Звуковые методы исследования в медицине кратко

Обновлено: 03.07.2024

Звук, как и свет, является источником информации, и в этом его главное значение. Звуки природы, речь окружающих нас людей, шум работающих машин многое сообщают нам. Чтобы представить значение звука для человека, достаточно временно лишить себя возможности воспринимать звук – закрыть уши. Естественно, что звук может быть и источником информации о состоянии внутренних органов человека.

Распространенный звуковой метод диагностики заболеваний – аускультация (выслушивание). Для ау-скультации используют стетоскоп или фонендоскоп. Фонендоскоп состоит из полой капсулы с передающей звук мембраной, прикладываемой к телу больного, от нее идут резиновые трубки к уху врача. В полой капсуле возникает резонанс столба воздуха, вследствие чего усиливается звучание и улучшается ау-скультация. При аускультации легких выслушивают дыхательные шумы, разные хрипы, характерные для заболеваний. По изменению тонов сердца и появлению шумов можно судить о состоянии сердечной деятельности. Используя аускультацию, можно установить наличие перистальтики желудка и кишечника, прослушать сердцебиение плода.

Для одновременного выслушивания больного несколькими исследователями с учебной целью или при консилиуме используют систему, в которую входят микрофон, усилитель и громкоговоритель или несколько телефонов.

Длядиагностики состояния сердечной деятельности применяется метод, подобный аускультации и называемый фонокардиографией (ФКГ). Этот метод заклю16б чается в графической регистрации тонов и шумов сердца и их диагностической интерпретации. Запись фонокардиограммы производят с помощью фонокардиографа, состоящего из микрофона, усилителя, системы частотных фильтров и регистрирующего устройства.

Принципиально отличным от двух изложенных выше звуковых методов является перкуссия. При этом методе выслушивают звучание отдельных частей тела при их простукивании. Схематично тело человека можно представить как совокупность газонаполненных (легких), жидких (внутренние органы) и твердых (кость) объемов. При ударе по поверхности тела возникают колебания, частоты которых имеют широкий диапазон. Из этого диапазона одни колебания погаснут довольно быстро, другие же, совпадающие с собственными колебаниями пустот, усилятся и вследствие резонанса будут слышимы. Опытный врач по тону перкуторных звуков определяет состояние и расположение (тонографию) внутренних органов.

Данный текст является ознакомительным фрагментом.

Продолжение на ЛитРес

Из истории исследования электрона

Из истории исследования электрона

ИССЛЕДОВАНИЯ РЕНТГЕНОВСКИХ ЛУЧЕЙ

ИССЛЕДОВАНИЯ РЕНТГЕНОВСКИХ ЛУЧЕЙ Дальнейшие исследования поведения различных металлов при отражении рентгеновского излучения еще более утвердили меня в высказанной раньше мысли: Вольтов электрический контактный ряд в воздухе идентичен ряду, полученному при

ИССЛЕДОВАНИЯ ПУАССОНА ПО МЕХАНИКЕ

ИССЛЕДОВАНИЯ ПУАССОНА ПО МЕХАНИКЕ Симеон Дени Пуассон (1781 —1840) — выдающийся французский механик, математик и физик, научная деятельность которого тесно связана с традициями Политехнической школы. Эта школа была ведущим высшим учебным заведением Франции, поступающие в

НЬЮТОНОВЕДЧЕСКИЕ ИССЛЕДОВАНИЯ А.Н. КРЫЛОВА

НЬЮТОНОВЕДЧЕСКИЕ ИССЛЕДОВАНИЯ А.Н. КРЫЛОВА Среди многочисленных ученых, занимавшихся в России изучением творчества Ньютона, одно из видных мест принадлежит академику Алексею Николаевичу Крылову (1863—945).Выдающийся математик, механик и кораблестроитель, Крылов

9. Основы механики

9. Основы механики Механикой называют раздел физики, в котором изучается механическое движение материальных тел. Под механическим движением понимают изменение положения тела или его частей в пространстве с течением времени.Для медиков этот раздел представляет интерес

34. Физические основы электрокардиографии

41. Полное сопротивление ((импеданс) тканей организма. Физические основы реографии

41. Полное сопротивление ((импеданс) тканей организма. Физические основы реографии Ткани организма проводят не только постоянный, но и пе ременный ток. В организме нет таких систем, которые бы ли бы подобны катушкам индуктивности, поэтому индук тивность его близка к

ФИЗИЧЕСКИЕ КОРРЕЛЯТЫ

ФИЗИЧЕСКИЕ КОРРЕЛЯТЫ Основная проблема заключается в том, что противоречия между наукой и религией уходят намного глубже конкретных формулировок. Даже если речь не идет о буквальном толковании каких бы то ни было текстов, проблема не решается. Религия и наука опираются

ДРУГИЕ КОСМОЛОГИЧЕСКИЕ ИССЛЕДОВАНИЯ

ДРУГИЕ КОСМОЛОГИЧЕСКИЕ ИССЛЕДОВАНИЯ Это всего лишь пример — хотя и весьма важный — тех задач, которые мы сегодня решаем. Кроме уже описанных, в настоящее время готовится немало и других космологических экспериментов. Детекторы гравитационных волн попытаются уловить

ИССЛЕДОВАНИЯ, ОБОРУДОВАНИЕ, ПОСТРОЙКА И ПРОИЗВОДСТВО С 1942 ПО 1945 г

ИССЛЕДОВАНИЯ, ОБОРУДОВАНИЕ, ПОСТРОЙКА И ПРОИЗВОДСТВО С 1942 ПО 1945 г ПРОИЗВОДСТВО ПЕРЕГОРОДОК10.26. Еще до 1942 г. были разработаны перегородки, которые казались удовлетворительными. Однако эти перегородки, предложенные Э. Т. Бутом, Г. К. Пэкстоном и К. Б. Слэйдом, никогда не

Литературно-физические пародии

Литературно-физические пародии Г. Копылов Пародия на газетную статью о науке Микромир среди лесовТишину хвойного леса, подступающего вплотную к стенам корпуса, разрывает на мелкие кусочки лязг и грохот ускоряемых протонов. Вокруг корпусов раскинулся благоустроенный

10.10. Миссия посещения и исследования астероида Апофис

10.10. Миссия посещения и исследования астероида Апофис Выше уже говорилось о достоинствах проекта посылки радиопередатчика к астероиду Апофис для точного определения орбиты астероида. Рассматривая организацию такого полета, можно предложить ряд принципов, которые


Эталон новых стандартов! Беспрецедентная четкость, разрешение, сверхбыстрая обработка данных, а также исчерпывающий набор современных ультразвуковых технологий для решения самых сложных задач диагностики.

Основные принципы метода и физические характеристики

Ультразвук - высокочастотные колебания, лежащие в диапазоне выше полосы частот, воспринимаемых человеческим ухом (более 20 000 Гц). Излученные в тело пациента, ультразвуковые колебания отражаются от исследуемых тканей, крови, а также поверхностей, таких как границы между органами, и, возвращаясь в ультразвуковой сканер, обрабатываются и измеряются после их предварительной задержки для получения фокусированного изображения. Результирующие данные поступают на экран монитора, позволяя производить оценку состояния внутренних органов. Даже несмотря на то, что ультразвук не может эффективно проникать через такие среды как воздух или другие газы, а также кости, он находит широкое применение при исследовании мягких тканей. Использование ультразвуковых гелей и других жидкостей одновременно с улучшением характеристик датчиков, увеличивает области применения ультразвуковых сканеров для различных медицинских обследований.

Скорость ультразвуковых волн в мягких тканях тела человека в среднем составляет 1,540 м/сек и практически не зависит от частоты. Датчик является одним из основных компонентов диагностических систем, который конвертирует электрические сигналы в ультразвуковые колебания и производит электрические сигналы, получая отраженное эхо от внутренних тканей пациента. Идеальный датчик должен быть эффективен как излучатель и чувствителен как приемник, иметь хорошие характеристики излучаемых им импульсов со строго определенными показателями, а также принимать широкий диапазон частот, отраженных от исследуемых тканей.

В электронных датчиках ультразвуковые колебания возбуждаются благодаря подаче высоковольтных импульсов на пьезо-кристалы, из которых состоит датчик (пьезоэлектрический эффект был открыт Пьером и Марией Кьюри в 1880 году). Количество раз, сколько кристалл вибрирует за секунду, определяет частоту датчика. С увеличением частоты уменьшается длина волны генерируемых колебаний, что отражается на улучшении разрешения, однако, поглощение ультразвуковых колебаний тканями тела пропорционально возрастанию частоты, что влечет за собой уменьшение глубины проникновения. Поэтому датчики с высокой частотой колебаний обеспечивают лучшее разрешение изображения при исследовании не глубоко расположенных тканей, так же как низкочастотные датчики позволяют обследовать более глубоко расположенные органы, уступая высокочастотным качеством изображения. Это разногласие является основным определяющим фактором при использовании датчиков.

В ежедневной клинической практике применяются различные конструкции датчиков, представляющие собой диски с одним элементом, а также объединяющие несколько элементов, расположенных по окружности или вдоль длины датчика, производящие различные форматы изображения, которые необходимы или предпочтительны при проведении диагностики различных органов.

Аудиометрия – это процедура, которую применяют для оценки слуха. С ее помощью врач определяет остроту слуха, чувствительность к звукам разной частоты. Ее проводят детям и взрослым.


Аудиометрия: что это такое

Перед началом обследования необходимо посетить сурдолога, который опросит пациента, проведет подготовительную беседу. Задача врача – выяснить, когда начались проблемы со слухом, затрагивают ли они одно или оба уха, чувствует ли пациент боль, неприятные ощущения или звон. Доктор выясняет анамнез заболевания, интересуется о перенесенных инфекциях, травматических поражениях, уровне шума на рабочем месте.

В ходе осмотра изучается состояние внешнего уха. Сурдолог осматривает его на наличие деформаций, исследует отоскопом слуховой проход, барабанную перепонку. Перед проведением аудиометрии не требуется специальная подготовка, но выполнять обследование нужно в тихом месте, в специально предназначенном для этого кабинете. Только в этом случае доктор сможет получить достоверную аудиограмму.


Виды аудиометрии

Существует три основных вида обследования. Это:

  1. Речевое. Этот метод наиболее простой. Он не требует использования специального оборудования. Сурдолог отходит от пациента на расстояние до шести метров, а затем произносит слова с разной громкостью, которые нужно повторить.
  2. Тональное. Аудиометрию проводят с помощью наушников. На них поступают звуки разной частоты. Человек, когда их услышит, нажимает на кнопку. После обследования составляют график. На нем четко видно, в каком диапазоне частот выявлены нарушения слуха.
  3. Компьютерное. Наиболее точный и эффективный метод аудиометрии. Это процедура, которая основана на рефлексах, появляющихся из-за раздражения слухового центра. Используется даже для младенцев, так как активное участие пациента не играет роли. Метод считается полностью безопасным. К тому же, человек не может оказать влияние на полученные результаты, симулируя слуховые нарушения.

Правильные результаты можно получить только после компьютерной аудиометрии. Но, зачастую, при исследовании взрослых пациентов, достаточно более простых, субъективных процедур.


Показания

Врач проводит исследование по определенным показаниям. К ним относятся:

  • патологии внутреннего или среднего уха, из-за которых ухудшается слух;
  • заболевания ЦНС: инсульты, неврит слухового нерва, кисты, новообразования в головном мозге;
  • травматические поражения уха или головы;
  • профессиональная тугоухость из-за неблагоприятных условий на работе;
  • выбор аппарата для коррекции слуха;
  • тугоухость невыясненного генеза.

Противопоказания для выполнения процедуры отсутствуют.

Что такое аудиометрия для детей

В медицине первую проверку слуха делают еще в младенческом возрасте для выявления врожденных патологий. Также аудиометрия проводится в более старшем возрасте, если слух ребенка ухудшился из-за травматических поражений, инфекционных заболеваний или по другим причинам.

Врачи используют несколько видов процедур для детей. Среди них:

  1. Поведенческое исследование. Используется для малышей 1-3 лет. Способ основывается на возможности ребенка запоминать связь между повторяющимися картинками, звуками, движениями.
  2. Игровая тональная аудиометрия. Используется для детей 2-7 лет. По принципу аналогично тональному исследованию для взрослых, но выполняется в игровом формате. Например, ребенку нужно надеть кольцо на пирамидку, когда он услышит звук, или хлопнуть в ладоши. Награда за выполненное действие – приз.
  3. Речевое игровое исследование. Аудиометрия такого плана применяется для детей 2-7 лет. Прибор воспроизводит речь с разной громкостью, но дикция и тональность остаются прежними. Пока ребенок не услышит фразу, громкость увеличивают.


Идеальный инструмент для пренатальных исследований. Уникальное качество изображения и весь спектр диагностических программ для экспертной оценки здоровья женщины.

Основные принципы метода и физические характеристики

Ультразвук - высокочастотные колебания, лежащие в диапазоне выше полосы частот, воспринимаемых человеческим ухом (более 20 000 Гц). Излученные в тело пациента, ультразвуковые колебания отражаются от исследуемых тканей, крови, а также поверхностей, таких как границы между органами, и, возвращаясь в ультразвуковой сканер, обрабатываются и измеряются после их предварительной задержки для получения фокусированного изображения. Результирующие данные поступают на экран монитора, позволяя производить оценку состояния внутренних органов. Даже несмотря на то, что ультразвук не может эффективно проникать через такие среды как воздух или другие газы, а также кости, он находит широкое применение при исследовании мягких тканей. Использование ультразвуковых гелей и других жидкостей одновременно с улучшением характеристик датчиков, увеличивает области применения ультразвуковых сканеров для различных медицинских обследований.

Скорость ультразвуковых волн в мягких тканях тела человека в среднем составляет 1,540 м/сек и практически не зависит от частоты. Датчик является одним из основных компонентов диагностических систем, который конвертирует электрические сигналы в ультразвуковые колебания и производит электрические сигналы, получая отраженное эхо от внутренних тканей пациента. Идеальный датчик должен быть эффективен как излучатель и чувствителен как приемник, иметь хорошие характеристики излучаемых им импульсов со строго определенными показателями, а также принимать широкий диапазон частот, отраженных от исследуемых тканей.

В электронных датчиках ультразвуковые колебания возбуждаются благодаря подаче высоковольтных импульсов на пьезо-кристалы, из которых состоит датчик (пьезоэлектрический эффект был открыт Пьером и Марией Кьюри в 1880 году). Количество раз, сколько кристалл вибрирует за секунду, определяет частоту датчика. С увеличением частоты уменьшается длина волны генерируемых колебаний, что отражается на улучшении разрешения, однако, поглощение ультразвуковых колебаний тканями тела пропорционально возрастанию частоты, что влечет за собой уменьшение глубины проникновения. Поэтому датчики с высокой частотой колебаний обеспечивают лучшее разрешение изображения при исследовании не глубоко расположенных тканей, так же как низкочастотные датчики позволяют обследовать более глубоко расположенные органы, уступая высокочастотным качеством изображения. Это разногласие является основным определяющим фактором при использовании датчиков.

В ежедневной клинической практике применяются различные конструкции датчиков, представляющие собой диски с одним элементом, а также объединяющие несколько элементов, расположенных по окружности или вдоль длины датчика, производящие различные форматы изображения, которые необходимы или предпочтительны при проведении диагностики различных органов.

Читайте также: