Инвариантность модуля скорости света в вакууме постулаты эйнштейна конспект

Обновлено: 07.07.2024

В своей работе Эйнштейн без единого нового эксперимента, проанализировав и обобщив уже известные опытные факты, впервые изложил идеи теории относительности, которые коренным образом изменили привычные представления о свойствах пространства и времени.

Теория относительности Эйнштейна состоит из двух частей: частной и общей теории относительности. В 1905 г. Эйнштейн опубликовал основные идеи частной или специальной теории относительности, в которой рассматриваются свойства пространства и времени, справедливые при условиях, когда можно пренебречь тяготением тел, т.е. считать их гравитационные поля 'пренебрежимо малыми. Теория относительности, в которой рассматриваются свойства пространства и времени в сильных гравитационных полях, называется общей теорией относительности. Принципы общей теории относительности были изложены Эйнштейном на 10 лет позже, чем частной, в 1915 г.

В основу специальной теории относительности Эйнштейна легли два постулата, т.е. утверждения, которые принимаются за истинные в рамках данной научной теории без доказательств (в математике такие утверждения называются аксиомами).

1 постулат Эйнштейна или принцип относительности: все законы природы инвариантны по отношению ко всем инерциальным системам отсчета. Все физические, химические, биологические явления протекают во всех инерциальных системах отсчета одинаково.

Анализируя 1 постулат Эйнштейна, мы видим, что Эйнштейн расширил рамки принципа относительности Галилея, распространив его на любые физические явления, в том числе и на электромагнитные. 1 постулат Эйнштейна непосредственно вытекает из опыта Майкельсона-Морли, доказавшего отсутствие в природе абсолютной системы отсчета. Из результатов этого нее опыта следует и 2 постулат Эйнштейна о постоянстве скорости света в вакууме, который тем не менее вступает в противоречие с 1 постулатом, если распространить на электромагнитные явления не только сам принцип относительности Галилея, но и галилеево правило сложения скоростей, вытекающее из галилее-ва правила преобразования координат (см. п. 10). Следовательно, преобразования Галилея для координат и времени, а также его правило сложения скоростей к электромагнитным явлениям неприменимы.

  • Для учеников 1-11 классов и дошкольников
  • Бесплатные сертификаты учителям и участникам

Конспект урока

Физика, 11 класс

Урок №20. Постулаты специальной теории относи-тельности (СТО)

Основные вопросы, рассматриваемые в теме: событие, постулат, собственная инерциальная система отсчёта, собственное время, собственная длина тела, масса покоя, инвариант; причины появления СТО; постулаты СТО: инвариантность модуля скорости света в вакууме, принцип относительности Эйнштейна.

Специальная теория относительности (СТО) – физическая теория, рассматривающая пространственно-временные закономерности, справедливые для любых физических процессов.

Событие - физическое явление, которое происходит в определённый момент времени в данной точке пространства.

События могут происходить в одно и тоже время и их называют одновременными. Если координаты событий совпадают, то события называют одноместными.

Инерциальные системы отсчёта (ИСО) – это системы отсчёта, в которых выполняется первый закон Ньютона – закон инерции.

Два постулата теории :

1. Все физические явления протекают одинаково во всех инерциальных системах отсчёта.

2. Скорость света в вакууме одинакова во всех инерциальных системах отсчёта.

Постулат – это основное положение, которое не может быть логически доказано, а является результатом обобщения всех опытов.

Время, отсчитываемое покоящимися в ИСО часами, называется собственным временем.

Длину тела L0, относительно которого оно в ИСО находится в покое называют собственной длиной.

Массой покоя m0, называют массу тела в состоянии покоя относительно ИСО.

Скорость света c и собственное время Δτ инвариантны в любых ИСО.

Список основной и дополнительной литературы по теме:

  1. Мякишев Г.Я., Буховцев Б.Б., Сотский Н.Н. Физика.11 класс. Учебник для общеобразовательных организаций М.: Просвещение, 2017. – С. 229 – 238.
  2. Рымкевич А.П. Физика. Задачник. 10-11 классы. – М.: Дрофа, 2013. — С. 147 – 148
  3. Анциферов Л.И., Физика: электродинамика и квантовая физика. 11кл. Учебник для общеобразовательных учреждений – М.: Мнемозина, 2001. – С. 242-253.
  4. Айзексон У., Эйнштейн. Жизнь гения; пер. с анг. А.Ю. Каннуниковой. – М: АСТ, 2016 – С.16-25

Теоретический материал для самостоятельного изучения

В 1895 году Эйнштейну повезло, в 16-летнем возрасте, провалив экзамены в Цюрихский политехникум по французскому языку, литературе, политике и зоологии, но легко справившись с математикой и естествознанием, он поступил в сельскую школу Арау. Образование здесь строилось на методах, разработанных Иоганном Песталоцци, на проведении мысленных экспериментов, на более глубоком понимании явлений и ситуаций. Это были первые шаги на пути формирования специальной теории относительности (СТО).

Теория относительности – физическая теория, рассматривающая пространственно-временные закономерности, справедливые для любых физических процессов.

В движущемся поезде, вывешенная в центре, вспыхивает лампочка в точке О – это одно событие. Свет от лампочки достигает точку А в одном конце помещения – это другое событие, а также достигает противоположного конца помещения в точке В – то третье событие.

События могут происходить в одно и тоже время и их называют одновременными. Если координаты событий совпадают, то события называют одноместными. При этом учитываем, что реальные тела имеют размеры и события разворачиваются во времени.

Одновременно ли достигнет свет две противолежащие точки А и В? Ведь корабль движется со скоростью в одном направлении и одна стенка приближается к летящему свету, а другая отдаляется.

Классический закон сложения скоростей не работает в описании распространения электромагнитного излучения от источника света.

Чтобы ответить на эти вопросы, необходимо выяснить, меняются ли основные законы электродинамики при переходе одной инерциальной системы отсчёта к другой, или же подобно принципам относительности Галилея и законам Ньютона, они остаются неизменными.

Принцип относительности Галилея .

Инерциальные системы отсчёта (ИСО) – это системы отсчёта, в которых выполняется первый закон Ньютона – закон инерции. Системы, которые ускоряются или вращаются называют неинерциальными. Система отсчёта, движущаяся равномерно и прямолинейна относительно ИСО, также инерциальная. Земля не совсем инерциальная система отсчёта, так как она вращается, но для большинства наших примеров, будем считать её инерциальной.

Но противоречия в опытах классическими законами уже невозможно было объяснить. Эйнштейн, изменяя классические законы механики, а не законы электродинамики Максвелла, предложил наиболее революционный способ описания явлений в пространстве и времени. Из теории Максвелла следовало, что электромагнитные волны, в отличие от механических волн, могут распространяться в вакууме и подчиняются законам электромагнетизма, что свет – это электромагнитная волна и скорость света:

У Максвелла не было оговорок по поводу относительности скорости света.

В основу теории были положены два постулата * :

  1. Все физические явления протекают одинаково во всех инерциальных системах отсчёта, или никакими опытами, проводимыми в инерциальной системе отсчёта, невозможно установить её движение относительно других инерциальных систем.
  2. Скорость света в вакууме одинакова во всех инерциальных системах отсчёта. Она не зависит от ни от скорости источника света, ни от скорости светового приёмника сигнала.

Постулат – это основное положение, которое не может быть логически доказано, а является результатом обобщения всех опытов. В физической теории выполняет ту же роль, что и аксиома в математике.

Скорость света занимает особое положение в этой теории, распространение света в вакууме является максимально возможной скоростью передачи взаимодействий в природе.

С точки зрения классической физики первый и второй постулаты входят в противоречия друг с другом. По первому постулату законы механики (как частный случай законов физики) справедливы во всех ИСО. Следовательно, справедлив и закон сложения скоростей. Однако второй постулат противоречит классическому закону сложения скоростей. Значит, в СТО нельзя пользоваться преобразованиями Галилея. Заменив преобразования Галилея на преобразования Лоренца, Эйнштейн устранил кажущееся противоречие между постулатами, что позволило объяснить многие опыты по электродинамике и оптике.

Независимость скорости света от источника много раз проверялись на опытах. Советские учёные А.М. Бонч-Бруевич и В.А. Молчанов в 1955 году проводили опыты, измеряя скорости света от правого и левого краёв Солнца (один из которых из-за осевого вращения Солнца приближается к нам со скоростью 2,3 км/с, а другой с такой же скоростью удаляется). Учёные, проведя расчёты, пришли к выводу, что скорости распространения света с обоих концов одинаковы.

Преобразования Лоренца, которые использовал Эйнштейн, заменив преобразования Галилея, для описания распространения света в системе координат:

Если скорость намного меньше скорости света , то отношение квадратичной скорости движения системы к квадрату скорости света намного меньше 1 и величиной можно пренебречь. Тогда мы переходи к преобразованиям Галилея:

Новая теория раскрыла более глубокую физическую реальность и включает старую как предельный (частный) случай, который называют принципом соответствия.

Иначе это можно объяснить так: классическая механика (механика Ньютона) является частным случаем более общей механики, описывающих процессы в разных инерциальных системах отсчёта с учётом преобразований Лоренца.

Мы ещё неоднократно убедимся, что при малых скоростях, намного меньших, чем скорость света законы СТО переходят в законы классической механики.

Существование предельной конечной скорости изменяет наши привычные представления о пространстве и времени. Представление об абсолютном времени, которое течёт с навсегда заданным темпом, оказывается неверным.

Следствия постулатов относительности:

Рассмотрим простой метод синхронизации часов. Допустим, что космонавт хочет узнать, одинаково ли идут часы в разных концах корабля в точках А и В. С помощью источника света в центре корабля производят вспышку света, если часы идут синхронно, по показания на часах будут одинаковы при приёме света. Но так будет только в движущейся системе отсчёта К1, связанной с кораблём. И так же, как и в первом случае, вспышка для наблюдателя, находящегося в системе отсчёта К (неподвижная система), часы будут удалятся от вспышки света, и излучению нужно пройти большее расстояние, значит и время должно зафиксироваться отличное от часов в точке В. Вывод наблюдателя в системе отсчёта К: сигналы достигают часов не одновременно.

Время, отсчитываемое покоящимися в ИСО часами, называется собственным временем и обозначают буквой τ (тау). Промежуток времени между событиями по часам наблюдателя, находящегося внутри объекта (ИСО К1). Промежуток времени между теми же событиями по часам наблюдателя относительно которой удаляется обозначим Δt. Между этими промежутками существует соотношение:

Это означает, что часы, движущиеся относительно ИСО идут медленнее, неподвижных часов и показывают меньший промежуток времени между событиями (замедление времени).

Преобразовав выражение Δt, получим:

А так как скорость света c постоянна и собственное время Δτ неизменно для данного события, то есть инвариантны, то получим:

Рассмотрим ещё один парадокс: относительность расстояний или размеров тела. Допустим, что в космическом корабле измеряют длину стержня, расположенного вдоль направления скорости. Длину стержня внутри корабля, относительно которого он находится в покое обозначим L0 и назовём собственной длиной. При этом расчёты показывают, что линейный размер тела, движущегося относительно ИСО уменьшается в направлении движения.

Закон сложения скоростей в СТО записывается так:

𝟅 – скорость тела, относительно неподвижной системы отсчёта,

𝟅 ´ - скорость относительно подвижной системы отсчёта,

v – скорость подвижной системы отсчёта относительно неподвижной,

c – скорость света.

При скоростях движения намного меньших, чем скорость света закон сложения скоростей переходит в классический, а длина тела и интервал времени становятся одинаковыми в неподвижной и движущейся системах отсчёта.

Даже масса, такое непоколебимое в нашем представлении значение, меняет свои параметры в движущейся системе относительно неподвижной ИСО. Собственную массу тела, находящегося в состоянии покоя, относительно ИСО, называют m0 массой покоя.

Сам А. Эйнштейн говорил о том, что правильнее было бы называть его теорию относительности теорией абсолютности, так как в основе её заложена идея абсолютности во всех инерциальных системах отсчёта.

Примеры и разбор заданий

1. Две частицы удаляются друг от друга, имея скорость 0,6с каждая, относительно земного наблюдателя. Относительная скорость частиц составляет ______скорости света.

Дано: 𝟅 ´ = 0,6 с, v = - 0,6 с.

Для решения задачи, необходимо перейти в ИСО, связанную с одной из частиц. Пусть частицы движутся вдоль одной прямой, в противоположные стороны. Используем закон сложения скоростей СТО:

𝟅 – скорость частицы, относительно неподвижной системы отсчёта,

𝟅 ´ - скорость частицы относительно подвижной системы отсчёта,

v – скорость подвижной системы отсчёта относительно неподвижной,

c – скорость света.

Примем скорость v = - 0,6с одной частицы за положительное значение, скорость 𝟅 ´ = 0,6с. Тогда формула примет вид:

Ответ значения скорости частицы будет корректен относительно скорости света, а не в м/с или км/с.

Ответ: 0,882 с.

1. Масса протона, летящего со скоростью 1,3·10 8 м/с, составляет_____ а.е.м. Массу покоя протона считать равной 1 а.е.м.

В атомной и ядерной физике для выражения массы пользуются специальной внесистемной единицей – атомной единицей массы (а.е.м.), равной 1/12 массы атома углерода.

1 а.е.м. = 1,66057·10 -27 кг.

Подставим числовые значения в формулу определения массы частицы, движущейся относительно неподвижной ИСО:


Специальная теория относительности (СТО) – физическая теория, рассматривающая пространственно-временные свойства физических процессов. Закономерности СТО проявляются при больших (сравнимых со скоростью света) скоростях. Законы классической механики в этом случае не работают. Причина этого заключается в том, что передача взаимодействий происходит не мгновенно, а с конечной скоростью (скоростью света).

Классическая механика является частным случаем СТО при небольших скоростях. Явления, описываемые СТО и противоречащие законам классической физики, называют релятивистскими. Согласно СТО одновременность событий, расстояния и промежутки времени являются относительными.

В любых инерциальных системах отсчета при одинаковых условиях все механические явления протекают одинаково (принцип относительности Галилея). В классической механике измерение времени и расстояний в двух системах отсчета и сравнение этих величин считаются очевидными. В СТО это не так.

События являются одновременными, если они происходят при одинаковых показаниях синхронизированных часов. Два события, одновременные в одной инерциальной системе отсчета, не являются одновременными в другой инерциальной системе отсчета.

Инвариантность скорости света. Принцип относительности Эйнштейна

В 1905 г. Эйнштейн создал специальную теорию относительности (СТО). В основе его теории относительности лежат два постулата:

  • Любые физические явления во всех инерциальных системах отсчета при одинаковых условиях протекают одинаково (принцип относительности Эйнштейна).
  • Скорость света в вакууме во всех инерциальных системах отсчета одинакова и не зависит от скорости источника и приемника света (принцип постоянства скорости света).

Первый постулат распространяет принцип относительности на все явления, включая электромагнитные. Проблема применимости принципа относительности возникла с открытием электромагнитных волн и электромагнитной природы света. Постоянство скорости света приводит к несоответствию с законом сложения скоростей классической механики. По мысли Эйнштейна, изменения характера взаимодействия при смене системы отсчета не должно происходить. Первый постулат Эйнштейна непосредственно вытекает из опыта Майкельсона–Морли, доказавшего отсутствие в природе абсолютной системы отсчета. В этом опыте измерялась скорость света в зависимости от скорости движения приемника света. Из результатов этого опыта следует и второй постулат Эйнштейна о постоянстве скорости света в вакууме, который вступает в противоречие с первым постулатом, если распространить на электромагнитные явления не только сам принцип относительности Галилея, но и правило сложения скоростей. Следовательно, преобразования Галилея для координат и времени, а также его правило сложения скоростей к электромагнитным явлениям неприменимы.

Следствия из постулатов СТО

Если проводить сравнение расстояний и показаний часов в разных системах отсчета с помощью световых сигналов, то можно показать, что расстояние между двумя точками и длительность интервала времени между двумя событиями зависят от выбора системы отсчета.


где ​ \( I_0 \) ​ – длина тела в системе отсчета, относительно которой тело покоится, ​ \( l \) ​ – длина тела в системе отсчета, относительно которой тело движется, ​ \( v \) ​ – скорость тела.

Это означает, что линейный размер движущегося относительно инерциальной системы отсчета уменьшается в направлении движения.

Относительность промежутков времени:


где ​ \( \tau_0 \) ​ – промежуток времени между двумя событиями, происходящими в одной точке инерциальной системы отсчета, ​ \( \tau \) ​ – промежуток времени между этими же событиями в движущейся со скоростью ​ \( v \) ​ системе отсчета.

Это означает, что часы, движущиеся относительно инерциальной системы отсчета, идут медленнее неподвижных часов и показывают меньший промежуток времени между событиями (замедление времени).

Закон сложения скоростей в СТО записывается так:


где ​ \( v \) ​ – скорость тела относительно неподвижной системы отсчета, ​ \( v’ \) ​ – скорость тела относительно подвижной системы отсчета, ​ \( u \) ​ – скорость подвижной системы отсчета относительно неподвижной, ​ \( c \) ​ – скорость света.

При скоростях движения, много меньших скорости света, релятивистский закон сложения скоростей переходит в классический, а длина тела и интервал времени становятся одинаковыми в неподвижной и движущейся системах отсчета (принцип соответствия).

Для описания процессов в микромире классический закон сложения неприменим, а релятивистский закон сложения скоростей работает.

Полная энергия

Полная энергия ​ \( E \) ​ тела в состоянии движения называется релятивистской энергией тела:


Полная энергия, масса и импульс тела связаны друг с другом – они не могут меняться независимо.

Закон пропорциональности массы и энергии – один из самых важных выводов СТО. Масса и энергия являются различными свойствами материи. Масса тела характеризует его инертность, а также способность тела вступать в гравитационное взаимодействие с другими телами.

Важно!
Важнейшим свойством энергии является ее способность превращаться из одной формы в другую в эквивалентных количествах при различных физических процессах – в этом заключается содержание закона сохранения энергии. Пропорциональность массы и энергии является выражением внутренней сущности материи.

Энергия покоя

Наименьшей энергией ​ \( E_0 \) ​ тело обладает в системе отсчета, относительно которой оно покоится. Эта энергия называется энергией покоя:


Энергия покоя является внутренней энергией тела.

В СТО масса системы взаимодействующих тел не равна сумме масс тел, входящих в систему. Разность суммы масс свободных тел и массы системы взаимодействующих тел называется дефектом масс – ​ \( \Delta m \) ​. Дефект масс положителен, если тела притягиваются друг к другу. Изменение собственной энергии системы, т. е. при любых взаимодействиях этих тел внутри нее, равно произведению дефекта масс на квадрат скорости света в вакууме:


Экспериментальное подтверждение связи массы с энергией было получено при сравнении энергии, высвобождающейся при радиоактивном распаде, с разностью масс исходного ядра и конечных продуктов.

Это утверждение имеет разнообразные практические применения, включая использование ядерной энергии. Если масса частицы или системы частиц уменьшилась на \( \Delta m \) , то при этом должна выделиться энергия ​ \( \Delta E=\Delta m\cdot c^2 \) ​.

Кинетическая энергия тела (частицы) равна:


Важно!
В классической механике энергия покоя равна нулю.

Релятивистский импульс

Релятивистским импульсом тела называется физическая величина, равная:


где ​ \( E \) ​ – релятивистская энергия тела.

Для тела массой ​ \( m \) ​ можно использовать формулу:


В экспериментах по исследованию взаимодействий элементарных частиц, движущихся со скоростями, близкими к скорости света, подтвердилось предсказание теории относительности о сохранении релятивистского импульса при любых взаимодействиях.

Важно!
Закон сохранения релятивистского импульса является фундаментальным законом природы.

Классический закон сохранения импульса является частным случаем универсального закона сохранения релятивистского импульса.

Полная энергия ​ \( E \) ​ релятивистской частицы, энергия покоя ​ \( E_0 \) ​ и импульс ​ \( p \) ​ связаны соотношением:


Из него следует, что для частиц с массой покоя, равной нулю, ​ \( E_0 \) ​ = 0 и ​ \( E=pc \) ​.

Достижения предшественников были осмыслены и приведены в стройную систему благодаря работам А. Пуанкаре и А. Эйнштейна.


Рис. 6.5. А. Эйнштейн

К 1905 г. была создана специальная теория относительности. Специальная теория относительности (СТО) представляет собой современную физическую теорию пространства и времени, в которой, как и в классической ньютоновской механике, предполагается, что время однородно, а пространство однородно и изотропно. СТО основана на двух постулатах.

Принцип относительности:

Никакие опыты (механические, электрические, оптические), проведенные внутри данной инерциальной системы, не дают возможности обнаружить, покоится ли эта система или движется равномерно и прямолинейно: все законы природы инвариантны по отношению к переходу от одной инерциальной системы отсчета к другой.

Принцип инвариантности скорости света:

Скорость света в вакууме не зависит от скорости движения источника света или наблюдателя и одинакова во всех инерциальных системах отсчета.

Первый постулат является обобщением механического принципа относительности Галилея на все явления природы. Согласно второму постулату, постоянство скорости света — фундаментальное свойство природы, которое констатируется как опытный факт. Выше мы использовали этот постулат в форме уравнений движения светового импульса



Из этих постулатов следует необходимость замены преобразований Галилея преобразованиями Лоренца.

Непосредственное следствие преобразований Лоренца: не может быть объектов, движущихся быстрее света. С такими объектами можно было бы связать систему отсчета, а при V > c для координат и времен получатся мнимые значения. Выходит, что скорость света играет роль предельно возможной скорости распространения сигнала.

Инвариантность интервала. Пусть даны два события: одно произошло в момент времени t1 в точке с координатами x1, y1, z1, а второе — в момент времени t2 в точке с координатами x2, y2, z2.

Интервалом между событиями называется величина


Поставив над координатами и временами штрихи, мы получим величину интервала s'12 между этими же событиями в другой системе отсчета. Из преобразований Лоренца находим:






Величина интервала является инвариантом относительно преобразований Лоренца.

В классической механике таким свойством обладали по отдельности временной интервал


и пространственное расстояние


В релятивистской физике (от англ. relativity — относительность) этим свойством обладает только интервал между событиями


Замедление времени. Пусть в начале координат системы К' закреплены часы: их координаты равны тогда х' = у' = z' = 0, a t' — показываемое ими время (то есть время в системе отсчета К'). Подставляя эти значения в уравнения преобразований Лоренца, находим обычные выражения для координат этих часов в системе К: х = Vt, у = z = 0 (то есть в системе К часы движутся со скоростью V вдоль оси х). Удивительным является последнее уравнение — преобразование времени:



Время t', отсчитываемое часами в системе К', меньше времени t, отсчитываемого часами системы К.


Рис. 6.6. Согласование показаний часов у наблюдателей А и В

Время t', показываемое часами в системе отсчета, где они покоятся, называется собственным временем.

Конкретное устройство часов здесь не играет никакой роли: речь идет о том, что временной интервал не является больше инвариантом и различен для разных систем отсчета. Это демонстрирует следующий пример.

Пример 1. Время жизни τ0 покоящегося мюона (одной из элементарных частиц) равно 2,2 мкс. От точки рождения до детектора, зарегистрировавшего его распад, мюон пролетел расстояние l = 6 км. Определим, с какой скоростью v (в долях скорости света) летел мюон.

В системе отсчета К', связанной с мюоном, его время жизни равно τ0. В лабораторной системе К, согласно полученному соотношению, от рождения мюона до распада пройдет время


За это время мюон преодолеет расстояние




подставляя 0 и l в (6.4.1), получаем


Если бы время жизни мюона относительно лабораторной системы К было таким же как и в той системе отсчета, где он покоится, то в лабораторной системе отсчета он пролетел бы расстояние L


которое более чем в девять раз меньше действительного. Даже если бы он летел не со своей действительной скоростью (6.4.2), а с предельной скоростью c, что невозможно для частицы с отличной от нуля массой, он пролетел бы всего ct0 = 660 м, но никак не 6 км.

Многочисленные наблюдения за элементарными частицами, покрывающими гораздо большие расстояния, чем им позволяет классическая механика, — прямое доказательство реальности эффекта замедления времени.


Рис. 6.7. Распад пи-мезона на мюон и нейтрино

Сокращение длины. Пусть в движущейся системе отсчета вдоль оси 0x закреплена линейка, длина которой (собственная длина) равна l0. Если один конец линейки находится в начале координат (x'1 = 0), а ее другой конец находится в точке с координатой x'2=l0, то из преобразований Лоренца непосредственно следуют координаты концов линейки в системе отсчета К :


Разность этих координат дает длину линейки в системе отсчета К :


Движущаяся линейка становится короче линейки покоящейся. Этот факт также находится в согласии с утверждением, что в релятивистской механике инвариантом является интервал s12, а не пространственные расстояния. Полученное сокращение длины движущегося объекта напоминает сокращение Фитцджеральда-Лоренца. Но с той разницей, что никакой эфир на объект не действует и никаких механических напряжений в линейке не возникает. Просто длина в движущейся и неподвижной системе отсчета различается, как различаются временные интервалы между двумя событиями. Эти оба эффекта — сокращение длины и замедление времени — связаны друг с другом.

В момент рождения мюона детектор, регистрирующий его распад, находился с точки зрения наблюдателя в лаборатории на расстоянии l. С точки зрения наблюдателя на мюоне детектор приближается к мюону со скоростью v, причем начальное расстояние L до него будет меньше:


Детектор приблизится к мюону за время


Это время совпадает со временем жизни мюона, который распадется в детекторе, как это видел и неподвижный наблюдатель. Описания событий разные, но оба наблюдателя зафиксируют один и тот же физический факт — распад мюона в детекторе.

Одновременность событий. Пусть имеются два события 1 и 2. Место и время совершения первого из них выберем за начало отсчета соответствующих координат: x1 = 0, t1 = 0. Пусть событие 2 происходит одновременно или позже первого


в точке на оси 0x, удаленной на расстояние L. Посмотрим, каковы координаты и моменты времени совершения этих событий с точки зрения наблюдателя, движущегося в положительном направлении оси 0x со скоростью V. Из преобразований Лоренца следует, что x'1 = 0, t'1 = 0, то есть координаты и время совершения первого события не изменяются. Второе же событие произойдет в точке x'2 в момент времени t'2, где


Знак координаты x'2 будет таким же, как и в классической механике. Если наблюдатель не успеет долететь до места совершения события к моменту, когда оно произойдет (Vt2 0), если же успеет (Vt2 > L), — то событие 2 произойдет сзади него (x'2 2 > 0

Проиллюстрируем сказанное на следующем примере. Пусть движется поезд А’В’, в концы которого ударяют две молнии, оставляющее на рельсах отметки А и В (рис. 6.9).


Рис. 6.9. К понятию относительности одновременности

Отметим в поезде среднюю точку 0’, а на полотне — соответственно 0. Свяжем с железнодорожным полотном систему отсчета , а с поездом — систему отсчета 0х’. Пусть в точку 0 вспышки света происходят одновременно. Тогда в неподвижной системе отсчета х оба события (удары молнии) происходят одновременно.

Поскольку поезд движется вправо, и, следовательно, в момент прихода вспышек в середину поезда точка 0’ находится правее 0, то вспышка из точки А’ в точку 0’ придет позже, чем из точки B'. Это означает, что в системе х’ удар молнии в точке В’ происходит раньше, чем в точке А’.

Мы убедились, что наряду с относительностью временных интервалов и пространственных расстояний даже одновременность событий не имеет абсолютного значения. Все они относительны, то есть зависят от движения наблюдателя. В классической физике относительными были, например, скорости тел, их кинетические энергии. Теперь список подобных величин пополнился, только и всего.

Читайте также: