданные технические перспективы.

Каждая чешуйка бабочки объемна и состоит из двух поверхностей, соединенных множеством тончайших столбиков, скрепляющих верхнюю и нижнюю пластины. Верхняя сторона покрыта продольными полосками-ребрышками, а нижняя – сплошная, плоская. Детальный анализ под микроскопом показал, что голубые чешуйки на крыльях устроены весьма хитроумно. Они содержат натуральный пигмент, который поглощает синюю часть солнечного спектра и флуоресцирует на чуть большей длине волны. Под пигментом расположена эффективно отражающая структура, известная в оптике как распределенный рефлектор Брэгга (дифракционная решетка). Кроме того, над пигментом имеется пористое покрытие, пронизанное почти регулярными цилиндрическими каналами. Расчеты показали, что оно обладает свойствами фотонного кристалла, настроенного на длину волны, излучаемую пигментом. Фотонный кристалл мешает свету рассеиваться и поглощаться крыльями, играя роль миниатюрного волновода, который заметно увеличивает эффективность излучения. Точно такой же конструкции, содержащей рефлекторы Брэгга и фотонный кристалл, пришли инженеры, спроектировавшие сверхъяркие светодиоды. Более того, строение чешуек подсказало ученым, что для хорошего фотонного кристалла вовсе не обязательно очень строго соблюдать размеры и периодичность расположения отверстий.

Полимерная цивилизация и Силиконы
В рамках Научно – Образовательной Школы МГУ “Будущее планеты и глобальные изменения окружающей среды” факультет наук о материалах и химический факультет МГУ проводят чтение уникального курса "Жизненный цикл материалов". Лекции "Полимерная цивилизация" и "Силиконы" состоятся, соотвественно, 3 марта в 14:05 мск и 4 марта в 15:00 мск. Лектор: академик РАН, профессор, д.х.н. А.М.Музафаров, ИНЭОС РАН.

Жизненный цикл металл-ионных аккумуляторов
В рамках Научно – Образовательной Школы МГУ “Будущее планеты и глобальные изменения окружающей среды” факультет наук о материалах и химический факультет МГУ проводят чтение уникального курса "Жизненный цикл материалов". Лекция "Жизненный цикл металл-ионных аккумуляторов" состоится 01 марта, начало лекции в 15:00 мск. Лектор: н.с., к.х.н., Т.К.Захарченко, ФИЦ ХФ РАН.

Жизненный цикл материалов
Коллектив авторов
В рамках Научно – Образовательной Школы МГУ “Будущее планеты и глобальные изменения окружающей среды” с 8 февраля 2022 года и до 31 марта 2022 года факультет наук о материалах и химический факультет МГУ начинают чтение уникального курса "Жизненный цикл материалов".

Электронные материалы Заочной Научно - Технологической Школы - 2021
А.А.Семенова , Е.А.Гудилин , коллектив авторов
С 15 ноября по 15 декабря 2021 в рамках XVI Всероссийской Олимпиады "Нанотехнологии - прорыв в будущее!" проведено подготовительное мероприятие для потенциальных участников Олимпиады - Заочная Научно-Технологическая Школа (ЗНТШ'2021). В этой статье собраны основные факты и сборник электронных материалов ЗНТШ.

Эра технопредпринимательства

В эпоху коронавируса и борьбы с ним в существенной степени меняется парадигма выполнения творческих работ и ведения бизнеса, в той или иной мере касаясь привлечения новых типов дистанционного взаимодействия, использования виртуальной реальности и элементов искусственного интеллекта, продвинутого сетевого маркетинга, использования современных информационных технологий и инновационных подходов. В этих условиях важным является, насколько само общество готово к использованию этих новых технологий и как оно их воспринимает. Данной проблеме и посвящен этот небольшой опрос, мы будет рады, если Вы уделите ему пару минут и ответите на наши вопросы.

Технопредпринимательство в эпоху COVID-19

Небольшой опрос о том, как изменились подходы современного предпринимательства в контексте новых и возникающих форм ведения бизнеса, онлайн образования, дистанционных форм взаимодействия и коворкинга в эпоху пандемии COVID - 19.

Технонано

Технопредпринимательство - идея, которая принесет свои плоды при бережном культивировании и взращивании. И наша наноолимпиада, и Наноград от Школьной Лиги РОСНАНО, и проект Стемфорд, и другие замечательные инициативы - важные шаги на пути реализации этой и других идей, связанных с развитием новых высоких технологий в нашей стране и привлечением молодых талантов в эту вполне стратегическую область. Ниже приведен небольшой опрос, который позволит и нам, и вам понять, а что все же значит этот модный термин, и какова его суть.

Сайт создан в 2006 году совместными усилиями группы сотрудников и выпускников ФНМ МГУ.
Сайт модернизирован для ресурсной поддержки проектной деятельности учащихся в рамках ГК 16.647.12.2059 (МОН РФ)
Частичное или полное копирование материалов сайта возможно. Но прежде чем это делать ознакомьтесь с инструкцией.


Хотя нанотехнологию обычно описывают как недавнее изобретение человека, в природе вообще-то можно встретить полно архитектур наномасштаба. Они лежат в основе жизненно важных функций различных форм жизни, от бактерий до ягод, от ос до китов. Использование нанотехнологий в природе можно отследить до природных структур, существовавших 500 млн лет назад. Приведём только лишь пять источников вдохновения, которые учёные могли бы использовать для создания технологий нового поколения:

1. Структурные цвета

Окраска некоторых типов жуков и бабочек получается за счёт расположенных на необходимом расстоянии друг от друга наноскопических колонн. Они состоят из сахаров, например, хитозана, или белков, например, кератина; ширина щелей между колоннами подобрана так, чтобы свет имел определённый цвет или блеск.

Преимущество такой стратегии – устойчивость. Пигменты на свету отбеливаются, а структурные цвета остаются стабильными удивительно долгое время. В недавнем исследовании структурной окраски мраморных ягод цвета синий металлик участвовали экземпляры, собранные ещё в 1974 году, которые поддерживают свой цвет несмотря на то, что уже давно мертвы.



Сложная архитектура щелей на крыльях бабочки Thecla opisena.

Ещё одно преимущество состоит в том, что цвет можно менять, варьируя размер и форму щелей, или заполняя поры жидкостью или паром. Часто признаком наличия структурной окраски служит бросающееся в глаза изменение цвета образца после погружения его в воду. Некоторые структуры на крыльях настолько чувствительны к плотности воздуха в щелях, что цвет меняется и в ответ на изменения температуры.

2. Видимость на дальних расстояниях

Кроме простого отражения света под углом для создания видимости цвета, некоторые ультратонкие слои щелевых панелей полностью разворачивают попадающие на них лучи света. Такое отражение и блокирование одновременно приводит к появлению удивительных оптических эффектов – например, бабочки, крылья которой можно разглядеть с 800 м, или жуков с ярко-белыми чешуйками толщиной всего в 5 мкм. Эти структуры настолько впечатляющи, что они могут превосходить искусственно созданные предметы в 25 раз толще их.

3. Прилипание

Лапы геккона могут прочно связываться практически с любой твёрдой поверхностью за миллисекунды, и отрываться от неё без видимых усилий. Это прилипание имеет чисто физическую природу без химического взаимодействия лап с поверхностью.



Микро- и наноструктуры лап геккона

У лап геккона есть и другие удивительные способности. Они самоочищаются, сопротивляются слипанию и по умолчанию щетинки и лапки отделены друг от друга. Такие свойства привели к предположениям, что в будущем клеи, болты и заклёпки можно будет делать в едином процессе, нанеся кератин или похожий материал на разные опалубки.

4. Пористая прочность

Самая прочная форма любого твёрдого тела – единый кристалл, такой, как, алмазы, в котором атомы стоят в почти идеальном порядке с одного конца объекта для другого. Такие вещи, как стальные пруты, корпуса самолётов или обшивка автомобилей – это не кристаллы целиком, они поликристаллические, по структуре похожие на мозаику из частиц. Поэтому, в теории, прочность таких материалов можно улучшить, увеличив размер частиц, или же превратив всю структуру в единый кристалл.

Кристаллы бывают очень тяжёлыми, но у природы есть решение этой проблемы в виде наноструктурных пор. Итоговая структура, известная, как мезокристалл, представляет собой самый прочный вариант в своём весе. Позвоночники морских ежей и моллюски с перламутровыми раковинами имеют мезокристаллическую структуру. У этих существ очень лёгкие раковины, которые способны существовать на больших глубинах с высоким давлением.

Теоретически, мезокристаллические материалы можно изготавливать, хотя при существующих сегодня процессах для этого понадобились бы сложные манипуляции. Крохотные наночастицы нужно поворачивать до тех пор, пока они с атомной точностью не выровняются с другими частями растущих мезокристаллов, а ещё их необходимо выстраивать вокруг мягкой прослойки, чтобы в итоге получить пористую сеть.

5. Ориентирование бактерий

Однако поскольку кислород и сера весьма активно комбинируются с железом, производя магнетит, грегит и ещё 50 различных соединений, из которых магнитными оказывается совсем мало, для намеренного производства правильных магнетосомных цепочек требуются недюжинные навыки. Подобные трюки пока находятся за пределами наших возможностей, но в будущем в навигации, возможно, получится произвести революцию, если учёные научатся имитировать такие структуры.

Читайте также: