Конспект урока электрический ток в полупроводниках 8 класс

Обновлено: 05.07.2024

Полупроводник - вещество, занимающее промежуточное положение в электропроводности между проводниками и диэлектриками.

Собственная проводимость - проводимость чистых полупроводников

Примесная проводимость - проводимость, вызванная введением примесей.

Полупроводниковый диод представляет собой устройство, содержащее p-n-соединение и способное передавать ток только в одном направлении.

Транзистор представляет собой устройство, содержащее два p-n переходов, прямые направления которых противоположны.

Основная и дополнительная литература по теме урока:

1. Мякишев Г. Я., Буховцев Б. Б., Соцкий Н. Н. Физика. 10 класс. Учебник для образовательных организаций М.: Просвещение, 2017. С. 362-371.

2. Рымкевич А.П. Сборник задач физики. 10-11 класс М.: Дрофа, 2009.

3. Зегря Г.Г. Перел В.И. Основы физики полупроводников. М.: Физматлит, 2009.

Открытые электронные ресурсы по теме урока:

Теоретический материал для самостоятельного изучения

Примеси, которые легко отдают электроны, называются донорными. Если мы их добавим, мы получим полупроводник n-типа с электронной проводимостью.

Примеси, которые легко принимают электроны, называются акцепторными. Если мы их добавим, мы получим полупроводник р-типа с дырочной проводимостью.

Когда два полупроводника с разными типами проводимости входят в контакт, образуется так называемый p-n-переход. Он имеет одностороннюю проводимость. При контакте полупроводников p- и n-типа в результате диффузии электронов в полупроводник р-типа и дырок в полупроводник n-типа образуется контактное электрическое поле. Для основных носителей заряда создан барьерный слой.

При включении в цепь p-n-перехода, когда область с электронной проводимостью связана с отрицательным полюсом источника тока, а область с дырочной проводимостью с положительным полюсом, внешнее электрическое поле ослабляет контактное поле и обеспечивает ток значительной силы, называемый прямым и обусловленным движением основных носителей заряда.

Когда переход включён обратном направлении, внешнее поле усиливает контактное поле, а пограничный слой обеднен основными носителями заряда. Очень малый ток течёт из-за движения через р-п-переход неосновных носителей заряда, которых очень мало.

Полупроводниковый диод представляет собой устройство, содержащее p-n-переход и способное пропускать ток в одном направлении и не передавать его в противоположном направлении.

Транзистор или триод полупроводника - это устройство, содержащее два p-n-перехода, прямые направления которых противоположны.

Современная электроника основана на микросхемах и микропроцессорах, которые включают в себя огромное количество транзисторов. Транзисторы стали широко распространены в современных технологиях. Они заменили электронные лампы в электрических цепях научной, промышленной и бытовой техники

Примеры и разбор решения заданий

1) концентрация свободных носителей заряда уменьшается;

2) концентрация свободных носителей заряда увеличивается;

3) скорость электронов увеличивается.

Правильный вариант: 2) концентрация свободных носителей заряда увеличивается.

Подсказка: обратите внимание, что при нагревании полупроводников в них образуется больше свободных носителей заряда.

2. Решите задачу: Концентрация электронов проводимости в германии при комнатной температуре n = 3·10 19 м -3 . Плотность германия ρ = 5400 кг/м 3 , молярная масса германия μ = 0,073 кг/моль. Каково отношение числа электронов проводимости к общему числу атомов?

Нажмите, чтобы узнать подробности

Урок изучения нового материала с первичным закреплением новых знаний.

Глава III. Электрические явления

Урок 31. Электрический ток. Источники тока

Учебные:

Выяснить условия существование электрического тока и назначение источника тока.

Рассмотреть принципы действия источника тока.

Ознакомить учащихся с различными видами источников тока.

Развивающие:

Развивать абстрактное и логическое мышление учащихся.

Формировать умение самостоятельной исследовательской работы.

Развивать умение анализировать учебный материал.

Воспитательные:

Формировать материалистическое мировоззрение учащихся.

Формировать познавательный интерес к физике и учебе в целом.

Урок изучения нового материала с первичным закреплением новых знаний.

Оборудование: металлическая трубка, эбонитовая палочка, легкий шарик, электрофорная машина, термоэлемент, спиртовка, два гальванометра, фотоэлемент, лампа на подставке, гальванический элемент, батарея гальванических элементов, аккумулятор.

На столах учеников – батареи гальванических элементов, лампочки на подставках, соединительные провода, ключ.

Демонстрации:

Отталкивание легкого шарика от металлической трубки, подвешенной на нитях, к которой подносится заряженная эбонитовая палочка.

Демонстрация работы термоэлемента (рис. 43 учебника).

Демонстрация работы фотоэлемента (рис. 44 учебника) и солнечной батареи.

Демонстрация устройства и работы сухого гальванического элемента.

Виды педагогических технологий, применяемые на данном уроке:

личностно – ориентированное обучение (беседа – ответы на вопросы; развитие, понимание и объяснение опытов, творчество и исследовательский поиск при решении проблемного вопроса).

I. Подготовка к усвоению нового материала (мотивация и формулировка цели урока).

Представьте себе на минуту, что отключили электричество в наших домах. Что было бы? Каковы последствия этого события?

Ученики: Если отключат электричество, то погаснет свет, не сможем посмотреть телевизор, не будут работать компьютеры, холодильники, все электроприборы, останемся без воды и тепла, так как насосы, качающие воду, работают на электричестве, не смогли бы подзарядить сотовые телефоны.

Учитель: Делаем вывод: электричество играет огромную роль в нашей жизни, поэтому важно знать, что это такое. Цель сегодняшнего урока: выяснить, что такое электрический ток и какие условия необходимы для его существования.

II. Актуализация опорных знаний учащихся.

Учитель: Но прежде всего давайте вспомним ранее изученный материал и ответим на следующие вопросы.

Что такое электризация тел?

Как можно наэлектризовать тело?

Назовите два рода зарядов. Как взаимодействуют тела, имеющие электрические заряды?

Что такое проводники и непроводники электричества?

Какие металлы проводят электричество?

Под действием чего движутся свободные электроны в металлах?

Какие заряженные частицы вы знаете?

Что такое энергия?

Какие виды энергии вы знаете?

Какой энергией обладает движущийся автомобиль? Летящий самолет? Нагретая батарея?

III. Освоение нового материала:

Электрический ток.

Демонстрирую опыт №1. Легкий шарик касается конца трубки из металлической фольги. Шарик и трубка подвешены на шелковых нитях. Если поднести к другому концу трубки заряженную эбонитовую палочку, то шарик оттолкнется от трубки. Предлагаю ученикам объяснить опыт. Что при этом происходит?

Ученики: Вокруг заряженной эбонитовой палочки существует электрическое поле. Под действием этого поля свободные электроны в металлической трубке перемещаются к противоположному концу трубки и часть их переходит на шарик. Шарик заряжается отрицательно и отталкивается от трубки, так как одноименные заряды отталкиваются.

Учитель: В нашем опыте электроны в металлической трубке движутся в одном направлении т.е. упорядоченно. В этом случае можно сказать, что по трубке протекает электрический ток.

Кроме металлических проводников мы будем изучать и другие проводники, например, проводящие ток жидкости. В них кроме электронов есть и другие заряженные частицы-ионы. Они тоже могут перемещаться. Сформулируем вместе, что же такое электрический ток?

Первые ключевые слова: Электроны и ионы – это.

Ученики: Заряженные частицы.

Второе ключевое слово: Что с ними происходит?

Ученики: Заряженные частицы движутся.

Третье ключевое слово: Как они движутся?

Ученики: Заряженные частицы движутся в одном направлении.

Четвертое ключевое слово: Под действием чего движутся заряженные частицы?

Ученики: Заряженные частицы движутся под действием электрического поля.

Итак, электрический ток – это упорядоченное (направленное) движение заряженных частиц, под действием электрического поля.

Условия существования тока

В нашем опыте в металлическом проводнике возникает электрический ток. Но он быстро прекращается. Почему он является кратковременным? По мере перемещения зарядов с палочки на трубку и далее по трубке электрическое поле вокруг палочки уменьшается, а вокруг левого конца трубки растет. При равенстве зарядов их электрические поля компенсируют друг друга и движение электронов прекращается. Значит, для того, чтобы ток в цепи существовал долго, необходимо создать электрическое поле и постоянно поддерживать его. Для этого используются специальные устройства, называемые источниками тока.

Изобразим все в виде схемы. (Учитель рисует на доске, ученики в тетрадях схему)

Условия существования тока

Свободные заряженные Электрическое поле Замкнутая электрическая

Источники тока

Источники тока – это устройства, создающие и поддерживающие длительное время электрическое поле. Существуют различные источники тока, но в любом из них совершается работа по разделению положительно и отрицательно заряженных частиц. Разделенные заряженные частицы накапливаются на полюсах источника тока. Один полюс заряжен положительно, второй – отрицательно. Если полюсы источника соединить проводником, то в нем под действием электрического поля возникает электрический ток, т.е. свободные заряженные частицы придут в нем в движение. Убедитесь в этом сами.

Учащиеся выполняют фронтальный опыт: под руководством учителя собирают электрическую цепь, состоящую из батареи гальванических элементов, лампочки, ключа и соединительных проводов. Замыкают ключ, убеждаются, что лампочка горит.

В настоящий момент источник тока совершает работу. Что необходимо для того, чтобы тело совершило работу?

Ученики: Чтобы совершить работу, тело должно обладать энергией.

Верно. Работа по разделению зарядов в источнике тока может совершаться за счет различных энергий. Поэтому существуют разные виды источников тока.

Виды источников тока.

Произвожу демонстрацию опытов по рис. 42-44 учебника. В ходе выполнения опытов задаю вопрос. Какой вид энергии превращается в электрическую в данном опыте? После обсуждения каждого опыта заполняем соответствующую строку таблицы 1.

Демонстрирую опыт №2. Действие электрофорной машины.

Вывод: Разделение зарядов происходит за счет механической энергии. При вращении дисков происходит трение щеток о диск, что приводит к разделению зарядов. В результате один электрод машины заряжается положительно, а другой отрицательно. Если приблизить электроды машины , то возникает кратковременный ток в виде электрического разряда в воздухе.

Для того , чтобы ток протекал постоянно, необходимо непрерывно вращать ручку электрофорной машины. Конечно, таким образом создавать электрический ток длительное время невозможно. На электростанциях электрический ток вырабатывают с помощью генераторов. Этот ток используется в промышленности, на транспорте, в осветительной сети.

Демонстрирую опыт №3. Действие термоэлемента.

Вывод: Если две проволоки, изготовленные из разных металлов, спаять, затем нагреть место спая, то по цепи потечет электрический ток. Разделение зарядов происходит за счет изменения внутренней энергии веществ.

Демонстрирую опыт №4. Действие фотоэлемента и солнечной батареи.

Вывод: Если такие вещества, как кремний, селен, оксид меди осветить, то в цепи возникает электрический ток. Это явление называется фотоэффектом. Световая энергия превращается в электрическую.

Чтобы перейти к следующему источнику тока расскажу немного об истории их создания.

В 1799 году итальянский физик Алессандро Вольта, опираясь на результаты исследований Луиджи Гальвани, изготовил электрическую батарею, названную вольтовым столбом. Батарея Вольта была составлена из чередующихся медных и цинковых кружков, которые были сложены столбиком и переложены кусочками сукна, смоченного в растворе серной кислоты. Как оказалось впоследствии. Эта батарея не была первым химическим источником тока. В начале 20 века при археологических раскопках в Ираке был найден странный предмет. Его нашли среди руин древнего поселения неподалеку от Багдада. Это была глиняная ваза высотой около 15 см. В ней находился цилиндр из меди со вставленным в него железным стержнем. При обследовании находки ученые пришли к выводу: это останки электрической батарейки. В дальнейшем такие сосуды находили в большом количестве. Определили, что заливались они уксусом, а герметизировались смолой. Использовали такие батарейки в древности, по- видимому, для гальванического золочения мелких серебряных украшений.

Вывод: Внутри гальванического элемента непрерывно идет химическая реакция, в результате которой происходит разделение зарядов. В результате один электрод становится положительно заряженным, а другой отрицательно заряженным. Электроды находятся в электролите, с которым они взаимодействуют в ходе химической реакции. Сверху все это герметизируется.

Выделим основные части любого гальванического элемента:

В гальваническом элементе Вольта положительный электрод – медная пластина, отрицательный электрод – цинковая пластина, электролит – раствор серной кислоты, герметик – смола. В древней батарейке из Ирака положительный электрод – железный стержень, отрицательный электрод – медный цилиндр, электролит – уксус, герметик – смола. Как видим в обоих элементах электролит жидкий. Это очень неудобно: представьте себе, что мы в наручных часах или в мобильном телефоне носим банку с серной кислотой, которая при неудачном ударе может разбиться. Поэтому в современных элементах электролит не жидкий, а в виде пасты или густого клейстера. Такие батарейки называют сухими.

Работа с учебником.

Откройте учебники на с. 79. На рис 45 рассмотрите устройство сухого гальванического элемента и в тексте найдите ответы на вопросы.

Что такое батарея гальванических элементов?

(Несколько гальванических элементов, соединенных вместе, образуют батарею гальванических элементов).

Срок действия гальванических элементов? (Все гальванические элементы и батареи гальванических элементов имеют определенный срок действия. После этого мы их просто выбрасываем).

Существуют ли химические источники тока многоразового действия? (Да. Это аккумуляторы, от латинского слова аккумуляторе - накоплять).

Что представляет простейший аккумулятор? (Простейший аккумулятор – это две свинцовые пластины, помещенные в раствор серной кислоты. Чтобы аккумулятор был источником тока, надо зарядить от какого – то другого источника постоянного тока. При прохождении тока между пластинами и кислотой происходит химическая реакция. При этом один электрод становится положительно заряженным, а второй - отрицательно заряженным).

Какие виды аккумуляторов бывают? (Аккумуляторы бывают двух видов:

Кислотные (свинцовые) - свинцовая пластина в растворе серной кислоты:

Щелочные (железно - никелевые) – одна пластина из спрессованного железного порошка, вторая – из пероксида никеля. Помещены в раствор щелочи.)

А с какими источниками тока вам приходилось чаще всего сталкиваться в повседневной жизни?

Ученики: Аккумуляторы.

Действительно, очень часто мы используем именно аккумуляторы. Сотовые телефоны необходимо периодически подзаряжать. Для этого мы используем зарядное устройство или так называемый сетевой адаптер, который преобразует переменный ток напряжением 220 В из осветительной сети в постоянный ток напряжением 3 В.Чаще всего там используется литиево – ионный аккумулятор или батарея, в которой применяется раствор солей лития в органическом растворителе. Ну а теперь мы полностью завершаем заполнение таблицы.


Выяснить условия существование электрического тока и назначение источника тока.

Рассмотреть принципы действия источника тока.

Ознакомить учащихся с различными видами источников тока.

Развивающие:

Развивать абстрактное и логическое мышление учащихся.

Формировать умение самостоятельной исследовательской работы.

Развивать умение анализировать учебный материал.

Воспитательные:

Формировать материалистическое мировоззрение учащихся.

Формировать познавательный интерес к физике и учебе в целом.

Оборудование: металлическая трубка, эбонитовая палочка, легкий шарик, электрофорная машина, термоэлемент, спиртовка, два гальванометра, фотоэлемент, лампа на подставке, гальванический элемент, батарея гальванических элементов, аккумулятор.

На столах учеников – батареи гальванических элементов, лампочки на подставках, соединительные провода, ключ.

Демонстрации:

Отталкивание легкого шарика от металлической трубки, подвешенной на нитях, к которой подносится заряженная эбонитовая палочка.

Демонстрация работы термоэлемента (рис. 43 учебника).

Демонстрация работы фотоэлемента (рис. 44 учебника) и солнечной батареи.

Демонстрация устройства и работы сухого гальванического элемента.

Виды педагогических технологий, применяемые на данном уроке:

личностно – ориентированное обучение (беседа – ответы на вопросы; развитие, понимание и объяснение опытов, творчество и исследовательский поиск при решении проблемного вопроса).

I. Подготовка к усвоению нового материала (мотивация и формулировка цели урока).

Представьте себе на минуту, что отключили электричество в наших домах. Что было бы? Каковы последствия этого события?

Ученики: Если отключат электричество, то погаснет свет, не сможем посмотреть телевизор, не будут работать компьютеры, холодильники, все электроприборы, останемся без воды и тепла, так как насосы, качающие воду, работают на электричестве, не смогли бы подзарядить сотовые телефоны.

Учитель: Делаем вывод: электричество играет огромную роль в нашей жизни, поэтому важно знать, что это такое. Цель сегодняшнего урока: выяснить, что такое электрический ток и какие условия необходимы для его существования.

II. Актуализация опорных знаний учащихся.

Учитель: Но прежде всего давайте вспомним ранее изученный материал и ответим на следующие вопросы.

Что такое электризация тел?

Как можно наэлектризовать тело?

Назовите два рода зарядов. Как взаимодействуют тела, имеющие электрические заряды?

Что такое проводники и непроводники электричества?

Какие металлы проводят электричество?

Под действием чего движутся свободные электроны в металлах?

Какие заряженные частицы вы знаете?

Что такое энергия?

Какие виды энергии вы знаете?

Какой энергией обладает движущийся автомобиль? Летящий самолет? Нагретая батарея?

III. Освоение нового материала:

Электрический ток.

Демонстрирую опыт №1. Легкий шарик касается конца трубки из металлической фольги. Шарик и трубка подвешены на шелковых нитях. Если поднести к другому концу трубки заряженную эбонитовую палочку, то шарик оттолкнется от трубки. Предлагаю ученикам объяснить опыт. Что при этом происходит?

Ученики: Вокруг заряженной эбонитовой палочки существует электрическое поле. Под действием этого поля свободные электроны в металлической трубке перемещаются к противоположному концу трубки и часть их переходит на шарик. Шарик заряжается отрицательно и отталкивается от трубки, так как одноименные заряды отталкиваются.

Учитель: В нашем опыте электроны в металлической трубке движутся в одном направлении т.е. упорядоченно. В этом случае можно сказать, что по трубке протекает электрический ток.

Кроме металлических проводников мы будем изучать и другие проводники, например, проводящие ток жидкости. В них кроме электронов есть и другие заряженные частицы-ионы. Они тоже могут перемещаться. Сформулируем вместе, что же такое электрический ток?

Первые ключевые слова: Электроны и ионы – это.

Ученики: Заряженные частицы.

Второе ключевое слово: Что с ними происходит?

Ученики: Заряженные частицы движутся.

Третье ключевое слово: Как они движутся?

Ученики: Заряженные частицы движутся в одном направлении.

Четвертое ключевое слово: Под действием чего движутся заряженные частицы?

Ученики: Заряженные частицы движутся под действием электрического поля.

Итак, электрический ток – это упорядоченное (направленное) движение заряженных частиц, под действием электрического поля.

Условия существования тока

В нашем опыте в металлическом проводнике возникает электрический ток. Но он быстро прекращается. Почему он является кратковременным? По мере перемещения зарядов с палочки на трубку и далее по трубке электрическое поле вокруг палочки уменьшается, а вокруг левого конца трубки растет. При равенстве зарядов их электрические поля компенсируют друг друга и движение электронов прекращается. Значит, для того, чтобы ток в цепи существовал долго, необходимо создать электрическое поле и постоянно поддерживать его. Для этого используются специальные устройства, называемые источниками тока.

Изобразим все в виде схемы. (Учитель рисует на доске, ученики в тетрадях схему)


Условия существования тока





Свободные заряженные Электрическое поле Замкнутая электрическая





Источники тока

Источники тока – это устройства, создающие и поддерживающие длительное время электрическое поле. Существуют различные источники тока, но в любом из них совершается работа по разделению положительно и отрицательно заряженных частиц. Разделенные заряженные частицы накапливаются на полюсах источника тока. Один полюс заряжен положительно, второй – отрицательно. Если полюсы источника соединить проводником, то в нем под действием электрического поля возникает электрический ток, т.е. свободные заряженные частицы придут в нем в движение. Убедитесь в этом сами.

Учащиеся выполняют фронтальный опыт: под руководством учителя собирают электрическую цепь, состоящую из батареи гальванических элементов, лампочки, ключа и соединительных проводов. Замыкают ключ, убеждаются, что лампочка горит.

В настоящий момент источник тока совершает работу. Что необходимо для того, чтобы тело совершило работу?

Ученики: Чтобы совершить работу, тело должно обладать энергией.

Верно. Работа по разделению зарядов в источнике тока может совершаться за счет различных энергий. Поэтому существуют разные виды источников тока.

Виды источников тока.

Произвожу демонстрацию опытов по рис. 42-44 учебника. В ходе выполнения опытов задаю вопрос. Какой вид энергии превращается в электрическую в данном опыте? После обсуждения каждого опыта заполняем соответствующую строку таблицы 1.

Демонстрирую опыт №2. Действие электрофорной машины.

Вывод: Разделение зарядов происходит за счет механической энергии. При вращении дисков происходит трение щеток о диск, что приводит к разделению зарядов. В результате один электрод машины заряжается положительно, а другой отрицательно. Если приблизить электроды машины , то возникает кратковременный ток в виде электрического разряда в воздухе.

Для того , чтобы ток протекал постоянно, необходимо непрерывно вращать ручку электрофорной машины. Конечно, таким образом создавать электрический ток длительное время невозможно. На электростанциях электрический ток вырабатывают с помощью генераторов. Этот ток используется в промышленности, на транспорте, в осветительной сети.

Демонстрирую опыт №3. Действие термоэлемента.

Вывод: Если две проволоки, изготовленные из разных металлов, спаять, затем нагреть место спая, то по цепи потечет электрический ток. Разделение зарядов происходит за счет изменения внутренней энергии веществ.

Демонстрирую опыт №4. Действие фотоэлемента и солнечной батареи.

Вывод: Если такие вещества, как кремний, селен, оксид меди осветить, то в цепи возникает электрический ток. Это явление называется фотоэффектом. Световая энергия превращается в электрическую.

Чтобы перейти к следующему источнику тока расскажу немного об истории их создания.

В 1799 году итальянский физик Алессандро Вольта, опираясь на результаты исследований Луиджи Гальвани, изготовил электрическую батарею, названную вольтовым столбом. Батарея Вольта была составлена из чередующихся медных и цинковых кружков, которые были сложены столбиком и переложены кусочками сукна, смоченного в растворе серной кислоты. Как оказалось впоследствии. Эта батарея не была первым химическим источником тока. В начале 20 века при археологических раскопках в Ираке был найден странный предмет. Его нашли среди руин древнего поселения неподалеку от Багдада. Это была глиняная ваза высотой около 15 см. В ней находился цилиндр из меди со вставленным в него железным стержнем. При обследовании находки ученые пришли к выводу: это останки электрической батарейки. В дальнейшем такие сосуды находили в большом количестве. Определили, что заливались они уксусом, а герметизировались смолой. Использовали такие батарейки в древности, по- видимому, для гальванического золочения мелких серебряных украшений.

Вывод: Внутри гальванического элемента непрерывно идет химическая реакция, в результате которой происходит разделение зарядов. В результате один электрод становится положительно заряженным, а другой отрицательно заряженным. Электроды находятся в электролите, с которым они взаимодействуют в ходе химической реакции. Сверху все это герметизируется.

Выделим основные части любого гальванического элемента:

В гальваническом элементе Вольта положительный электрод – медная пластина, отрицательный электрод – цинковая пластина, электролит – раствор серной кислоты, герметик – смола. В древней батарейке из Ирака положительный электрод – железный стержень, отрицательный электрод – медный цилиндр, электролит – уксус, герметик – смола. Как видим в обоих элементах электролит жидкий. Это очень неудобно: представьте себе, что мы в наручных часах или в мобильном телефоне носим банку с серной кислотой, которая при неудачном ударе может разбиться. Поэтому в современных элементах электролит не жидкий, а в виде пасты или густого клейстера. Такие батарейки называют сухими.

Работа с учебником.

Откройте учебники на с. 79. На рис 45 рассмотрите устройство сухого гальванического элемента и в тексте найдите ответы на вопросы.

Что такое батарея гальванических элементов?

(Несколько гальванических элементов, соединенных вместе, образуют батарею гальванических элементов).

Срок действия гальванических элементов? (Все гальванические элементы и батареи гальванических элементов имеют определенный срок действия. После этого мы их просто выбрасываем).

Существуют ли химические источники тока многоразового действия? (Да. Это аккумуляторы, от латинского слова аккумуляторе - накоплять).

Что представляет простейший аккумулятор? (Простейший аккумулятор – это две свинцовые пластины, помещенные в раствор серной кислоты. Чтобы аккумулятор был источником тока, надо зарядить от какого – то другого источника постоянного тока. При прохождении тока между пластинами и кислотой происходит химическая реакция. При этом один электрод становится положительно заряженным, а второй - отрицательно заряженным).

Какие виды аккумуляторов бывают? (Аккумуляторы бывают двух видов:

Кислотные (свинцовые) - свинцовая пластина в растворе серной кислоты:

Щелочные (железно - никелевые) – одна пластина из спрессованного железного порошка, вторая – из пероксида никеля. Помещены в раствор щелочи.)

А с какими источниками тока вам приходилось чаще всего сталкиваться в повседневной жизни?

Ученики: Аккумуляторы.

Действительно, очень часто мы используем именно аккумуляторы. Сотовые телефоны необходимо периодически подзаряжать. Для этого мы используем зарядное устройство или так называемый сетевой адаптер, который преобразует переменный ток напряжением 220 В из осветительной сети в постоянный ток напряжением 3 В.Чаще всего там используется литиево – ионный аккумулятор или батарея, в которой применяется раствор солей лития в органическом растворителе. Ну а теперь мы полностью завершаем заполнение таблицы.

Нажмите, чтобы узнать подробности

Цель урока: объяснить механизм прохождения электрического тока через контакт полупроводников р и n типов, рассмотреть прямой и обратный переход, изучить устройство и принцип действия полупроводникового диода, повторить ранее изученный материал используя опорные конспекты и ТСО.

Задачи урока:

Образовательные - создать условия для усвоения нового учебного материала, используя проблемное обучение;

Ввести понятия прямой и обратный переход, полупроводниковый диод;

Развивающие – развивать творческую и мыслительную деятельность учащихся на уроке с помощью решения задач исследовательского характера, интеллектуальные качества личности школьника такие, как самостоятельность, способность к оценочным действиям, обобщению, быстрому переключению; способствовать формированию навыков самостоятельной работы; формировать умения чётко и ясно излагать свои мысли.

Воспитательные - прививать культуру умственного труда, прививать учащимся интерес к предмету с помощью применения информационных технологий( с использованием компьютера); формировать умения аккуратно и грамотно выполнять математические записи.

Оборудование: опорные конспекты, набор полупроводниковых

диодов, компьютеры с программой

Этапы урока

Приемы и методы

1.Повторение ранее изученного материала

2. Изучение нового материала: электрический ток через контакт полупроводников

р и n типа. Полупроводниковый диод.

3. Формирование умений и навыков.

4. Первичная проверка усвоения знаний. Рефлексия.

5. Подведение итогов.

Беседа. Опрос по опорным конспектам.

Рассказ учителя. Беседа. Опорные

конспекты. Показ пошаговой анимации.

Ответы на вопросы учащихся.

Опрос по опорным конспектам.

Запись на доске.

Ход и содержание урока.

Вводное слово учителя.

Проверка усвоения изученного материала.

Электрический ток в полупроводниках.

2.2.1 Строение полупроводников.

2.2.2 Электронная проводимость.

2.2.3 Дырочнач проводимость.

2.2.4 Примесная проводимость.

2.2.5 Донорные примеси.

2.2.6 Акцепторные примеси.

Опрос учащихся проводится с использованием опорных конспектов.

2.2.7 Физический диктант.

1. Что называется собственной проводимостью полупроводников?

2. При каких условиях чистые полупроводники становятся электропроводными?

3. Как зависит проводимость полупроводников от температуры?

4. Какую проводимость полупроводников называют электронной?

5. Как в чистом полупроводнике возникают "дырки"?

6. Какова природа тока в полупроводнике?

7. Как влияет на проводимость полупроводников наличие в них примесей?

8. При каком условии в примесном полупроводнике возникает электронная проводимость?

9. При каком условии в примесном полупроводнике возникает дырочная проводимость?

10. Как называются полупроводники, у которых основными носителями заряда являются электроны?

11. Как называются полупроводники, у которых основными носителями заряда являются дырки?

Изучение нового материала.

3.1Электрический ток через контакт полупроводников p и n типов (по опорному конспекту)

3.1.1 Электрические свойства "p-n" переходов.

"p-n" переход (или электронно-дырочный переход) - область контакта двух полупроводников, где происходит смена проводимости с электронной на дырочную (или наоборот).
В кристалле полупроводника введением примесей можно создать такие области. В зоне контакта двух полупроводников с различными проводимостями будет проходить взаимная диффузия. электронов и дырок и образуется запирающий электрический слой.Электрическое поле запирающего слоя препятствует дальнейшему переходу электронов и дырок через границу. Запирающий слой имеет повышенное сопротивление по сравнению с другими областями полупроводника.

Внешнее электрическое поле влияет на сопротивление запирающего слоя.
При прямом (пропускном) направлении внешнего эл.поля эл.ток проходит через границу двух полупроводников.
Т.к. электроны и дырки движутся навстречу друг другу к границе раздела.Электроны, переходя границу заполняют дырки. Толщина запирающего слоя и его сопротивление непрерывно уменьшаются.

При запирающем (обратном направлении внешнего эл.поля эл.ток через область контакта двух полупроводников проходить не будет.
Т.к. электроны и дырки перемещаются от границы в противоположные стороны.. Запирающий слой утолщается, его сопротивление увеличивается.

3.2 Полупроводниковый диод (опорный конспект).

Полупроводник с одним "p - n" переходом называется полупроводниковым диодом.

При наложении эл. поля в одном направлении сопротивление полупроводника велико,
в обратном - сопротивление мало.

Полупроводниковые диоды основные элементы выпрямителей переменного тока.

3.3 Область применения полупроводниковых диодов.

Объяснение материала сопровождается демонстрацией полупроводниковых диодов. Слайд презентации.

Читайте также: