Химия 10 й класс неопределенно углерод гена строение молекулы гомология и изомеры кратко конспект

Обновлено: 07.07.2024

Урок посвящён непредельным углеводородам, их номенклатуре, физическим и химическим свойствам, а также роли в жизни человека. В ходе урока учащиеся познакомятся с представителями данного класса органических веществ.

Алкены – непредельные углеводороды ряда этилена, имеющие одну двойную углерод-углеродную связь

Гибридизация – процесс взаимодействия разных, но близких по энергии электронных орбиталей, приводящий к их выравниванию по форме и энергии.

Гомология – явление сходства по составу, строению, химическим свойствам и принадлежности к тому же классу одного вещества с другим веществом, но различающиеся дуг от друга на одну или несколько групп СН2. Группу СН2 называют гомологической разностью.

Горение – быстро протекающий процесс окисления вещества, сопровождающийся большим выделением тепла и ярким свечением.

Полимеризация – реакция, при которой одинаковые молекулы соединяются между собой в более крупную молекулу

Изомерия – явление существования веществ, одинаковых по составу и молекулярной массе, но различающихся по строению или расположению атомов в пространстве и вследствие этого по физическим и химическим свойствам. Такие вещества называются изомерами.

Формула структурная – изображение молекулы, в котором показан порядок связывания атомов между собой. Химические связи в таких формулах обозначаются черточками.

Основная литература: Рудзитис, Г. Е., Фельдман, Ф. Г. Химия. 10 класс. Базовый уровень; учебник/ Г. Е. Рудзитис, Ф. Г, Фельдман – М.: Просвещение, 2018. – 224 с.

Дополнительная литература:

2. Рудзитис, Г.Е. Химия. 10 класс : учебное пособие для общеобразовательных организаций. Углублённый уровень / Г.Е. Рудзитис, Ф.Г. Фельдман. – М. : Просвещение. – 2018. – 352 с.

Открытые электронные ресурсы:

ТЕОРЕТИЧЕСКИЙ МАТЕРИАЛ ДЛЯ САМОСТОЯТЕЛЬНОГО ИЗУЧЕНИЯ

Алкены – непредельные углеводороды, в молекулах которых между атомами углерода имеется одна двойная углерод-углеродная связь. Общая формула алкенов СnH2n, где n≥2.

Простейшим представителем алкенов является этен, или этилен С2Н4.

Структурная формула этилена:


Особенности пространственного и электронного строения алкенов на примере молекулы этилена

Рассмотрим особенности электронного и пространственного строения алкенов на примере молекулы этилена. Все атомы углерода в молекуле этилена находятся в состоянии sp 2 -гибридизации. Три гибридных орбитали участвуют в образовании трех достаточно прочных сигма связей (по две связи у каждого атома углерода с атомами водорода и одна общая между собой). Оставшаяся негибридная р-орбиталь образует менее прочную пи-связь между атомами углерода. Таким образом, в молекуле этилена присутствуют 5 сигма-связей и одна пи-связь, причем двойная связь между атомами углерода образована одной сигма и и одно пи-связями. Наличие пи-связей в молекулах алкенов делает невозможным вращение атомов углерода друг относительно друга (имеются ввиду те атомы, при которых находится двойная связь)

Каждый атом углерода в молекуле этилена имеет треугольное строение.

Номенклатура алкенов

Особенности номенклатуры алкенов заключаются в следующем:

1. Нумерация углеродной цепи начинается с того конца, где ближе расположена двойная связь

2. В конце названия изменяется суффикс -ан соответствующего предельного углеводорода на -ен или -илен, и, если это необходимо, указывается атом углерода, при котором находится двойная связь


1. Нумерация главной цепи начинается слева направо, так как двойная связь ближе к левой части молекулы.

2. Называем радикал, расположенный у второго атома углерода: 2-метил

3. В главной цепи находится четыре атома углерода, следовательно, она соответствует предельному углеводороду – бутану.

4. Так как присутствует двойная связь, то суффикс – ан меняется на суффикс -ен и указывается положение двойной связи: бутен-1.

5. Соединяем суффикc с корнем и получаем название 2-матилбутен-1.

Гомология алкенов и изомерия алкенов.

Ближайшие гомологи этилена:

Для алкенов характерны следующие виды изомерии:

1. Изомерия углеродного скелета

2. Изомерия положения кратной связи

3. Пространственная геометрическая изомерия

4. Межклассовая (с циклоалканами)

Рассмотрим каждый вид изомерии на примере вещества состава С4Н8:

При построении структурной формулы данного вещества возможно расположение двойной связи как между первым и вторым атомами углерода, так и между вторым и третьим, тогда возможно получить две структурные формулы


Данный вид изомерии называется изомерией положения кратных связей.

Для данного вещества возможно построить единственный разветвлённый изомер – изомер углеродного скелета – 2-метилпропен:


Межклассовый изомер бутена – циклобутан:


Также для бутена-2 возможно существование геометрических изомеров, это связано с тем, что метильная группа СН3 - может располагаться относительно плоскости двойной связи в двух разных положениях, что приводит к образованию цис- (если эти группы расположены по одну линию связи) и транс-изомеров (если метильные группы расположены по разные линии связи):


Физические свойства алкенов

Этилен – бесцветный газ, почти без запаха, легче воздуха, плохо растворим в воде. Пропен и бутен – также газы. От пентена до октадецена – жидкости. Остальные – твердые вещества. Все агрегатные состояния указаны при нормальных условиях.

Способы получения алкенов

1. Внутримолекулярная дегидратация спиртов:

Данный способ является основным способом получения этилена в лабораторных условиях. Реакция протекает при температуре выше 140 градусов и в присутствии концентрированной серной кислоты, выполняющей роль катализатора. При дегидратации этанола получают этилен, а при дегидратации пропанола – пропилен:


2. Дегидрирование предельных углеводородов.

Данная реакция протекает при нагревании в присутствии катализаторов: никеля, платины, оксида хрома (III). При этом получают соответствующие алкены:


Химические свойства алкенов

Химические свойства алкенов обусловлены наличием в их молекулах двойных углерод-углеродных связей. Дело в том, что пи-связь, как было сказано ранее, является менее устойчивой, чем сигма связь. Поэтому при атаке её каким-либо реагентом она легко разрывается. Это объясняет основные химические свойства алкенов: они способны вступать в реакции присоединения и окисления.

Реакции присоединения

Гидрирование – присоединение водорода

Протекает при нагревании в присутствии катализаторов: платина, никель, оксид хрома (III). Продуктом реакции всегда является алкан.

Галогенирование – присоединение галогенов

Реакция протекает при обычных условиях. Продукт реакции – дигалогеналкан (1,2 - дибромэтан)

Признак реакции – обесцвечивание раствора брома, поэтому данную реакцию используют как качественную на двойную связь.

Гидрогалогенирование – присоединение галогенводородов

Продукт реакции – галогеналкан (хлорэтан)

Гидратация – присоединение воды

Продукт реакции - спирт

Реакция полимеризации

Полимеризация – реакция, при которой одинаковые молекулы соединяются в более крупные молекулы.

Условия реакции – высокая температура и давление

Продукт реакции – полимер (полиэтилен)

Продукты реакции полимеризации используются для производства пластмасс и синтетических волокон

Продукт реакции – многоатомный спирт (этиленгликоль)

Признак реакции – обесцвечивание раствора перманганата калия , поэтому данную реакцию используют как качественную на двойную связь.

Каталитическое – окисление кислородом в присутствии катализаторов

Продукт реакции – оксид алкена (оксид этилена)

Продуктами полного горения алкенов являются углекислый газ и вода

Особенности реакций гидрогалогенирования и гидратации у пропилена и других гомологов этилена

Реакции присоединения галогеналканов и воды у гомологов этилена протекают по правилу Марковникова: водород присоединяется по месту разрыва двойной связи к более гидрированному атому углерода. Например, при присоединении хлороводорода к молекуле пропилена, образуется не 1-хлорпропан, а 2-хлорпропан:

Аналогично протекает реакция гидратации:


Применение этилена и его соединений

Производство пластмасс, взрывчатых веществ, антифриза, растворителей, синтетического каучука, ацетальдегида, для ускорения созревания плодов.

ПРИМЕРЫ И РАЗБОР РЕШЕНИЯ ЗАДАНИЙ ТРЕНИРОВОЧНОГО МОДУЛЯ

  1. Решение задачи на нахождение массы раствора.

Масса 2%-го раствора бромной воды, которая вступает в реакцию с 2,24 л пропилена равна

Шаг первый: Составляем уравнение химической реакции С2Н4 + Br2 = C2H4Br2

Шаг второй: Находим количество вещества пропилена по формуле n=V\Vm= 2,24 л / 22,4 л/моль = 0,1 моль

Шаг третий: По уравнению реакции количество вещества пропилена равно количеству вещества брома: n(С2Н4)=n(Br2)=0,1 моль

Шаг четвёртый: Находим массу брома по формуле: m=Mn=160 г/моль*0,1 моль= 16 г

Шаг пятый: Находим массу раствора бромной воды по формуле: m (раствора)=m/ω = 16г / 0,02 = 800г

  1. Решение упражнения на химические свойства алкенов

Вставьте в таблицу пропущенные продукты реакции

Первый шаг: При гидрировании алкенов водородом образуются предельные углеводороды – алканы с соответствующим числом атомов углерода. Поэтому первая колонка заполняется продуктами реакции – этан и пропан:

Второй шаг: При галогенировании алкенов галогены, в данном случае бром, присоединяются по месту разрыва двойной связи, образуя дигалогенпроизводные, например:


Поэтому второй столбец заполняется следующими веществами: 1,2-дибромэтан, 1,2-дибромпропан.

Третий шаг: При гидратации (присоединении воды) образуются спирты. При реакции пропилена с водой важно помнить о правиле Марковникова, поэтому продуктами реакции будут этанол и пропанол-2:

4. При гидрогалогенировании алкенов продуктом реакции будут галогеналканы. И опять нужно помнить о правиле Марковникова для гидрогалогенирования пропилена:


Непредельные углеводороды

Ключевые слова конспекта: Непредельные углеводороды. Алкены. Пространственная (геометрическая) изомерия. Реакции дегидратации. Реакции присоединения (гидратация, гидрогалогенирование, галогенирование). Правило Марковникова. Реакции полимеризации. Мономер. Полимер. Структурное звено. Степень полимеризации. Качественные реакции на непредельные углеводороды.

Гомологический ряд алкенов

Полиэтилен получают из углеводорода этилена С2Н4. В молекуле этилена два атома углерода связаны не одинарной, а двойной связью, что отражает структурная формула СН2=СН2. Этилен — первый представитель гомологического ряда этиленовых углеводородов, или алкенов.


Наличие в молекуле одной двойной связи С=С показывает, что валентности углеродных атомов не полностью насыщены атомами водорода, поэтому такие углеводороды называют непредельными углеводородами.

Этиленовые углеводороды образуют свой гомологический ряд. Как и в случае алканов, состав двух гомологов отличается на одну или несколько групп СН2. Приведём молекулярные и структурные формулы ближайших гомологов этилена.


Номенклатура и изомерия алкенов


Два последних углеводорода в таблице 2 имеют одинаковый состав, но различное химическое строение, т. е. это изомеры. Однако у бутена изомерия проявляется не только в строении углеродной цепи (линейная или разветвлённая), но и в положении двойной связи в молекуле. В конце названия алкена арабской цифрой указывают атом углерода, за которым следует двойная связь:

Изомерия положения двойной связи — тоже один из видов структурной изомерии.

Особенности пространственного строения этиленовых углеводородов приводят к появлению в гомологическом ряду алкенов ещё одного вида изомерии — пространственной изомерии.


Для бутена-2 возможно написание двух различных структурных формул. В первом случае углеродная цепь алкена расположена по одну сторону от линии двойной связи, а во втором — по разные стороны:

Эти два углеводорода имеют разные физические свойства (температуры кипения, плавления и др.). Каждое вещество имеет состав С4Н8, неразветвлённую цепь углеродных атомов, одинаковое положение кратной связи в цепи, но различаются они взаимным расположением атомов в пространстве. Следовательно, эти углеводороды являются изомерами. Первый называют цис-бутен-2, второй — транс-бутен-2. Такой вид пространственной изомерии носит название геометрической или цис-транс-изомерии (от лат. cis — на одной стороне и trans — напротив).

Непредельные углеводороды. Алкены

Способы получения алкенов

В отличие от предельных углеводородов, алкены встречаются в природе нечасто. Промышленные способы их получения основаны на превращении алканов в алкены. В качестве природных источников алкенов используют главным образом нефть и природный газ.

Один из способов получения алкенов — уже знакомая вам реакция дегидрирования соответствующих предельных углеводородов.

К лабораторным способам получения алкенов относят реакции отщепления. Для образования в молекуле двойной связи от соседних атомов углерода нужно отнять по одному связанному с ними атому или группе. Тогда освободившиеся валентности превращаются во вторую углерод-углеродную связь.


или

Химические свойства алкенов

Химические свойства этилена и его гомологов обусловлены особенностями их строения, а именно наличием в их молекулах двойной углерод-углерод ной связи.

Для непредельных соединений характерны реакции присоединения.


Одна из наиболее важных реакций присоединения для этилена — его взаимодействие с водой в присутствии катализатора (кислоты):


Обычно эту реакцию записывают так:

В результате реакции гидратации этилена получают технический этиловый спирт. Его используют только в качестве растворителя, горючего, сырья для химических производств — словом, везде, кроме пищевой промышленности.

Присоединение воды к гомологу этилена — пропилену происходит по правилу, сформулированному выдающимся русским химиком, учеником Бутлерова В. В. Марковниковым.



Этиленовые углеводороды вступают в реакции присоединения галогеноводородов — реакции гидрогалогенирования:


И в этих реакциях, как и в реакциях гидратации, соблюдается правило Марковникова:


К реакциям присоединения относят также взаимодействие этиленовых углеводородов с галогенами — реакции галогенирования. В отличие от алканов, которые с галогенами вступают в реакцию замещения, алкены присоединяют молекулу галогена за счёт разрыва связи С=С:


или

В качестве реагента для реакции бромирования этилена можно использовать раствор брома в воде — так называемую бромную воду. При этом жёлтая окраска бромной воды исчезает. Поскольку реакция сопровождается характерными видимыми изменениями, обесцвечивание бромной воды можно использовать как качественную реакцию на этилен и другие непредельные соединения.


Вещества, содержащие двойную углерод-углеродную связь, можно обнаружить с помощью ещё одной качественной реакции. При пропускании этилена через водный раствор перманганата калия происходит обесцвечивание этого раствора. В упрощённом виде, обозначив окислитель ( КМ nO 4 ) как [О], уравнение реакции записывают так:

Разновидностью реакции присоединения можно считать процесс полимеризации.

Под действием высокой температуры и давления двойные углерод-углеродные связи в этилене разрываются, и за счёт освободившихся валентностей атомы углерода соединяются друг с другом:


Исходное вещество (в данном случае — этилен) называют мономером, а продукт реакции (в нашем примере — полиэтилен) — полимером. В результате реакции полимеризации образуются длинные цепи, состоящие из фрагментов этилена —СН2—СН2—. Многократно повторяющуюся в полимерной цепи группу атомов называют структурным звеном полимера. Число структурных звеньев в макромолекуле обозначают буквой п и называют степенью полимеризации. Относительная молекулярная масса таких гигантских молекул может составлять от нескольких тысяч до нескольких миллионов. Поскольку эта величина не является постоянной, говорят о средней молекулярной массе полимера. Уравнение реакции полимеризации этилена записывают так:

Этилен — важное химическое сырьё для производства полиэтилена, галогенпроизводных (используются, например, в качестве растворителей), этилового спирта, этиленгликоля и других продуктов химической промышленности.

Алкены — не единственные представители углеводородов, содержащих в молекуле двойную связь. О других углеводородах с двойными связями вы узнаете из материала следующего конспекта.

Непредельные углеводороды (алкены, олефины)


Попробуйте УМНЫЙ ПОИСК по курсам повышения квалификации и профессиональной переподготовки

Войти с помощью:

  • Для учеников 1-11 классов и дошкольников
  • Бесплатные сертификаты учителям и участникам

Всего 7 материалов








Свидетельство и скидка на обучение каждому участнику

40%

Если Вы не нашли темы для своего учебника, то можете добавить оглавление учебника и получить благодарность от проекта "Инфоурок".

  • Подготовка к ЕГЭ/ОГЭ и ВПР
  • Для учеников 1-11 классов

Московский институт профессиональной
переподготовки и повышения
квалификации педагогов

Дистанционные курсы
для педагогов

663 курса от 690 рублей

Выбрать курс со скидкой

Выдаём документы
установленного образца!

Учителя о ЕГЭ: секреты успешной подготовки

Время чтения: 11 минут

Время чтения: 2 минуты

Отчисленные за рубежом студенты смогут бесплатно учиться в России

Время чтения: 1 минута

Онлайн-тренинг: нейрогимнастика для успешной учёбы и комфортной жизни

Время чтения: 2 минуты

Рособрнадзор предложил дать возможность детям из ДНР и ЛНР поступать в вузы без сдачи ЕГЭ

Время чтения: 1 минута

Минобрнауки и Минпросвещения запустили горячие линии по оказанию психологической помощи

Время чтения: 1 минута

Новые курсы: функциональная грамотность, ФГОС НОО, инклюзивное обучение и другие

Время чтения: 15 минут

Подарочные сертификаты

Ответственность за разрешение любых спорных моментов, касающихся самих материалов и их содержания, берут на себя пользователи, разместившие материал на сайте. Однако администрация сайта готова оказать всяческую поддержку в решении любых вопросов, связанных с работой и содержанием сайта. Если Вы заметили, что на данном сайте незаконно используются материалы, сообщите об этом администрации сайта через форму обратной связи.

Все материалы, размещенные на сайте, созданы авторами сайта либо размещены пользователями сайта и представлены на сайте исключительно для ознакомления. Авторские права на материалы принадлежат их законным авторам. Частичное или полное копирование материалов сайта без письменного разрешения администрации сайта запрещено! Мнение администрации может не совпадать с точкой зрения авторов.

Нажмите, чтобы узнать подробности

организация деятельности учащихся, направленной на прочное усвоение знаний по строению, номенклатуре, изомерии алканов.

дать понятие класса алканов, их общую формулу, гомологический ряд, рассмотреть строение метана и sp 3 -гибридизацию;

способствовать усвоению гомологии, изомерии и номенклатуры, характерной для класса алканов;

проверить уровень усвоения учебного материала по теме урока.

воспитывать мировоззрение и единую химическую картину мира;

воспитывать дисциплинированность, ответственное отношение к учебному труду;

показать тесную связь химии с жизнью;

формировать умение работать самостоятельно.

развивать творческую активность и самостоятельность учеников, показав пути самостоятельного освоения материала;

развивать умения выделять главное, существенное;

развивать химически грамотную речь, образное и логическое мышление;

развивать объективную самооценку.

I. Организационный момент. (2 мин)

1.Организация внимания и порядка в классе, взаимное приветствие, проверка присутствующих, проверка готовности класса к уроку.

2. Подведение учащихся к теме урока.

- что изучает Органическая химия - изучает углеводороды и их производные.

- Какие соединения мы называем углеводородами - орг. соединения, состоящие из двух элементов - углерода и водорода

- напишите общую формулу предельных углеводородов

- почему они называются предельными

- написать формулы метана - молекулярную, структурную, электронную

СМОТРИМ ФРАГМЕНТ СТРОЕНИЕ АЛКАНОВ

Посмотрите первые 5 пунктов плана и сформулируйте цель урока.

3. Объяснение темы.

АЛКАНЫ – это насыщенные углеводороды, в молекулах которых атомы углерода соединены между собой только одинарной связью.

Моделирование молекул предельных углеводородов.

Оборудование: пластилин 2-х цветов, палочки.

В ходе работы заполняем таблицу. Лабораторную работу проводим парами.

Соберите шаростержневую модель молекулы метана. На шарике, имитирующем атом углерода, наметьте четыре равноудалённые друг от друга точки и вставьте стержни, к которым присоединены водородные шарики. Получили модель молекулы метана. Сделайте пять одинаковых моделей. (слайд №10)

Отнимите от каждой из двух молекул по 1 атому водорода и соедините остатки (радикалы) вместе. Получили модель молекулы этана. Сделайте 2-ю такую же модель. (слайд №11)

Если отнять от этана молекулу водорода, то получим радикал – этил. К этилу присоединим радикал метил и получим пропан.

При соединении между собой двух этилов образуется молекула бутана. (слайд №12)

Отнимем от молекулы бутана один водород, и на его место присоединим радикал метил. Получили ещё один гомолог – пентан. (слайд №13,14)

Метан, этан, пропан, бутан, пентан и т. д. – гомологи.

Гомологи – вещества, сходные по строению и свойствам, но отличающиеся друг от друга по составу на одну или несколько групп – СН2 – .

Возьмём модель молекулы пентана.

Н – С – С – С – С – С – Н пентан С5Н12

Отнимем группу СН3 – и присоединим её на место Н у второго атома С. Получим

Отнимем ещё одну группу СН3 – и присоединим её опять у второго атома С

на место второго атома Н. Получим:

Изомеры – это вещества, имеющие одинаковый качественный и количественный состав, но разные строение и свойства.

Назовём эти вещества:

составления названий органических веществ.

Выбрать в молекуле самую длинную цепочку углеродных атомов.

Пронумеровать цепочку с того конца, к которому ближе разветвление молекулы.

Основа названия – название углеводорода с тем же числом углеродных атомов, что и в самой длинной цепи.

Перечислить перед основой названия все заместители основной цепи с указанием номеров углеродных атомов, при которых они стоят. Если одинаковых заместителей несколько, перед их названиями ставят приставки ди-, три-, тетра- и т. д.

Отделить запятыми все цифры друг от друга, буквы от цифр – дефисом. Если при одном углеродном атоме имеется не один, а два заместителя, его цифру повторить в названии дважды.

Углеводороды нормального строения обозначают буквой н, например:

Н – С – С – С – С – С – Н С5Н12 н-пентан

Н – С – С – С – С – Н С5Н12 2-метилбутан

Н – С – С – С – Н С5Н12 2,2 –диметилпропан

Заключение Итак, мы изучили пространственное строение предельных углеводородов, узнали, что такое гомологи, изомеры, научились их называть.

Проверим наши знания. (слайд №17,18)

Дан ряд формул веществ. Выберите из них гомологи и изомеры.

Например, гомологи 1,3,4. изомеры 1 и 5, 3 и 7.

Ответы: Гомологи 1и 4, 3 и 6

Изомеры 1,3 и 5; 2, 4 и 6

Названия алканов и алкильных заместителей

атом углерода находится в 1-ом валентном состоянии sp 3 ;

четыре σ-связи углерода направлены в пространстве под углом 109°28';

молекула метана СН4 – имеет форму правильного тетраэдра;

длина углеродной связи — 0,154 нм.

ЗАКРЕПЛЕНИЕ Написание структурных формул.

Сначала записывают открытую цепь, затем нумеруют атомы углерода и расставляют заместители. В заключение дописывают атомы водорода, чтобы каждый атом углерода оказался четырехвалентным. Рассмотрим на примере 2,5,6-триметилоктан.

4. Закрепление темы

1. Напишите структурные формулы следующих веществ:

а) 2,3 – диметилбутана,

б) 2,4 – диметил - 3 – этилпентана

2. Если вы усвоили номенклатуру алканов, то сможете самостоятельно назвать каждый из них. Перепишите в тетрадь структурные формулы алканов, приведенные в задании и назовите эти вещества.

5. Подведение итогов урока

Вернутся к плану урока, посмотреть 1-5 пунктов, ответить на вопросы

- достигли ли мы поставленной цели?

- что нового на уроке узнали?

- что было интересным?

6. Домашнее задание

Параграф 8 тестовые задания стр 34

Гомологи и изомеры алканов

1. Алканы – это алифатические (ациклические), насыщенные углеводороды, в которых все валентности атомов углерода, не затраченные на образование простых С – С связей, насыщены атомами водорода.

2. Общая формула алканов – СnH2n+2

В таблице представлены некоторые представители ряда алканов и их радикалы.

Тренажёр "Гомологический ряд алканов"

Из таблицы видно, что эти углеводороды отличаются друг от друга количеством групп - СН2 -.Такой ряд сходных по строению, обладающих близкими химическими свойствами и отличающихся друг от друга числом данных групп называется гомологическим рядом. А вещества, составляющие его называются гомологами.

Гомологи – вещества сходные по строению и свойствам, но отличающиеся по составу на одну или несколько гомологических разностей (- СН2 -)


пространственное строение – тетраэдрическое

Углеродная цепь - зигзаг (если n ≥ 3)

σ – связи (свободное вращение вокруг связей)

длина (-С-С-) 0,154 нм

энергия связи (-С-С-) 348 кДж/моль

Все атомы углерода в молекулах алканов находятся в состоянии sр3-гибридизации


угол между связями С-C составляет 109°28', поэтому молекулы нормальных алканов с большим числом атомов углерода имеют зигзагообразное строение (зигзаг). Длина связи С-С в предельных углеводородах равна 0,154 нм (1нм=1*10-9м).

Образование молекулы метана


а) электронная и структурная формулы;

б) пространственное строение


Строение молекулы этана С2Н6


Строение молекулы пропана С3Н8 – цепь зигзагообразная


Тренажёр "Состав и строение алканов"

4. Изомерия – характерна СТРУКТУРНАЯ изомерия цепи с С4


Один из этих изомеров (н-бутан) содержит неразветвленную углеродную цепь, а другой — изобутан — разветвленную (изостроение).

Атомы углерода в разветвленной цепи различаются типом соединения с другими углеродными атомами. Так, атом углерода, связанный только с одном другим углеродным атомом, называется первичным, с двумя другими атомами углерода – вторичным, с тремя – третичным, с четырьмя – четвертичным.


С увеличением числа атомов углерода в составе молекул увеличиваются возможности для разветвления цепи, т.е. количество изомеров растет с ростом числа углеродных атомов.

Читайте также: