Конспект классы органических веществ

Обновлено: 07.07.2024

Конспект предназначен для обобщения знаний по темам: алканы, алкены, алкины, алкадиены.

ВложениеРазмер
konspekt_uroka_po_khimii_v_10_klasse.docx 50.27 КБ

Предварительный просмотр:

Цель : обобщить и систематизировать знания о основных классах органических веществ.

Образовательная: развитие умений определять классы органических веществ, называть соединения, строить изомеры веществ, составлять уравнения реакций.

Развивающая: продолжить развитие логического мышления, самостоятельно работать с учебным материалом.

Воспитательная : воспитание активности на занятии, культуры труда.

Тип урока : обобщающий

Вид урока : урок – игра

Настроение в начале

Настроение в конце урока

  1. Изучение нового материала. Наш урок пройдёт необычно в виде игры, в ходе которого вы будите зарабатывать баллы и ставить их в маршрутный лист.

Максимальное количество баллов за задание

набранное за задания

За каждое в-во 1 балл

Изучение нового материала.

Какие классы органических веществ мы изучили ? (алканы, алкены, акины, алкадиены).

Сегодня на уроке нам нужно обобщить знания об этих классах.

Какова цель нашего урока? Что необходимо вспомнить о класса органических веществ? (структурные формулы, виды изомерии, химические реакции, названия веществ).

Цель урока записываем в маршрутный лист.

Далее проходит игра. Правила игры: за каждое задание учащиеся получают определённое количество баллов, в зависимости от количества набранных баллов ставится оценка за урок.

Перечень заданий к игре

Распределите данные формулы веществ по классам к которым они принадлежат. Оформите в виде таблицы.

1. НС≡СН-СН 2 -СН 3

2. CH 3 –CH 2 –CH 2 –CH 3

Вам предложен небольшой текст. Ваша задача вставить недостающие слова вместо пробелов.

Вещество с формулой С 2 Н 4 называется_____________. Он принадлежит классу________________. В его молекуле присутствует___________связь.

А вещество с формулой С 2 Н 6 называется___________. Он является первым гомологом класса__________________.

В предложенном тексте спрятано 6 названий углеводородов. Попробуйте их найти. Буквы идут друг за другом, но могут находиться в разных словах.

Стол у Ольги Андреевны всегда был завален книгами. Там мы нашли сказку про пантеру, рассказ про цирковых собак, о том, как щенок танцевать научился, книжку про диковинных зверей – ленивцев, эти ленивые животные почти все время висят на ветках деревьев.

  • Для учеников 1-11 классов и дошкольников
  • Бесплатные сертификаты учителям и участникам

Тема: Классификация веществ и реакций в органической химии.

1. Классификация органических веществ.

2. Классификация органических реакций.

1. Классификация органических веществ

I . Углеводороды. Алифатические и циклические углеводороды (карбоциклические).

1). предельные УВ - алканы,

2). непредельные УВ – алкены, алкадиены, алкины,

2). ароматические УВ – арены.

II . Кислородсодержащие органические вещества:

1). спирты и фенолы,

2). Альдегиды и кетоны,

3). карбоновые кислоты,

4). сложные эфиры, жиры, мыла,

III . Азотсодержащие органические соединения:

4). гетероциклические соединения,

5). нуклеиновые кислоты – ДНК и РНК.

Атомы водорода в углеводородах могут быть замещены на атомы или группы атомов других элементов, называемые функциональными группами.

Функциональная группа – это атом или группа атомов, определяющая характерные химические свойства данного класса органических соединений.

Такими заместителями могут быть атомы галогенов, группы атомов, включающие в свой состав кислород, азот, углерод, например:

гидрокси- нитро- карбокси - амино-

(в спиртах) (в нитросоединениях) (в кислотах) (в аминах)

Номенклатура. Отличительной особенностью органической химии является огромное число соединений, которые может образовывать углерод. Во избежание путаницы, возникающей из-за неточных названий, в настоящее время пользуются систематической (международной) номенклатурой ИЮПАК ( IUPAC — Международный союз теоретической и прикладной химии) . С ее помощью можно отобразить в названии структуру соединения и, наоборот, по названию однозначно представить структуру. Особенно важна номенклатура предельных углеводородов, поскольку многие органические соединения представляют собой продукты замещения водорода в алканах и обычно называются сходным образом. Номенклатура алканов — основа для названия многих органических соединений. По систематической номенклатуре все предельные углеводороды называют алканами. Название любого алкана оканчивается на -ан.

пентан или н-пентан цепью углеводород рассматривают как продукт

замещения атомов водорода в алкане с самой длинной неразветвленной углеродной цепью. Заместитель — это атом или группа атомов, замещающих атом водорода в родоначальной структуре. В алканах замещающие группы называют углеводородными радикалами.

Вещества, сходные по строению и химическим свойствам, но отличающиеся друг от друга по составу молекул на одну или несколько групп СН 2 , называются гомологами .

2. Классификация реакций в органической химии

Органические реакции можно классифицировать по тем же признакам, что и неорганические, только с использованием в ряде случаев специфических названий. Так, реакции соединения в органической химии называют реакциями присоединения, реакции разложения — реакциями отщепления (элиминирования) и т. д.

1. Реакции радикального замещения

а) Галогенирование – реакция замещения атомов водорода в молекуле алкана на атомы галогенов с образованием галогенопроизводных.

Галогенопроизводные углеводородов – это соединения, содержащие атомы галогенов, связанные с углеводородным радикалом.

б). Фтор реагирует с алканами очень энергично (как правило, со взрывом), при этом рвутся все С – Н и С – С связи, и в результате образуются соединения CF 4 и HF .

2. Реакции присоединения

Гидрогалогенирование – присоединение галогеноводородов. Эта реакция сопровождается образованием галогеналканов.

этен бромэтан (этилбромид)

3. Гидратация – присоединение воды с образованием спиртов. Эта реакция протекает при нагревании в присутствии серной или фосфорной кислот:

4. Гидрирование – присоединение водорода к алкенам.

В результате этой реакции происходит насыщение атомов углерода водородными атомами до предела; образуются предельные углеводороды. Реакция гидрирования протекает при умеренном нагревании, повышенном давлении и в присутствии металлических катализаторов ( Pt , Pd , Ni ):

При более высокой температуре на тех же катализаторах могут протекать процессы дегидрирования:

5. Дегидрирование – отщепление молекулярного водорода.

Реакция дегидрирования алканов протекает при 300-500 0 С (при этой температуре крекинг еще не идет) в присутствии катализаторов (чаще всего ( Cr 2 O 3 ) и сопровождается образованием преимущественно алкенов:

6. Изомеризация – превращение алкана нормального строения при нагревании в присутствии катализатора ( AlCl 3 ) в разветвленный его изомер (этот же процесс происходит в условиях каталитического крекинга):

н-пентан CH 3 2-метилбутан

7. Гидрирование (гидрогенизация ) – присоединение водорода к органическим соединениям по кратным связям.

Гидрирование непредельных углеводородов происходит в присутствии катализатора ( Pt , Ni , Pd ), при нагревании и повышенном давлении:

8. Реакция Вюрца – действие на галогенопроизводные алканы натрием. При нагревании галогеналканов с металлическим натрием атомы металла отщепляют от молекул галогенопроизводного алкана атомы галогена, образовавшиеся при этом радикалы соединяются между собой, образуя молекулы нового углеводорода с удвоенным (четным) числом атомов углерода в цепи:

9. Реакция дегидратации – отщепление молекул воды происходит при нагревании спирта с концентрированной серной кислотой (водоотнимающее средство). В зависимости от условий реакции возможна:

а) межмолекулярная дегидратация – отщепление молекулы воды от двух молекул спирта. Реакция протекает при нагревании смеси до 140 0 С с использованием избытка спирта. В результате межмолекулярной дегидратации образуется простой эфир.

б) внутримолекулярная дегидратация (реакция элиминирования) - отщепление одной молекулы воды от одной молекулы спирта. Эта реакция протекает при нагревании смеси до более высокой температуры с использованием избытка серной кислоты. Продуктом реакции является алкен:

10. Гидрогалогенирование. С достаточной скоростью реакция присоединения галогеноводородов протекает только в присутствии катализаторов – солей ртути и др. Присоединение галогеноводородов к алкинам происходит в две стадии, согласно правилу Марковникова. При присоединении хлороводорода к одной из - связей образуется газообразное вещество хлорвинил:

СН = СН + HCl t , HgCl 2 CH 2 = CHCl хлорэтен (хлорвинил)

которое используют для получения полимера – полихлорвинила:

n CH 2 = CH ( - CH 2 – CH – ) n полихлорвинил


Предмет органической химии

Ключевые слова конспекта: Органические вещества. Витализм. Органическая химия. Углеводороды. Общая формула углеводородов. Природные, искусственные и синтетические органические вещества.

Органические вещества

С глубокой древности человек использовал в своих целях вещества живой и неживой природы. Из осколков камней наши предки изготавливали наконечники стрел, из руд выплавляли металлы, глину и известняк использовали для строительства жилищ, из мрамора высекали скульптуры. Вещества природного происхождения служили источником пищи, применялись для изготовления одежды, приготовления лекарств, ядов, красителей.

В начале XIX в. число веществ, которые были выделены из объектов живой природы, стало стремительно расти. По предложению выдающегося шведского химика Йёнса Якоба Берцелиуса вещества живой природы стали называть органическими в противоположность минеральным, т. е. неорганическим, веществам.

Были замечены и другие общие особенности органических соединений. При горении все они в основном образуют углекислый газ, сажу, воду и некоторые другие соединения, а следовательно, обязательно содержат в своём составе углерод.

Однако ряд открытий, сделанных в середине XIX в., показал, что сторонники витализма глубоко заблуждались.

В 1828 г. немецкий химик Фридрих Вёлер впервые получил органическое вещество — мочевину из неорганической соли (цианата аммония). В 1854 г. французский учёный Марселей Бертло синтезировал аналоги природных жиров, затем в 1861 г. русский химик Александр Михайлович Бутлеров — аналог природного сахара. В конечном счёте под давлением экспериментальных фактов витализм потерпел крах.

Предмет органической химии

Постепенно изучение состава и свойств органических веществ выделилось в самостоятельный раздел химической науки — органическую химию.

Было обнаружено, что большое число органических веществ построено из атомов всего двух химических элементов — углерода и водорода. Такие соединения называют углеводородами. Состав углеводородов выражают общей формулой CхHу, где между индексами х и у существует строгое математическое соотношение.

Углеводороды занимают особое место в органической химии, поскольку соединения всех остальных классов органических веществ можно рассматривать как их производные. Например, если в молекуле метана СН4 один атом водорода заместить карбоксильной группой —СООН, то получится молекула известной вам уксусной кислоты СН3СООН. Замена одного атома водорода в этане C2H6 на гидроксильную группу – ОН даст в результате молекулу этилового спирта С2Н5ОН. Таким образом, и карбоновые кислоты, и спирты (важнейшие классы органических соединений) можно считать производными углеводородов.

Немецкий химик-органик Карл Шорлеммер более ста лет назад сформулировал классическое определение органической химии, не потерявшее своей актуальности до сих пор.

Природные, искусственные и синтетические органические вещества

Поняв, как построены органические соединения, учёные научились не только получать их в лаборатории, но и химически модифицировать, т. е. изменять их строение. Мало того, химики смогли синтезировать соединения углерода, никогда не существовавшие в природе. Таким образом, по происхождению органические вещества можно разделить на три группы: природные, искусственные и синтетические.

Природные органические вещества — это продукты жизнедеятельности любых живых организмов. Название веществ этой группы говорит о том, что в окружающей среде такие соединения существуют независимо от человека, их можно выделить из природных объектов, будь то полезные ископаемые (нефть, газ, каменный уголь, горючие сланцы), растения или животные.

Искусственные органические вещества — это продукты химической модификации природных органических соединений, в результате которой происходит изменение состава и строения исходного вещества с целью придания ему требуемых свойств. Например, в результате химической обработки целлюлозы (основной составной части древесины) получают не существующие в природе волокна (ацетатное, медно-аммиачное, вискозное) и пластмассу (целлулоид).

Многообразие органических веществ

Органических веществ гораздо больше, чем неорганических: на сегодняшний день органических веществ насчитывают более 100 млн, а число неорганических не превышает 500 тысяч. Это во многом определяется особенностями строения органических соединений.

Выдающуюся роль в решении вопроса о строении органических соединений сыграл русский химик А. М. Бутлеров. Об этом пойдёт речь в следующем конспекте.

Основные выводы по теме конспекта:

  1. Раздел химии, изучающий строение, свойства, превращения, способы получения и области применения органических веществ, называют органической химией.
  2. Органическая химия представляет собой химию углеводородов и их производных, т. е. продуктов замещения атомов водорода в молекулах углеводородов на другие атомы или группы атомов.
  3. Различают органические вещества природного, искусственного и синтетического происхождения.

В зависимости от типа строения углеродной цепи органические вещества подразделяют на:

  • ациклические и циклические.
  • предельные (насыщенные) и непредельные (ненасыщенные).
  • карбоциклические и гетероциклические.
  • алициклические и ароматические.


Ациклические соединения — органические соединения, в молекулах которых отсутствуют циклы и все атомы углерода соединены друг с другом в прямые или разветвленные открытые цепи.

В свою очередь среди ациклических соединений выделяют предельные (или насыщенные), которые содержат в углеродном скелете только одинарные углерод-углеродные (С-С) связи и непредельные (или ненасыщенные), содержащие кратные — двойные (С=С) или тройные (С≡С) связи.

Циклические соединения — химические соединения, в которых присутствует три или более связанных атомов, образующие кольцо.

В зависимости от того, какими атомами образованы циклы различают карбоциклические соединения и гетероциклические соединения.

Карбоциклические соединения (или изоциклические) содержат в своих циклах только атомы углерода. Эти соединения в свою очередь делятся на алициклические соединения (алифатические циклические) и ароматические соединения.

Гетероциклические соединения содержат в составе углеводородного цикла один или несколько гетероатомов, чаще всего которыми являются атомы кислорода, азота или серы.

Простейшим классом органических веществ являются углеводороды – соединения, которые образованы исключительно атомами углерода и водорода, т.е. формально не имеют функциональных групп.

Поскольку углеводороды, не имеют функциональных групп для них возможна только классификация по типу углеродного скелета. Углеводороды в зависимости от типа их углеродного скелета делят на подклассы:

1) Предельные ациклические углеводороды носят название алканы. Общая молекулярная формула алканов записывается как CnH2n+2, где n — количество атомов углерода в молекуле углеводорода. Данные соединения не имеют межклассовых изомеров.

2) Ациклические непредельные углеводороды делятся на:

а) алкены — в них присутствует только одна кратная, а именно одна двойная C=C связь, общая формула алкенов CnH2n,

б) алкины – в молекулах алкинов также присутствует только одна кратная, а именно тройная С≡С связь. Общая молекулярная формула алкинов CnH2n-2

в) алкадиены – в молекулах алкадиенов присутствуют две двойные С=С связи. Общая молекулярная формула алкадиенов CnH2n-2

3) Циклические предельные углеводороды называются циклоалканы и имеют общую молекулярную формулу CnH2n.

Остальные органические вещества в органической химии рассматривают как производные углеводородов, образуемые при введении в молекулы углеводородов так называемых функциональных групп, которые содержат другие химические элементы.

Таким образом, формулу соединений с одной функциональной группой можно записать как R-X, где R – углеводородный радикал, а Х – функциональная группа. Углеводородным радикалом называют фрагмент молекулы какого-либо углеводорода без одного или нескольких атомов водорода.

По наличию тех или иных функциональных групп соединения подразделяют на классы. Основные функциональные группы и классы соединений, в состав которых они входят, представлены в таблице:


Таким образом, различные комбинации типов углеродных скелетов с разными функциональными группами дают большое разнообразие вариантов органических соединений.

Галогенпроизводные углеводородов

Галогенпроизводными углеводородов называют соединения, получаемые при замене одного или нескольких атомов водорода в молекуле какого-либо исходного углеводорода на один или несколько атомов какого-либо галогена соответственно.

Пусть некоторый углеводород имеет формулу CnHm, тогда при замене в его молекуле X атомов водорода на X атомов галогена формула галогенпроизводного будет иметь вид CnHm-XHalX. Таким образом, монохлорпроизводные алканов имеют формулу CnH2n+1Cl, дихлорпроизводные CnH2nCl2 и т.д.

Спирты и фенолы

Спирты – производные углеводородов, один или несколько атомов водорода в которых заменены на гидроксильную группу -OH. Спирты с одной гидроксильной группой называют одноатомными, с двумя – двухатомными, с тремя трехатомными и т.д. Например:

Спирты с двумя и более гидроксильными группами называют также многоатомными спиртами. Общая формула предельных одноатомных спиртов CnH2n+1OH или CnH2n+2O. Общая формула предельных многоатомных спиртов CnH2n+2Ox , где x – атомность спирта.

Спирты могут быть и ароматическими. Например:

Общая формула таких одноатомных ароматических спиртов CnH2n-6O.

Однако, следует четко понимать, что производные ароматических углеводородов, в которых на гидроксильные группы заменены один или несколько атомов водорода при ароматическом ядре не относятся к спиртам. Их относят к классу фенолы. Например, это данное соединение является спиртом:

А это представляет собой фенол:

Причина, по которой фенолы не относят к спиртам, кроется в их специфических химических свойствах, сильно отличающих их от спиртов. Как легко заметить, однотомные фенолы изомерны одноатомным ароматическим спиртам, т.е. тоже имеют общую молекулярную формулу CnH2n-6O.

Амины

Аминами называют производные аммиака, в которых один, два или все три атома водорода замещены на углеводородный радикал.

Амины, в которых только один атом водорода замещен на углеводородный радикал, т.е. имеющие общую формулу R-NH2, называют первичными аминами.

Амины, в которых два атома водорода замещены на углеводородные радикалы, называют вторичными аминами. Формулу вторичного амина можно записать как R-NH-R’. При этом радикалы R и R’ могут быть как одинаковые, так и разные. Например:

СH3-NH-CH3 СH3-NH-CH2-CH3
диметиламин метилэтиламин

Если в аминах отсутствуют атомы водорода при атоме азота, т.е. все три атома водорода молекулы аммиака замещены на углеводородный радикал, то такие амины называют третичными аминами. В общем виде формулу третичного амина можно записать как:

При этом радикалы R, R’, R’’ могут быть как полностью одинаковыми, так и все три разные.

Общая молекулярная формула первичных, вторичных и третичных предельных аминов имеет вид CnH2n+3N.

Ароматические амины с только одним непредельным заместителем имеют общую формулу CnH2n-5N

Альдегиды и кетоны

Альдегидами называют производные углеводородов, у которых при первичном атоме углерода два атома водорода заменены на один атом кислорода, т.е. производные углеводородов в структуре которых имеется альдегидная группа –СН=О. Общую формулу альдегидов можно записать как R-CH=O. Например:

Кетонами называют производные углеводородов, у которых при вторичном атоме углерода два атома водорода заменены на атом кислорода, т.е. соединения, в структуре которых есть карбонильная группа –C(O)-.

Общая формула кетонов может быть записана как R-C(O)-R’. При этом радикалы R, R’ могут быть как одинаковыми, так и разными.

Как можно заметить, альдегиды и кетоны весьма схожи по строению, однако их все-таки их различают как классы, поскольку они имеют существенные различия в химических свойствах.

Общая молекулярная формула предельных кетонов и альдегидов одинакова и имеет вид CnH2nO

Карбоновые кислоты

Карбоновыми кислотами называют производные углеводородов, в которых есть карбоксильная группа –COOH.

Если кислота имеет две карбоксильные группы, такую кислоту называют дикарбоновой кислотой.

Предельные монокарбоновые кислоты (с одной группой -COOH) имеют общую молекулярную формулу вида CnH2nO2

Ароматические монокарбоновые кислоты имеют общую формулу CnH2n-8O2

Простые эфиры

Простые эфиры – органические соединения, в которых два углеводородных радикала опосредованно соединены через атом кислорода, т.е. имеют формулу вида R-O-R’. При этом радикалы R и R’ могут быть как одинаковыми, так и разными.

CH3-O-CH3 CH3-O-C2H5
диметиловый эфир метилэтиловый эфир

Общая формула предельных простых эфиров такая же, как у предельных одноатомных спиртов, т.е. CnH2n+1OH или CnH2n+2О.

Сложные эфиры

Сложные эфиры – класс соединений на основе органических карбоновых кислот, у которых атом водорода в гидроксильной группе замещен на углеводородный радикал R. Фомулу сложных эфиров в общем виде можно записать как:

Нитросоединения

Нитросоединения – производные углеводородов, у которых один или несколько атомов водорода заменены на нитрогруппу –NO2.

Предельные нитросоединения с одной нитрогруппой имеют общую молекулярную формулу CnH2n+1NO2

Аминокислоты

Соединения, имеющие в своей структуре одновременно две функциональные группы – амино NH2 и карбоксильную – COOH. Например,

Предельные аминокислоты с одной карбоксильной и одной аминогруппой изомерны соответствующим предельными нитросоединениям т.е. как и они имеют общую молекулярную формулу CnH2n+1NO2

В заданиях ЕГЭ на классификацию органических веществ важно уметь записывать общие молекулярные формулы гомологических рядов разных типов соединений, зная особенности строения углеродного скелета и наличия тех или иных функциональных групп. Для того, чтобы научиться определять общие молекулярные формулы органических соединений разных классов, будет полезен материал по этой теме.

Номенклатура органических соединений

Особенности строения и химических свойств соединений находят отражение в номенклатуре. Основными типами номенклатуры считаются систематическая и тривиальная.

Систематическая номенклатура фактически прописывает алгоритмы, в соответствии с которыми то или иное название составляется в строгом соответствии с особенностями строения молекулы органического вещества или, грубо говоря, его структурной формулы.

Рассмотрим правила составления названий органических соединений по систематической номенклатуре.

При составлении названий органических веществ по систематической номенклатуре наиболее важным является правильно определить число атомов углерода в наиболее длинной углеродной цепи или посчитать число атомов углерода в цикле.

В зависимости от количества атомов углерода в основной углеродной цепи, соединения, будут иметь в своем названии различный корень:

Читайте также: