Конспект форматы звуковых файлов

Обновлено: 05.07.2024

Приветсвие, проверка отсутствующих, проверка готовности учащихся к уроку. Озвучить цели и план урока.

2.Повторение предыдущего материала

Вопросы к учащимся:

  1. Что такое информация?
  2. Какие виды информации вы знаете?
  3. Как представлена текстовая, числовая, графическая информация в компьютере?
  4. Какие способы кодирования информации вы знаете ?

3.Изучение нового материала

Тема урока: Кодирование и обработка звуковой информации

Вопросы к учащимся:

  1. Что в вашем представлении является звуком?
  2. Какими характеристиками обладает звук?

(Звук представляет собой распространяющуюся в воздухе, воде или другой среде волну с непрерывно меняющейся интенсивностью(амплитуда) и частотой) .

Одной из характеристик звука является тон звука:

Тон звука - определяется частотой звуковой волны (или, периодом волны ). Чем выше частота, тем выше звучание. Проводится эксперимент по сравнению частоты звука, (flash-анимация)

Частота звука измеряется в герцах (Гц) или килогерцах (КГц). 1 Гц = 1/с. То есть колебание в 1 Гц соответствует волне с периодом в 1 секунду.

Громкость звука - определяется интенсивностью сигнала. Чем выше интенсивностью звуковой волны, тем громче сигнал. Громкость звука измеряется децибеллах и обозначается дБ. Единица измерения, названная в честь Александра Грэма Белла.

Человеческое ухо воспринимает звук с частотой от 20 колебаний в секунду (низкий звук) до 20 000 колебаний в секунду (высокий звук).

Громкость — это уровень мощности, которая пропорциональна интенсивности звукового сигнала. Непрерывная звуковая волна разбивается на отдельные маленькие временные участки. Диапазон частоты дискретизации звука от 8000 до 48000 измерений за одну секунду.

По этому для перевода в компьютер аналоговый звуковой сигнал необходимо превратить в цифровой. Для воспроизведения же - наоборот - цифровой сигнал необходимо превратить в аналоговый. Для этого используются специальные устройства: аналого-цифровой преобразователь (АЦП) и цифро-аналоговый преобразователь (ЦАП). Оба эти устройства встроены в звуковую карту вашего компьютера.

Частота дискретизации звука - это количество измерений громкости звука за одну секунду

Глубина кодирования звука

Уровни громкости звука можно рассматривать как набор возможных состояний N, для кодирования которых необходимо определенное количество информации I, которое называется глубиной кодирования звука

N – Количество уровней громкости
I – Глубина кодирования

Глубина кодирования звука составляет 16 битов, тогда количество уровней громкости звука равно:

N = 2I = 216 = 65 536

Чем больше частота и глубина дискретизации звука, тем более качественным будет звучание оцифрованного звука

  • Самое низкое качество: телефонная связь при частоте дискретизации 8000 раз в секунду глубине дискретизации 8 битов и записи одной звуковой дорожки (моно)
  • Самое высокое качество: аудио-CD при частоте дискретизации 48000 раз в секунду глубине дискретизации 16 битов и записи двух звуковых дорожек (стерео)

Стандартные форматы звуковых файлов

  • WAV (Windows Wave)
  • MP3 (MPEG I, layer 3)

Звуковые редакторы осуществляют запись, воспроизведение, редактирование звука, микширование (наложение звуковых дорожек друг на друга), применение звуковых эффектов (эхо, воспроизведение в обратном направлении и т.д.)

И.П. – сидя на стуле:

  1. Наклоны головы налево и направо.
  2. Поворот головы вперед, назад.
  3. Поворот головы налево, направо.

Темп медленный. Повторить 5 раз.

5.Закрепление нового материала

1. Оцените информационный объем моноаудиофайла длительностью звучания 20 с, если глубина кодирования и частота дискретизации звукового сигнала равны соответственно 8 бит и 8 кГц.

2. Рассчитайте время звучания моноаудиофайла, если при 16-битном кодировании и частоте дискретизации 32 кГц его объем равен 700 Кбайт.

6. Подведение итогов

Учащимся за выполненную практическую работу выставляются оценки, затем если возникали вопросы или трудности при выполнении задания, обсуждаются и решаются возникающие трудности.

7. Домашнее задание

§1.5. (стр. 42-45) ( ответить на вопросы в конце параграфа и выполнить задание для самостоятельного выполнения)

Предварительный просмотр:

Подписи к слайдам:

Кодирование звуковой информации

Вопросы к учащимся: Что такое информация? Какие виды информации вы знаете? Как представлена текстовая, числовая, графическая информация в компьютере? Какие способы кодирования информации вы знаете ? ,

Схема кодирования звука звуковая волна микрофон переменный ток звуковая плата двоичный код память ЭВМ кодирование

Звук представляет собой волну с непрерывно меняющейся интенсивностью (громкостью ) и частотой (высотой ) . Чем больше интенсивность звуковой волны, тем громче звук, чем больше частота волны, тем выше тон звука.

Временная дискретизация звука Для того чтобы компьютер мог обрабатывать звук, непрерывный звуковой сигнал должен быть преобразован в цифровую форму с помощью временной дискретизации . Звуковая волна разбивается на отдельные маленькие временные участки, для каждого такого участка устанавливается определенная величина интенсивности звука. На графике это выглядит как замена гладкой кривой на последовательность "ступенек" , высота которых равна громкости звука Ч ем большее количество уровней громкости будет выделено в процессе кодирования, тем большее количество информации будет нести значение каждого уровня и тем более качественным будет звучание.

N = 2 I N - число уровней громкости I – глубина кодирования звука (в битах) Количество различных уровней громкости при данном кодировании можно рассчитать по формуле

Глубина кодирования звука Глубина кодирования звука I - это количество информации, которое необходимо для кодирования отдельных уровней громкости цифрового звука.

Частота дискретизации Качество полученного цифрового звука зависит от количества измерений уровня громкости звука в единицу времени, т. е. частоты дискретизации . Чем большее количество измерений производится за 1 секунду тем выше качество звука. Частота дискретизации звука n - это количество измерений громкости звука за одну секунду. Измеряется в Герцах (Гц)

Объём звукового файла Объём памяти , необходимый для хранения звукового файла равен: глубина кодирования умножить на частоту дискретизации (число измерений в секунду ) умножить на время V = I n t

Объём звукового файла В случае, если звуковой файл – стерео, нужно умножить объём на 2. V = I n t × 2

Задачи 1. Оцените информационный объем моноаудиофайла длительностью звучания 20 с, если глубина кодирования и частота дискретизации звукового сигнала равны соответственно 8 бит и 8 кГц. 2. Рассчитайте время звучания моноаудиофайла , если при 16-битном кодировании и частоте дискретизации 32 кГц его объем равен 700 Кбайт.

Домашнее задание 5. Домашнее задание §1.5. (стр. 42-45) ( ответить на вопросы в конце параграфа и выполнить задание для самостоятельного выполнения)

По теме: методические разработки, презентации и конспекты

тест по теме "Кодирование звуковой информации " 9 класс

в данном тесте проверяются знания по данной тематике в ходе теоритических вопросов и умения решать задачи по данной теме.


Кодирование звуковой информации. Подготовка к ЕГЭ.

Информатика сдается на многие специальности в форме ЕГЭ. При обучении детей надо учитывать и стандарт, и демоверсии ЕГЭ по информатике. Цель урока - осмыслить процесс преобразования звуковой информаци.


Презентация "Кодирование звуковой информации"
Презентация "Кодирование звуковой информации"

Презентация раскрывает понятие звука и принцип кодирования звуковой информации. Составлена в соответствии с материалом учебника 10 класса Н.Д. Угриновича.

двоичное кодирование звуковой информации

разработка урока в 9 классе "Двоичное кодирование звуковой информации".

Кодирование звуковой информации


Содержание публикации:План урокаОпорный конспектПрактическое заданиеСамостоятельная работаПрезентация для электронной доски Smart NotebookЗвуковые файлы для практической работы.

Под обработкой звука следует понимать различные преобразования звуковой информации с целью изменения каких-то характеристик звучания. К обработке звука относятся способы создания различных звуковых эффектов, фильтрация, а также методы очистки звука от нежелательных шумов, изменения тембра и т.д. Все это огромное множество преобразований сводится, в конечном счете, к следующим основным типам:

1. Амплитудные преобразования. Выполняются над амплитудой сигнала и приводят к ее усилению/ослаблению или изменению по какому-либо закону на определенных участках сигнала.

4. Временные преобразования. Реализуются путем наложения, растягивания/сжатия сигналов; позволяют создать, например, эффекты эха или хора, а также повлиять на пространственные характеристики звука.

Аналоговый и дискретный способы представления звука

Информация, в том числе графическая и звуковая, может быть представлена в аналоговой или дискретной форме.

При аналоговом представлении физическая величина принимает бесконечное множество значений, причем ее значения изменяются непрерывно.

При дискретном представлении физическая величина принимает конечное множество значений, причем ее величина изменяется скачкообразно.


Примером аналогового хранения звуковой информации является виниловая пластин­ка (звуковая дорожка изменяет свою форму непрерывно), а дискретного — аудиокомпакт-диск (звуковая дорожка которого содержит участки с различной отражающей способностью).

Восприятие звука человеком

Звуковые волны улавливаются слуховым органом и вызывают в нем раздражение, которое передается по нервной системе в головной мозг, создавая ощущение звука.

Колебания барабанной перепонки в свою очередь передаются во внутреннее ухо и раздражают слуховой нерв. Так образом человек воспринимает звук.

В аналоговой форме звук представляет собой волну, которая характеризуется:

  • Высота звука определяется частотой колебаний вибрирующего тела.
  • Г ромкость звука определяется энергией колебательных движений, то есть амплитудой колебаний.
  • Длительность звука - продолжительность колебаний.
  • Тембром звука называется окраска звука.

Герц (Гц или Hz) — единица измерения частоты колебаний. 1 Гц= 1/с

Человеческое ухо может воспринимать звук с частотой от 20 колебаний в секунду (20 Герц, низкий звук) до 20 000 колебаний в секунду (20 КГц, высокий звук).



Кодирование звуковой информации

Для того чтобы комп ьютер мог обрабатывать звук, непрерывный звуковой сигнал должен быть превращен в последовательность электрических импульсов (двоичных нулей и единиц).


  • В процессе кодирования непрерывного звукового сигнала производится его временная дискретизация. Непрерывная звуковая волна разбивается на отдельные маленькие временные участки, причем для каждого такого участка устанавливается определенная величина амплитуды.
  • Таким образом, при двоичном кодировании непрерывного звукового сигнала он заменяется последовательностью дискретных уровней сигнала.

Качество кодирования звуковой информации зависит от :

1)частотой дискретизации, т.е. количества измерений уровня сигнала в единицу времени. Чем большее количество измерений производится за 1 секунду (чем больше частота дискретизации), тем точнее процедура двоичного кодирования.

2)глубиной кодирования, т.е. количества уровней сигнала.

Современные звуковые карты обеспечивают 16-битную глубину кодирования звука. Количество различных уровней сигнала (состояний при данном кодировании) можно рассчитать по формуле: N = 2 i = 2 16 = 65536, где i — глубина звука.

Таким образом, современные звуковые карты могут обеспечить кодирование 65536 уровней сигнала. Каждому значению амплитуды звукового сигнала присваивается 16-битный код.

Количество измерений в секунду может лежать в диапазоне от 8000 до 48 000, то есть частота дискретизации аналогового звукового сигнала может принимать значения от 8 до 48 кГц. При частоте 8 кГц качество дискретизированного звукового сигнала соответствует качеству радиотрансляции, а при частоте 48 кГц — качеству звучания аудио-С D . Следует также учитывать, что возможны как моно-, так и стерео-режимы.

РСМ. РСМ расшифровывается как pulse code modulation, что и является в переводе как импульсно-кодовая. Файлы именно с таким расширением встречаются довольно редко. Но РСМ является основополагающей для всех звуковых файлов.

WAV. Самое простое хранилище дискретных данных. Один из типов файлов семейства RIFF. Помимо обычных дискретных значений, битности, количества каналов и значений уровней громкости, в wav может быть указано еще множество параметров, о которых Вы, скорее всего, и не подозревали - это: метки позиций для синхронизации, общее количество дискретных значений, порядок воспроизведения различных частей звукового файла, а также есть место для того, чтобы Вы смогли разместить там текстовую информацию.

RIFF. Resource Interchange File Format. Уникальная система хранения любых структурированных данных.

IFF. Эта технология хранения данных проистекает от Amiga-систем. Interchange File Format. Почти то же, что и RIFF, только имеются некоторые нюансы. Начнем с того, что система Amiga - одна из первых, в которой стали задумываться о программно-сэмплернойэмуляции музыкальных инструментов. В результате, в данном файле звук делится на две части: то, что должно звучать вначале и элемент того, что идет за началом. В результате, звучит начало один раз, за тем повторяется второй кусок столько раз, сколько Вам нужно и нота может звучать бесконечно долго.

MOD. Файл хранит в себе короткий образец звука, который потом можно использовать в качестве шаблона для инструмента.

AIF или AIFF. Audio Interchange File Format. Данный формат распространен в системах Apple Macintosh и Silicon Graphics. Заключает в себе сочетание MOD и WAV.

МР3. Самый скандальный формат за последнее время. Многие для объяснения параметров сжатия, которые в нем применяют, сравнивают его с jpeg для изображений. Там очень много наворотов в вычислениях, чего и не перечислишь, но коэффициент сжатия в 10-12 раз сказали о себе сами. Специалисты говорят о контурности звука как о самом большом недостатке данного формата. Действительно, если сравнивать музыку с изображением, то смысл остался, а мелкие нюансы ушли. Качество МР3 до сих пор вызывает много споров, но для "обычных немузыкальных" людей потери не ощутимы явно.

VQF. Хорошая альтернатива МР3, разве что менее распространенная. Есть и свои недостатки. Закодировать файл в VQF - процесс гораздо более долгий. К тому же, очень мало бесплатных программ, позволяющих работать с данным форматом файлов, что, собственно, и сказалось на его распространении.

RA. Real Audio или потоковая передача аудиоданных. Довольно распространенная система передачи звука в реальном времени через Интернет. Скорость передачи порядка 1 Кб в секунду. Полученный звук обладает следующими параметрами: 8 или 16 бит и 8 или 11 кГц.

  • Для учеников 1-11 классов и дошкольников
  • Бесплатные сертификаты учителям и участникам

Опорный конспект к уроку на тему: Кодирование звуковой информации

Повторение пройденного материала

Оцифровка звука

Звук представляет собой звуковую волну с непрерывно меняющейся амплитудой и частотой. Для человека звук тем громче, чем больше амплитуда сигнала, и тем выше тон, чем больше частота сигнала. Непрерывный сигнал не несет в себе информации, поэтому он должен быть превращен в последовательность двоичных нулей и единиц – двоичный цифровой код

Оцифровку звука выполняет специальное устройство на звуковой плате. Оно называется аналогово-цифровой преобразователь (АЦП). Обратный процесс – воспроизведение закодированного звука производится с помощью цифро-аналогового преобразователя

hello_html_2af0fc7d.jpg

Качество звука зависит от двух характеристик – глубины кодирования звука и частоты дискретизации.

Глубина кодирования звука ( I ) – это количество бит, используемое для кодирования различных уровней сигнала или состояний. Тогда общее количество таких состояний ил уровней ( N ) можно вычислить по формуле: N =2 i . Современные звуковые карты обеспечивают 16-битную кодировку звука, и тогда общее количество различных уровней будет: 65536.

Частота дискретизации ( M ) – это количество измерений уровня звукового сигнала в единицу времени. Эта характеристика показывает качество звучания и точность процедуры двоичного кодирования. Измеряется в (Гц). Одно измерение за одну секунду соответствует частоте 1 Гц. Частота дискретизации звукового сигнала может принимать значения от 8 до 48 кГц. При частоте 8 кГц качество дискредитированного звукового сигнала соответствует качеству радиотрансляции, а при частоте 48 кГц – качеству звучания CD /.

Высокое качество звучания достигается при частоте дискретизации 44,1 кГц и глубины кодирования звука, равной 16 бит.


Этот урок посвящён звуковым файлам. С помощью этого урока учащиеся познакомятся со звуковыми файлами, а точнее, с наиболее популярными расширениями звуковых файлов, узнают, какие существуют программы для прослушивания аудиозаписей. Также некоторая часть уделена интересным и познавательным фактам из истории развития звукозаписи.


В данный момент вы не можете посмотреть или раздать видеоурок ученикам

Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет, приобретя в каталоге.

Получите невероятные возможности




Конспект урока "Звуковые файлы"

В начале урока мы с вами вспомним, что такое файл.

Файл – это информация, которая хранится как единое целое и имеет своё название – имя файла. В каждом файле хранится однотипная информация: графическая, звуковая и прочие.

Сегодня мы с вами узнаем о том, что такое звук, какие существуют расширения звуковых файлов, познакомимся с историей звукозаписи.

Звук – это колебания воздуха или любой другой среды, в которой он распространяется.

Звук попадает в компьютер при помощи микрофона. А чтобы компьютер смог работать со звуком, его нужно преобразовать в последовательность нулей и единиц, ведь компьютер умеет работать только с такой информацией. Этим занимается звуковая карта. Для прослушивания звука используются наушники или колонки.

Здесь нам снова поможет звуковая карта. Когда мы даём команду компьютеру на воспроизведение, звуковая карта преобразует нули и единицы обратно в звук, который выводится через колонки или наушники.

Вся музыка и звуки в компьютере, телефоне и на прочих устройствах хранения информации являются звуковыми файлами.

Как мы с вами знаем, у каждого файла есть своё расширение. Звуковые файлы не являются исключением.

Рассмотрим наиболее популярные из них.

Программ для прослушивания звуковых файлов огромное количество. Стандартным же проигрывателем в операционной системе Windows является Windows Media. Этот проигрыватель позволяет воспроизводить все популярные форматы аудио- и видеофайлов. Можно записать диск из понравившихся композиций, или наоборот, скопировать его к себе на жёсткий диск.

Следующий проигрыватель, который мы с вами рассмотрим, AIMP. Он является бесплатным, поддерживает огромное количество форматов. В данном проигрывателе можно создавать несколько плейлистов. Эту программу устанавливают не только на компьютер или ноутбук, но и на телефоны с операционной системой Андроид.

Идём дальше. Рассмотрим проигрыватель Winamp. С его помощью можно не только слушать музыку, но и смотреть видеозаписи. Также в Winamp можно искать нужные аудиозаписи, создавать свои списки звуковых файлов. Ну и, конечно же, с помощью этого проигрывателя можно прослушивать звуковые файлы с различными расширениями.

Tomahawk. Отличительной особенностью этого проигрывателя является то, что его можно устанавливать в операционных системах Windows, Linux и Mac OS. После того, как приложение было установлено, оно собирает всю музыку, которая находится на компьютере, в одну библиотеку. Это позволяет сразу же после установки начать её прослушивание.

К первым устройствам для записи звука относятся механические устройства. В то же время они не могли записывать и воспроизводить голос. На такие устройства записывалась только мелодия. Мелодии записывались на бумагу, дерево, металлические валики, перфорированные диски и другие приспособления. Эти инструменты могли приводиться в движение не только при помощи человеческих рук, но и при помощи воды, песка, электричества и прочих средств.

К примерам таких устройств относятся шарманки, музыкальные часы, шкатулки, ящики.


Все они воспроизводили различные сохранённые мелодии, но в то же время на них нельзя было записать живые выступления, звуки. Количество же мелодий было ограничено.

В 1857 г. де Мартенвиль изобрёл фоноавтограф.


Минус этого устройства был в том, что оно не могло воспроизводить сделанную запись.

А вот в 1877 г. Томас Эдисон изобрёл фонограф, который уже мог воспроизводить свою запись.


В 1887 г. Эмиль Берлинер изобрёл граммофон.


Звуки записывались на пластинки.


Но аудиодорожки могли вмещать в себя только до 5 минут аудиозаписи.

В 1907 г. Гильон Кеммлер предложил усовершенствовать граммофон. Так, на замену ему пришёл патефон.


Главное отличие патефона заключалось в том, что он был скомпонован в виде чемоданчика и его можно было переносить в застёгнутом виде за специальную ручку.

В 1925 г. появляется запись через микрофон. Таким образом был изобретён электрофон. Он отличается от граммофона и патефона принципом действия, который основан на электрических колебаниях. Более подробно об этом вы узнаете в старших классах. В быту такое устройство очень часто называли проигрывателем. Электрофоны до сих пор используются в домашних условиях. Но продажа граммофонных пластинок практически прекратилась, так как на смену пришли цифровые средства воспроизведения звука.

Далее в 1931 г. Шорин Александр Фёдорович создал шоринофон. Запись в таком устройстве производилась с помощью иглы на киноленту.

В дальнейшем в 1963 г. появляются первые компакт-кассеты. Они производились фирмой Philips.

В 1971 г. компания Advent Corporation выпускает кассету с магнитной лентой на основе оксида хрома.


Об этом вы узнаете в старших классах на уроках химии.

Качество звука на таких носителях информации было намного выше. На такие кассеты можно записывать в фабричных условиях фонограммы. Также кассеты начали использоваться для самостоятельной записи музыки.

С появлением оптических дисков появляется лазерная (оптическая) запись. При помощи лазерного луча на вращающийся оптический диск записываются сигналы. В результате записи на диске образуется спиральная дорожка. При воспроизведении лазерный луч перемещается по поверхности оптического диска и считывает записанные на него данные.

В 1980 г. компании Philips и Sony создают международный стандарт хранения оцифрованного звука на компакт-дисках. А в апреле 1982 г. Philips представила свой первый проигрыватель компакт-дисков.

Верно. Прежде, чем получить нужную аудиозапись, необходимо записать несколько различных вариантов, например, песни. После чего песня обрабатывается, редактируется и записывается на носитель информации.

Для работы со звуковыми дорожками существуют специальные программы. К примерам относятся Audacity, WavePad Sound Editor, Wavosaur, Traverso, FREE Wave MP3 Editor. Все эти программы являются бесплатными.


При открытии появляется окно с микрофоном. Для начала записи нужно на него нажать.


Как только началась запись звука, её можно поставить на паузу, сделать метку в нужном месте и остановить запись.





Сверху находится строка меню, с помощью которой можно задать эффекты для звуковой дорожки, отредактировать её и выполнить с ней прочие действия.

Чуть ниже находится панель быстрого доступа. С её помощью можно вырезать, скопировать или вставить фрагмент. Прежде, чем вырезать или скопировать фрагмент, его нужно выделить.

В области слева находятся эффекты, которые можно применить к аудиозаписи. Снизу же находится строка, с помощью которой можно воспроизвести, остановить файл, перейти в конец или в начало дорожки, а также записать звук с микрофона. Самую большую часть окна занимает область непосредственно с самой звуковой дорожкой.

А сейчас пришла пора подвести итоги урока.

Сегодня мы с вами познакомились с различными расширениями звуковых файлов.

Узнали, какие существуют программы для прослушивания аудиозаписей.

Познакомились с историей звукозаписи.


Организуя свою коллекцию цифровой музыки, можно утонуть в разнообразии форматов аудиофайлов. Почти каждый слышал об MP3, но что такое OGG, AIFF или MQA?

Если по прочтении списка у вас возникло подозрение, что все эти форматы для получения таких шикарных аббревиатур учились в разных университетах, мы поможем развеять его. В этом материале будет прояснена суть некоторых популярных музыкальных форматов, разница между ними и то, почему это важно знать.

Что бы вы ни слушали – MP3-файлы с низким битрейтом, чуть более качественные треки в AAC или Hi-Res-аудио во FLAC или WAV – настало время разобраться в том, что именно вы получаете в каждом случае и как выбрать оптимальный формат.

Давайте оценим плюсы и минусы каждого из них.

Краткий обзор форматов файлов и кодеков


Чтобы не ходить вокруг да около, вначале мы приведем краткую памятку по всем форматам файлов и различиям между ними. Если захотите узнать больше, ниже вы найдете более подробное описание различий в размерах, качестве звука и совместимости.

AAC (не является форматом Hi-Res-аудио). Ставшая популярной благодаря Apple альтернатива формату MP3. Со сжатием и потерями, но с более высоким качеством звука. Используется для скачивания с iTunes и трансляции с Apple Music.

AIFF (Hi-Res). Альтернатива WAV от Apple с более полными метаданными. Не особенно популярный формат без сжатия и потерь с файлами большого размера.

DSD (Hi-Res). Однобитный формат, применяемый в Super Audio CD. Существует в вариантах с частотой дискретизации 2,8 МГц, 5,6 МГц и 11,2 МГц. Из-за использования кодека высокого качества в настоящее время не применяется для стриминга. Формат без сжатия.

FLAC (Hi-Res). Формат со сжатием без потерь с поддержкой частот дискретизации, совместимых с Hi-Res, и хранением метаданных; размер файлов вдвое меньше, чем у WAV. Благодаря отсутствию лицензионных отчислений считается лучшим форматом для скачивания и хранения альбомов в Hi-Res-аудио. Его главный недостаток – отсутствие поддержки устройствами Apple (и, следовательно, несовместимость с iTunes).

MP3 (не является форматом Hi-Res-аудио). Популярный формат со сжатием и потерями с малым размером файла и далеко не самым высоким качеством звучания. Удобен для хранения музыки на смартфонах и плеерах iPod.

MQA (Hi-Res). Формат со сжатием для хранения Hi-Res-файлов в более удобной для стриминга форме. Используется сервисом Tidal Masters для трансляций Hi-Res-аудио.

OGG (не является форматом Hi-Res-аудио). Иногда называется полным именем – Ogg Vorbis. Альтернатива MP3 и AAC с открытым кодом, не подпадающая под действие патентов. Этот формат с битрейтом 320 кбит/с используется в трансляциях Spotify.

WAV (Hi-Res). Стандартный формат, в котором записаны все CD. Отличное качество звука, но огромный размер файлов из-за отсутствия сжатия. Слабая поддержка метаданных (обложек, названий песен и исполнителей).

WMA Lossless (Hi-Res). Версия Windows Media Audio без сжатия, поддержку которой уже не часто можно встретить в смартфонах и планшетах.

Аудиофайлы со сжатием и без него

Вначале рассмотрим три категории, в которые можно сгруппировать все форматы аудиофайлов. Они определяются степенью сжатия данных и связанным с ним уровнем потерь качества звучания.

Если для сжатия аудио в вашем файле не применялся специальный алгоритм (или кодек), это приведет к двойному результату: во-первых, потерь качества звучания не будет, во-вторых, место на вашем жестком диске скоро закончится.

По своей сути запись в формате без сжатия полностью соответствует оригинальному аудиофайлу, в котором зафиксированы в цифровом представлении реальные звуковые сигналы.

WAV и AIFF можно назвать самыми популярными форматами аудиофайлов без сжатия. Оба они основаны на PCM (Pulse Code Modulation, импульсно-кодовой модуляции), широко известном механизме непосредственного преобразования аудиосигнала в цифровую форму. В WAV и в AIFF применяются схожие технологии, но методы хранения данных несколько различаются. В этих форматах можно записывать как файлы CD-качества, так и более высокого разрешения.

Формат WAV был разработан Microsoft и IBM, в силу чего применяется на платформах на базе Windows; он является стандартным форматом записи компакт-дисков.

Формат AIFF создан компанией Apple как альтернатива WAV; и хотя AIFF-файлы менее распространены, они обеспечивают более полную поддержку метаданных, позволяя хранить обложки альбомов, названия песен и тому подобную информацию.

Недостаток этих форматов – требование гигантских объемов памяти. Файлы CD-качества (16 бит, 44,1 кГц) занимают около 10 МБ дискового пространства на минуту звучания.

ALAC, FLAC, WMA Lossless: аудиоформаты без потерь

Все мы любим FLAC. Формат без потерь, файлы во FLAC (Free Lossless Audio Codec, бесплатный аудиокодек без потерь) по размеру почти вдвое меньше, чем в WAV или AIFF без сжатия с эквивалентной частотой дискретизации, однако в плане звучания никаких потерь качества не заметно. FLAC также поддерживает более высокое разрешение по сравнению с CD-качеством – до 32 бит и 192 кГц.

Помимо FLAC, есть и другие форматы без потерь – ALAC (Apple Lossless) и WMA Lossless (Windows Media Audio). Первый представляет собой отличную альтернативу для iOS и iTunes, хотя размер файлов чуть выше, чем у FLAC. Не все смартфоны и планшеты поддерживают его.

AAC и MP3: аудиоформаты с потерями

Кто не слышал про MP3? Все про него слышали. Этот самый распространенный аудиоформат удобен для хранения музыки на плеерах iPod или планшетах и поддерживается практически любыми устройствами. Однако для этого приходится жертвовать значительным объемом информации. Для того чтобы уменьшить размеры файлов на порядок по сравнению с записями в CD-качестве, необходимо отбросить значительный процент исходных данных, что приводит к потере качества звучания.

Еще один формат с потерями, AAC (Advanced Audio Coding, усовершенствованное кодирование звука), также предполагает сжатие, как и MP3, но благодаря несколько более эффективным алгоритмам обеспечивает более качественный звук. AAC используется для скачивания с iTunes и трансляций с Apple Music (с битрейтом 256 кбит/с), а также в передачах с YouTube.

Формат Vorbis, нередко называемый Ogg Vorbis, чтобы подчеркнуть использование контейнера Ogg, представляет собой альтернативу MP3 и AAC с открытым кодом, не подпадающую под действие патентов. Этот формат с битрейтом 320 кбит/с используется в трансляциях Spotify.

Как насчет музыки в высоком разрешении?


В отличие от HD-видео, для аудио высокого разрешения пока не разработано универсального стандарта.

Если не вдаваться в подробности, под этим термином обычно понимаются записи с более высокой частотой дискретизации и/или разрядностью, чем у CD (т.е. 16 бит/44,1 кГц). Примерами Hi-Res-аудио могут служить файлы с параметрами 16 бит/96 кГц или 24 бит/192 кГц.

Благодаря наличию дополнительной аудиоинформации Hi-Res-файлы звучат намного лучше в сравнении с компрессированными файлами, теряющими эту информацию в процессе сжатия. Эти форматы требуют больше места на диске, но их качество определенно стоит таких затрат.

К Hi-Res-аудио относятся форматы без сжатия, такие как AIFF и WAV, а также без потерь – FLAC и ALAC. DSD (отчасти нишевый формат, применявшийся в Super Audio CD) также входит в категорию Hi-Res-аудио, но его поддерживает гораздо меньшее число устройств. Если говорить о стриминге, то такие сервисы, как Tidal Masters, используют упаковщик MQA, позволяющий передавать по сетям файлы в высоком разрешении с использованием минимально возможной полосы пропускания сигнала.

Что касается воспроизведения форматов Hi-Res-аудио, то сегодня его поддерживает уже немало устройств. 24-разрядные файлы способны проигрывать беспроводные колонки Denon HEOS, а также портативные музыкальные плееры премиум-класса – такие как Cowon Plenue D2 и Astell & Kern A&norma SR15.

Кроме того, с Hi-Res-аудио совместимы большинство флагманских моделей смартфонов под Android – например, удостоенный высших оценок Samsung Galaxy S10+ – однако прослушать их на новеньком iPhone вам сходу не удастся. Мы нашли способы обойти это ограничение, но нельзя забывать о том, что файлы Hi-Res-аудио пока еще не настолько компактны, как их аналоги в форматах с потерями.

Какой аудиоформат будет лучшим для вас?

Выбор формата зависит от того, что вас больше волнует – объем памяти или качество звучания – а также от того, с каким устройством вы намерены его использовать.

Популярность MP3 сложилась в эпоху, когда стоимость дискового пространства была очень высока. Сегодня смартфоны, музыкальные плееры и ноутбуки оснащаются памятью внушительного объема, так что есть смысл обратить внимание на форматы с качеством выше, чем у CD.

Если же вы решили архивировать свои аудиофайлы, FLAC или другой формат без потерь может стать неплохим вариантом. Они представляют собой удачный компромисс между уровнем сжатия и качеством звучания, позволяя слушать высококачественную цифровую музыку и сэкономить дисковое пространство. Только не забудьте проверить совместимость выбранного формата и имеющихся устройств.

Читайте также: