Магнитное поле и его графическое изображение конспект

Обновлено: 07.07.2024

Подобно тому, как покоящийся электрический заряд действует на другой заряд посредством электрического поля, электрический ток действует на другой ток посредством магнитного поля. Действие магнитного поля на постоянные магниты сводится к действию его на заряды, движущиеся в атомах вещества и создающие микроскопические круговые токи.

Учение об электромагнетизме основано на двух положениях:

  • магнитное поле действует на движущиеся заряды и токи;
  • магнитное поле возникает вокруг токов и движущихся зарядов.

Взаимодействие магнитов

Постоянный магнит (или магнитная стрелка) ориентируется вдоль магнитного меридиана Земли. Тот его конец, который указывает на север, называется северным полюсом (N), а противоположный конец — южным полюсом (S). Приближая два магнита друг к другу, заметим, что одноименные их полюсы отталкиваются, а разноименные — притягиваются ( рис. 1 ).

Если разделить полюса, разрезав постоянный магнит на две части, то мы обнаружим, что каждая из них тоже будет иметь два полюса, т. е. будет постоянным магнитом ( рис. 2 ). Оба полюса — северный и южный, — неотделимые друг от друга, равноправны.

Магнитное поле, создаваемое Землей или постоянными магнитами, изображается, подобно электрическому полю, магнитными силовыми линиями. Картину силовых линий магнитного поля какого-либо магнита можно получить, помещая над ним лист бумаги, на котором насыпаны равномерным слоем железные опилки. Попадая в магнитное поле, опилки намагничиваются — у каждой из них появляется северный и южный полюсы. Противоположные полюсы стремятся сблизиться друг с другом, но этому мешает трение опилок о бумагу. Если постучать по бумаге пальцем, трение уменьшится и опилки притянутся друг к другу, образуя цепочки, изображающие линии магнитного поля.

На рис. 3 показано расположение в поле прямого магнита опилок и маленьких магнитных стрелок, указывающих направление линий магнитного поля. За это направление принято направление северного полюса магнитной стрелки.

В начале XIX в. датский ученый Эрстэд сделал важное открытие, обнаружив действие электрического тока на постоянные магниты. Он поместил длинный провод вблизи магнитной стрелки. При пропускании по проводу тока стрелка поворачивалась, стремясь расположиться перпендикулярно ему ( рис. 4 ). Это можно было объяснить возникновением вокруг проводника магнитного поля.

Магнитные силовые линии поля, созданного прямым проводником с током, представляют собой концентрические окружности, расположенные в перпендикулярной к нему плоскости, с центрами в точке, через которую проходит ток ( рис. 5 ). Направление линий определяется правилом правого винта:

Магнитное поле тока принципиально ничем не отличается от поля, созданного постоянным магнитом. В этом смысле аналогом плоского магнита является длинный соленоид — катушка из провода, длина которой значительно больше ее диаметра. Схема линий созданного им магнитного поля, изображенная на рис. 6 , аналогична таковой для плоского магнита ( рис. 3 ). Кружочками обозначены сечения провода, образующего обмотку соленоида. Токи, текущие по проводу от наблюдателя, обозначены крестиками, а токи противоположного направления — к наблюдателю — обозначены точками. Такие же обозначения приняты и для линий магнитного поля, когда они перпендикулярны плоскости чертежа ( рис. 7 а, б).

Направление тока в обмотке соленоида и направление линий магнитного поля внутри него также связаны правилом правого винта, которое в этом случае формулируется так:

Если смотреть вдоль оси соленоида, то текущий по направлению часовой стрелки ток создает в нем магнитное поле, направление которого совпадает с направлением движения правого винта ( рис. 8 )

Исходя из этого правила, легко сообразить, что у соленоида, изображенного на рис. 6 , северным полюсом служит правый его конец, а южным — левый.

Магнитное поле внутри соленоида является однородным — вектор магнитной индукции имеет там постоянное значение (B = const). В этом отношении соленоид подобен плоскому конденсатору, внутри которого создается однородное электрическое поле.

Сила, действующая в магнитном поле на проводник с током

Опытным путем было установлено, что на проводник с током в магнитном поле действует сила. В однородном поле прямолинейный проводник длиной l, по которому течет ток I, расположенный перпендикулярно вектору поля B, испытывает действие силы: F = I l B.

Направление силы определяется правилом левой руки:

Если четыре вытянутых пальца левой руки расположить по направлению тока в проводнике, а ладонь — перпендикулярно вектору B, то отставленный большой палец укажет направление силы, действующей на проводник ( рис. 9 ).

Уравнение F = IlB позволяет дать количественную характеристику индукции магнитного поля.

Модуль вектора магнитной индукции B численно равен силе, действующей на расположенный перпендикулярно к нему проводник единичной длины, по которому течет ток силой один ампер.


Мы переходим к следующему разделу, который будет посвящён электромагнитным явлениям. И на этом уроке мы вспомним, что такое магнитное поле и что является его источником. Рассмотрим графический способ изображения магнитных полей. А также узнаем, чем отличаются однородные и неоднородные магнитные поля.


В данный момент вы не можете посмотреть или раздать видеоурок ученикам

Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет, приобретя в каталоге.

Получите невероятные возможности




Конспект урока "Магнитное поле и его графическое изображение"

В восьмом классе мы с вами затрагивали тему магнитных полей. Тогда мы говорили о том, что магнитное поле порождается электрическим током. Подобно другим физическим полям, магнитное поле не действует на наши органы чувств. Но реальность его существования проявляется, например, в том, что между проводниками с током возникают силы взаимодействия, которые принято называть магнитными силами.

То, что между электричеством и магнетизмом существует связь, можно показать с помощью опыта, проведённого в тысяча восемьсот двадцатом году датским физиком Хансом Кристианом Эрстедом. Установка состоит из магнитной стрелки, укреплённой на острие, и проводника, соединённого с источником тока. До включения тока стрелка располагается в магнитном поле Земли, ориентируясь с севера на юг. Проводник располагают над магнитной стрелкой, параллельно ей. Замкнув цепь, мы увидим, как магнитная стрелка начнёт поворачиваться, пока не установится перпендикулярно проводнику с током. Разомкнём цепь — стрелка возвращается в своё исходное положение.

Если изменить направление тока в проводнике на противоположное, то стрелка также поворачивается и устанавливается перпендикулярно к проводнику, но уже в противоположном направлении.

Таким образом, можно говорить о том, что магнитная стрелка взаимодействует с проводником с током. Следовательно, вокруг проводника с током существует магнитное поле, которое и совершает работу по повороту магнитной стрелки.

На основании подобных многочисленных опытов было установлено, что во всех случаях при движении заряженных частиц обязательно появляется магнитное поле, независимо от рода проводника или среды, в которой эти частицы движутся.


А теперь давайте вспомним, как объясняется наличие магнитного поля у постоянных магнитов. Итак, согласно гипотезе великого французского физика Андре Мари Ампера, внутри каждой молекулы вещества, подобного железу или его сплавам, циркулируют кольцевые электрические токи.


И если эти элементарные токи ориентированы одинаково, то вокруг них существуют магнитные поля, которые также будут иметь одинаковое направление. В результате эти поля усиливают друг друга, создавая поле внутри и вокруг магнита. Гипотеза Ампера была очень прогрессивна для начала девятнадцатого века, поскольку ещё не было известно ни о строении атома, ни о движении заряженных частиц — электронов вокруг ядра.

Существование магнитного поля вокруг магнита можно обнаружить множеством способов. На практике удобнее использовать мелкие железные опилки, насыпанные на картонный или пластиковый экран.

Изучим магнитное поле прямого проводника с током. Для этого сквозь лист картона пропустим проводник, соединённый с источником тока. Насыплем на картон тонкий слой железных опилок. При включении тока железные опилки под действием магнитного поля переориентируются, показывая картину линий магнитного поля.


Несколько изменим опыт: вместо металлических опилок поставим на лист картона магнитные стрелки. При замыкании электрической цепи стрелки расположатся вдоль линий магнитного поля. Если же изменить направление тока в проводнике, то все стрелки повернутся на 180 о .


Наш опыт позволяет наглядно показать так называемые силовые линии магнитного поля (или просто магнитные линии). В восьмом классе мы говорили о том, что магнитные линии — это воображаемые линии, вдоль которых расположились бы магнитные стрелки, помещённые в магнитное поле.

Исходя из результатов опыта, мы можем утверждать, что линии магнитного поля имеют определённое направление, которое связано с направлением тока в проводнике. В настоящее время принято считать, что направление линий магнитного поля в каждой точке совпадает с направлением, которое указывает северный полюс магнитной стрелки, помещённый в эту точку поля.


Магнитную линию можно провести через любую точку пространства, в которой существует магнитное поле. При этом надо помнить, что она проводится так, чтобы в любой точке этой линии касательная к ней совпала с осью магнитной стрелки, помещённой в эту точку.

Теперь давайте вспомним, как выглядят линии магнитного поля постоянного полосового магнита. Для этого расположим маленькие магнитные стрелки вокруг магнита. Они мгновенно придут в движение и расположатся в строго определённом порядке.


Из курса физики восьмого класса вы уже знаете, что магнитные линии полосового магнита выходят из его северного полюса и входят в южный. При этом они не имеют ни начала ни конца: они либо замкнуты, либо уходят на бесконечность, в чём легко убедиться с помощью железных опилок.


Не трудно заметить, что опилки располагаются в виде цепочек, причём с разной плотностью вокруг магнита. Это говорит о том, что действия, которые оказывает магнит на опилки, в разных точках поля различны. Наиболее сильно это действие проявляется возле полюсов магнита. А чем дальше от полюсов, тем слабее подобное действие, следовательно, тем слабее магнитное поле.

Такое магнитное поле в физике называют неоднородным. Его магнитные линии искривлены, а густота меняется от точки к точке.

Примером неоднородного магнитного поля служит и поле прямого проводника с током.

На рисунке вы видите схематические изображения двух участков таких проводников.


Давайте вспомним, что кружочек в центре обозначает сечение проводника, крестик — что ток направлен от нас за чертёж, а точка — что ток направлен наоборот, из-за чертежа к нам. Эти обозначения именуют правилом стрелы. Точка обозначает острие, летящей в нашу сторону стрелы, а крестик её хвостовое оперение, которое можно было бы увидеть, если бы стрела улетела от нас.

Обратите внимание на то, что магнитные линии прямого тока представляют собой концентрические окружности, центром которых является сам проводник с током. В тех областях пространства, где магнитное поле сильнее, магнитные линии изображаются ближе друг к другу (то есть гуще), и наоборот.

Таким образом, по картине магнитных линий можно судить не только о направлении магнитного поля, но и о его величине.

Что касается однородного магнитного поля, то его есть смысл рассматривать только в некотором приближении. Дело в том, что однородное магнитное поле — это поле, в каждой точке которого сила действия на магнитную стрелку одинакова по модулю и направлению.

Поскольку линии магнитного поля всегда искривлены, то об однородности поля и говорят только приблизительно. Примером однородного магнитного поля может служить поле внутри полосового магнита вблизи его середины.

Ещё одним примером практически однородного поля является поле, возникающее внутри соленоида, если длина соленоида намного больше его диаметра. Однако вне катушки с током, поле неоднородно и его магнитные линии располагаются примерно также, как и у полосового магнита.


Также видно, что магнитные линии однородного магнитного поля параллельны друг другу и расположены с одинаковой густотой.


Исходя из результата этого опыта, говорить о том, что линии магнитного поля имеют определённое направление, которое связано с направлением тока в проводнике.

Эта связь может быть выражена с помощью правила буравчика (или правила правого винта). Он заключается в следующем: если вращать ручку буравчика так, чтобы его остриё двигалось по направлению тока в проводнике, то направление вращения ручки буравчика укажет направление линий магнитного поля тока.


Направление линий магнитного поля можно определить и иначе, например, с помощью правила правой руки: если обхватить проводник с током ладонью правой руки так, чтобы отставленный большой палец был сонаправлен с током, то согнутые четыре пальца укажут направление линий магнитного поля.


Похожее правило применимо и для определения направления магнитного поля внутри соленоида: если обхватить соленоид ладонью правой руки так, чтобы согнутые четыре пальца указывали направление тока в витках, то отставленный на девяносто градусов большой палец, укажет направление линий магнитного поля внутри соленоида.


И последнее, на что хотелось бы обратить ваше внимание. Для изображения однородного магнитного поля, перпендикулярного плоскости чертежа, пользуются таким приёмом. Если линии магнитного поля направлены от нас за чертёж, то их изображают крестиками.

А если из-за чертежа к нам — то точками. Как и в случае с током, крестик — это как бы видимое нами оперение стрелы, летящей от нас, а точка — это остриё стрелы, летящей к нам.

  • Для учеников 1-11 классов и дошкольников
  • Бесплатные сертификаты учителям и участникам

Выберите документ из архива для просмотра:

Получение картины силовых линий магнитного поля.flv

Силовые линии магнитного поля.flv

Выбранный для просмотра документ Магнитное поле и его графическое изображение.pptx

Магнитное поле и его графическое изображение. Неоднородное и однородное магни.

Описание презентации по отдельным слайдам:

Магнитное поле и его графическое изображение. Неоднородное и однородное магни.

Магнитное поле и его графическое изображение. Неоднородное и однородное магнитное поле

Магнит обладает на разных участках различной притягивающей силой, на полюсах.

Магнит обладает на разных участках различной притягивающей силой, на полюсах эта сила наиболее заметна.


Магнитное поле -это особый вид материи, который создается вокруг магнитов дв.

Магнитное поле -это особый вид материи, который создается вокруг магнитов движущимися заряженными частицами, как положительными, так и отрицательными.

Графическое изображение магнитного поля тока Линии вдоль которых в магнитном.

Графическое изображение магнитного поля тока Линии вдоль которых в магнитном поле располагаются оси маленьких магнитных стрелок, называются линиями магнитного поля. Магнитные линии магнитного поля тока представляют собой замкнутые кривые, охватывающие проводник Направление, которое указывает северный полюс магнитной стрелки в каждой точке поля, принято за направление магнитных линей магнитного поля.

Расположение металлических опилок вокруг прямолинейного проводника с током.

Расположение металлических опилок вокруг прямолинейного проводника с током.

В тех областях пространства, где магнитное поле более сильное, магнитные лини.

В тех областях пространства, где магнитное поле более сильное, магнитные линии изображают ближе друг к другу, т. е. гуще, чем в тех местах, где поле слабее.

Неоднородное магнитное поле Характеристика неоднородного магнитного поля: маг.

Неоднородное магнитное поле Характеристика неоднородного магнитного поля: магнитные линии искривлены; густота магнитных линий различна; сила, с которой магнитное поле действует на магнитную стрелку, различна в разных точках этого поля по величине и направлению.

Однородное магнитное поле Характеристика однородного магнитного поля: магнитн.

Однородное магнитное поле Характеристика однородного магнитного поля: магнитные линии параллельные прямые; густота магнитных линий везде одинакова; сила, с которой магнитное поле действует на магнитную стрелку, одинакова во всех точках этого поля по величине и направлению.


На рисунке показана картина магнитных линий прямого тока. В какой точке магни.

На рисунке показана картина магнитных линий прямого тока. В какой точке магнитное поле самое сильное? а) б) в)

Домашнее задание: § 43, 44. Упражнение 34.

Домашнее задание: § 43, 44. Упражнение 34.

Выбранный для просмотра документ План конспект урока.docx

План конспект урока № 16.

Образовательные : установить связь между направлением магнитных линий магнитного поля тока и направлением тока в проводнике. Ввести понятие неоднородного и однородного магнитных полей. На практике получить картину силовых линий магнитного поля постоянного магнита, соленоида, проводника по которому течет электрический ток. Систематизировать знания по основным вопросам темы “Электромагнитное поле”, продолжить учить решать качественные и экспериментальные задачи.

Развивающие : активизировать познавательную деятельность обучающихся на уроках физики. Развивать познавательную активность учащихся.

Воспитательные : содействовать формированию идеи познаваемости мира. Воспитывать трудолюбие, взаимопонимание между учениками и учителем.

Образовательная : углубление и расширение знаний о магнитном поле, обосновать связь между направлением магнитных линий магнитного поля тока и направлением тока в проводнике.

Воспитательная : показать причинно – следственные связи при изучении магнитного поля прямого тока и магнитных линий, что беспричинных явлений не существует, что опыт- критерий истинности знаний.

Развивающая : продолжить работу над формированием умений анализировать и обобщать знания о магнитном поле и его характеристиках. Вовлечение учащихся в активную практическую деятельность при выполнении экспериментов.

Оборудование: презентация, таблица, проектор, экран, м агнитные стрелки, железные опилки, магнитики, компас .

План урока:

Организационный момент.(1-2 мин)

Мотивация и целеполагание (1-2 мин)

Изучение новой темы(15-30 мин)

4. Домашнее задание.(1-2 мин)

1. Организационный момент.

Встали, подровнялись. Здравствуйте, садитесь.

2. Мотивация и целеполагание.

Каждый из вас наблюдал, как в конце лета, в начале осени многие птицы улетают в теплые края. Перелетные птицы преодолевают огромные расстояния, опасаясь зимних холодов, а весной они возвращаются обратно. Птицы ориентируются по магнитному полю Земли. Так вот сего дня мы поговорим о магнитах, рассмотрим свойства магнита. Вспомним что такое магнитное поле, какие бывают магнитные поля.

3.Изучение новой темы.

История магнита насчитывает свыше двух с половиной тысяч лет.

Каковы же свойства магнитов и чем определяются свойства магнитов? Для этого посмотрим опыт. Берем лист бумаги, магнит и железные опилки. Что мы наблюдаем? Видео

А если взять 2 магнита и поднести их друг к другу одноименными полюсами? как они будут себя вести? А если разноименными полюсами?

Почему куски, железные опилки притягиваются к магниту? Подобно тому как стеклянная палочка притягивает к себе куски бумаги, подобно этому магнит притягивает к себе железные опилки Вокруг магнита существует магнитное поле.

Из курса физики 8 класса вы узнали, что магнитное поле порождается электрическим током. Оно существует, например, вокруг металлического проводника с током. При этом ток создается электронами, направленно движущимися вдоль проводника.

Поскольку электрический ток — это направленное движение заряженных частиц, то можно сказать, что магнитное поле создается движущимися заряженными частицами, как положительными, так и отрицательными.

Итак запишем определение:

Магнитное поле-это особый вид материи, который создается вокруг магнитов движущимися заряженными частицами, как положительными, так и отрицательными.

Запомните ,что если частицы движутся, то создается магнитное поле. Мы сказали что м.п.- это особый вид материи ,оно называется особым видом, т.к. не воспринимается органами чувств.

Для обнаружения м.п. используются магнитные стрелки.

Для наглядного представления магнитного поля мы пользуемся магнитными линиями (их называют также линиями магнитного поля). Напомним, что магнитные линииэто воображаемые линии, вдоль которых расположились бы маленькие магнитные стрелки, помещенные в магнитное поле. Слайд

Магнитную линию можно провести через любую точку пространства, в котором существует магнитное поле.

На рисунке 86, а, б показано, что магнитная линия (как прямолинейная, так и криволинейная) проводится так, чтобы в любой точке этой линии касательная к ней совпадала с осью магнитной стрелки, помещенной в эту точку . Слайд 6

Магнитные линии являются замкнутыми. Например, картина магнитных линий прямого проводника с током представляет собой концентрические окружности, лежащие в плоскости, перпендикулярной проводнику. Слайд 7

В тех областях пространства, где магнитное поле более сильное, магнитные линии изображают ближе друг к другу, т. е. гуще, чем в тех местах, где поле слабее. Например, поле, изображенное на рисунке 87, слева сильнее, чем справа. Слайд 8

Таким образом, по картине магнитных линии можно судить не только о направлении, но и о величине магнитного поля (т. е. о том, в каких точках пространства поле действует на магнитную стрелку с большей силой, а в каких — с меньшей).

Давайте посмотрим на рис. 88 в учебнике: изображен проводник с током ВС, давайте вспомним что такое эл. ток- движение заряж. частиц, а мы говорили ,если частицы движутся ,то создается магнитное поле. Давайте посмотрим в точке N будет действовать магнитное поле? Да, будет, т.к. ток течет по всему проводнику. В какой точке А или М магнитное поле будет сильнее? В точке А т.к. она находится ближе к магниту.

Магнитное поле бывает 2х видов: однородное и неоднородное. Давайте рассмотрим эти виды магнитных полей .

Магнитные линии не имеют ни начала, ни конца: они либо замкнуты, либо, идут из бесконечности в бесконечность. Рис. 89

Вне магнита магнитные линии расположены наиболее густо у его полюсов. Значит, возле полюсов поле самое сильное, а по мере удаления от полюсов оно ослабевает. Чем ближе к полюсу магнита расположена магнитная стрелка, тем с большей по модулю силой действует на нее поле магнита. Поскольку магнитные линии искривлены, то направление силы, с которой поле действует на стрелку, тоже меняется от точки к точке.

Таким образом, сила, с которой поле полосового магнита действует на помещенную в это поле магнитную стрелку в разных точках поля может быть различной как по модулю, так и по направлению.

Такое поле называется неоднородным. Линии неоднородного магнитного поля искривлены, их густота меняется от точки к точке.

Еще одним примером неоднородного магнитного поля может служить поле вокруг прямолинейного проводника с током. На рисунке 90 изображен участок такого проводника, расположенный перпендикулярно к плоскости чертежа. Кружочком обозначено сечение проводника. Из этого рисунка видно, что магнитные линии поля, созданного прямолинейным проводником с током, представляют собой концентрические окружности, расстояние между которыми увеличивается по мере удаления от проводника.

В некоторой ограниченной области пространства можно создать однородное магнитное поле, т. е. поле, в любой точке которого сила действия на магнитную стрелку одинакова по модулю и направлению.

На рисунке 91 показано однородное поле, возникающее внутри так называемого соленоида, т. е. проволочной цилиндрической катушки с током. Поле внутри соленоида можно считать однородным, если длина соленоида значительно больше его диаметра (вне соленоида поле неоднородно, его магнитные линии расположены примерно так же, как у полосового магнита). Из этого рисунка мы видим, что магнитные линии однородного магнитного поля параллельны друг другу и расположены с одинаковой густотой. Однородным является также поле внутри постоянного полосового магнита в центральной его части (см. рис. 89).

Для изображения магнитного поля пользуются следующим приемом. Если линии однородного магнитного поля расположены перпендикулярно к плоскости чертежа и направлены от нас за чертеж, то их изображают крестиками (рис. 92), а если из-за чертежа к нам — то точками (рис. 93). Как и в случае с током, каждый крестик — это как бы видимое нами хвостовое оперение летящей от нас стрелы, а точка — острие стрелы, летящей к нам (на обоих рисунках направление стрел совпадает с направлением магнитных линий).

Так как же птицы все таки при перелетах ориентируются в пространстве, оказывается Земля окружена магнитным полем. Внутри земли находится большой магнит который создает огромное магнитное поле вокруг земли. А магнит внутри земли это и есть железная руда из которой делают наши постоянные магниты. Ученые гвоорят что у почтовых голубей например внутри тоже находится подобие магнита именно поэтому они так хорошо ориентируются в пространстве.

Домашнее задание.

Параграф 43, 44. упр 34.

Магнитное поле и его графическое изображение. Неоднородное и однородное магнитное поле (Ерюткин Е.С.)

Темой этого урока будет магнитное поле и его графическое изображение. Мы обсудим неоднородное и однородное магнитное поле. Для начала дадим определение магнитному полю, расскажем, с чем оно связано и какими оно обладает свойствами. Научимся изображать его на графиках. Также узнаем, как определяется неоднородное и однородное магнитное поле.

Читайте также: