Закон вебера фехнера кратко физика

Обновлено: 08.07.2024

Уже отмечалось, что объективная физическая характеристика звуковой волны - интенсивность определяет субъективную физиологическую характери­стику - громкость. Количественная связь между ними устанавливается законом Вебера-Фехнера: если интенсивность раздражителя увеличивается в геометрической прогрессии, то физиологическое ощущение растет в арифметической про­грессии.

Закон Вебера-Фехнера можно пересказать другими словами: физиологическаяреакция (в рассматриваемом слу­чае громкость) на раздражитель (интенсивность звука) пропорциональна логарифму интенсивности раздра­жителя.

В физике и технике логарифм отношения двух интенсивностей называют уровнем интенсивности,поэтому величину, пропор­циональную десятичному логарифму отношения интенсивности некоторого звука (I) к ин­тенсивности на пороге слышимости I0 = 10 -12 Вт/м 2 : называют уровнем интенсивности звука (L):

Коэффициент n в формуле (1) определяет единицу измерения уровня интенсивности звука L. Если n =1, то единицей измерения L является Бел (Б). На практике обычно принимают n =10, тогда Lизмеряется в децибелах (дБ) (1 дБ = 0,1 Б). На пороге слышимости (I = I0) уровень интенсивности звука L=0, а на пороге болевого ощущения (I= 10 Вт/м 2 )– L= 130 дБ.

Громкость звука в соответствии с законом Вебера-Фехнера прямо пропорциональна уровнем интенсивности L:

где k - коэффициент пропорциональности, зависящий от частоты и интенсивности звука.

Если бы коэффициент kв формуле (2) был постоянным, то уровень гром­кости совпадал бы с уровнем интенсивности и мог бы измеряться в децибелах.

Но он зависит и от частоты и от интенсивности звуковой волны, поэтому громкость звука измеряют в других единицах – фонах. Постановили, что на частоте 1000 Гц 1 фон = 1 дБ, т.е. уровень интенсивности в децибелах и уровень громкости в фонах совпадают (в формуле (2) коэффициент k= 1 на частоте 1000 Гц). На других частотах для перехода от децибел к фонам не­обходимо вводить соответствующие поправки, которые можно определить с помощью кривых равной громкости (см. рис.1).


Определение порога слышимости на разных частотах составляет основу методов измерения остроты слуха. Полученная кривая называется спектральной характеристикой уха на пороге слыши­мости или аудиограммой. Сравнивая порог слышимости пациента с усредненной нормой, можно судить о степени развития нару­шений слухового аппарата.

Порядок выполнения работы

Снятие спектральной характеристики уха на пороге слышимости проводится с помощью генератора синусоидального сигнала SG-530 и наушников.

Основные органы управления генератора расположены на передней панели (рис.3). Там же расположен выходной разъем для подключения наушников. На задней панели генератора расположены выключатель питания, сетевой шнур и клемма заземления.

Рис. 3. Передняя панель генератора:

1- выходной разъем; 2 -ЖКИ; 3 — энкодер.

С помощью системы меню можно задать частоту выходного сигнала генератора, амплитуду выходного сигнала, значение ослабления аттенюатора, считать или записать предустановку частоты, а также выключить или включить выходной сигнал. Увеличение или уменьшение значения выбранного параметра производится поворотом энкодера по (вправо) или против (влево) направления часовой стрелки соответственно.

В исходном состоянии генератора на индикатор выводится главное меню, в котором отображается текущее значение частоты, амплитуды и состояние аттенюатора. При повороте энкодера или нажатии кнопки энкодера происходит переход в меню установки частоты (рис. 4).

Одиночный поворот энкодера вправо или влево приводит к изменению частоты на один шаг.

Если на протяжении примерно 5 секунд регулировка частоты не производится, происходит автоматический переход на главное меню, за исключением меню калибровки частоты и амплитуды.




Нажатие кнопки энкодера в меню установки частоты приводит к переходу в меню установки амплитуды (рис. 4а,б). Значение амплитуды выводится в вольтах с запятой, которая отделяет десятые доли вольта, если значение больше 1 В, или без запятой в милливольтах, если значение меньше 1 В. На рис. 17.4,б показан пример индикации амплитуды, равной 10 В, а на рис. 17.4,в -амплитуды 10 мВ.

Нажатие кнопки энкодера в меню установки амплитуды приводит к переходу в меню установки ослабления аттенюатора. Возможные значения ослабления аттенюатора 0, -20, -40, -60 дБ.

Нажатие кнопки энкодера в меню установки ослабления аттенюатора приводит к переходу в меню установки шага изменения частоты. Шаг изменения значения частоты может иметь значение 0.01 Гц. 10 КГц. Нажатие кнопки энкодера в меню установки шага изменения частоты приводит к переходу в меню установки шага изменения значения амплитуды (рис. 5). Шаг изменения значения амплитуды может иметь значение 1мВ. 1В.

Порядок выполнения работы.

4. Подключитенаушники к генератору;

5.Уменьшая значение амплитуды до 100 мВ, добейтесь отсутствия шума в наушниках;

7.Запишите полученные значения частотыν, амплитудыUген и ослабления L в таблицу результатов измерений (таблица 1);

8.Аналогично добейтесь отсутствия звука для каждой из предложенных частотν;

9.Произведите расчёт амплитуды на выходе генератораUвыхпо формулеUвых = Uген ∙ K,где коэффициент ослабленияKопределяется по величинеослабления Lиз таблицы2;

10.Определите минимальное значениеамплитуды на выходе генератораUвых minкак наименьшееиз совокупности всех полученных значенийамплитуды на выходе генератораUвыхдля всех частот;

11. Произведите расчёт уровня громкости на пороге слышимости E по формуле E=20lg Uвых/ Uвых min;

12.Постройте график зависимости величины уровня громкости на пороге слышимости Eот значения логарифма частоты lg ν. Полученная кривая будет представлять собой порог слышимости.

Таблица 1. Результаты измерений.

ν, Гц lg ν Uген , мВ L, дБ Коэффициент ослабления, K Uвых = К·Uген мВ Уровень интенсивности (дБ) E =20 lg (Uвых/ Uвых min)
2,0
2,3
2,7
3,0
3,3
3,5
3,7
4,0
4,2

Таблица 2. Связь показаний аттенюатора L (0, -20, -40, -60 дБ) и коэффициента ослабления по напряжению K ( 1, 0,1, 0,01, 0,001).

Ослабление аттенюатора L, дБ - 20 - 40 - 60
Коэффициент ослабления, K 0,1 0,01 0,001

Контрольные вопросы:

1. Природа звука. Скорость звука. Классификация звуков (тоны, шумы).

2. Физические и физиологические характеристики звука (частота, интенсивность, спектральный состав, высота, громкость, тембр).

3. Диаграмма слышимости (порог слышимости, порог болевого ощущения, область речи).

4. Закон Вебера-Фехнера. Уровни интенсивности и уровни громкости звука, связь между ними и единицы измерения.

5. Методика определения порога слышимости (спектральной характеристики уха на пороге слышимости)

Решить задачи:

1.Интенсивность звука частотой 5 кГц равна 10 -9 Вт/м 2 . Определить уровни интенсивности и громкости этого звука.

2. Уровень интенсивности звука от некоторого источника равен 60 дБ. Чему равен суммарный уровень интенсивности звука от десяти таких ис­точников звука при их одновременном действии?

3. Уровень громкости звука частотой 1000 Гц после его прохождения че­рез стенку понизился от 100 до 20 фон. Во сколько раз уменьшилась ин­тенсивность звука?

1. В.Г.Лещенко, Г.К.Ильич. Медицинская и биологическая физика.- Мн.: Новое знание. 2011.

2. Г.К.Ильич. Колебания и волны, акустика, гемодинамика. Пособие. – Мн.: БГМУ, 2000.

3. А.Н. Ремизов. Медицинская и биологическая физика.- М.: Высш. шк. 1987.

Уже отмечалось, что объективная физическая характеристика звуковой волны - интенсивность определяет субъективную физиологическую характери­стику - громкость. Количественная связь между ними устанавливается законом Вебера-Фехнера: если интенсивность раздражителя увеличивается в геометрической прогрессии, то физиологическое ощущение растет в арифметической про­грессии.

Закон Вебера-Фехнера можно пересказать другими словами: физиологическаяреакция (в рассматриваемом слу­чае громкость) на раздражитель (интенсивность звука) пропорциональна логарифму интенсивности раздра­жителя.

В физике и технике логарифм отношения двух интенсивностей называют уровнем интенсивности,поэтому величину, пропор­циональную десятичному логарифму отношения интенсивности некоторого звука (I) к ин­тенсивности на пороге слышимости I0 = 10 -12 Вт/м 2 : называют уровнем интенсивности звука (L):

Коэффициент n в формуле (1) определяет единицу измерения уровня интенсивности звука L. Если n =1, то единицей измерения L является Бел (Б). На практике обычно принимают n =10, тогда Lизмеряется в децибелах (дБ) (1 дБ = 0,1 Б). На пороге слышимости (I = I0) уровень интенсивности звука L=0, а на пороге болевого ощущения (I= 10 Вт/м 2 )– L= 130 дБ.

Громкость звука в соответствии с законом Вебера-Фехнера прямо пропорциональна уровнем интенсивности L:

где k - коэффициент пропорциональности, зависящий от частоты и интенсивности звука.

Если бы коэффициент kв формуле (2) был постоянным, то уровень гром­кости совпадал бы с уровнем интенсивности и мог бы измеряться в децибелах.

Но он зависит и от частоты и от интенсивности звуковой волны, поэтому громкость звука измеряют в других единицах – фонах. Постановили, что на частоте 1000 Гц 1 фон = 1 дБ, т.е. уровень интенсивности в децибелах и уровень громкости в фонах совпадают (в формуле (2) коэффициент k= 1 на частоте 1000 Гц). На других частотах для перехода от децибел к фонам не­обходимо вводить соответствующие поправки, которые можно определить с помощью кривых равной громкости (см. рис.1).


Определение порога слышимости на разных частотах составляет основу методов измерения остроты слуха. Полученная кривая называется спектральной характеристикой уха на пороге слыши­мости или аудиограммой. Сравнивая порог слышимости пациента с усредненной нормой, можно судить о степени развития нару­шений слухового аппарата.

Порядок выполнения работы

Снятие спектральной характеристики уха на пороге слышимости проводится с помощью генератора синусоидального сигнала SG-530 и наушников.

Основные органы управления генератора расположены на передней панели (рис.3). Там же расположен выходной разъем для подключения наушников. На задней панели генератора расположены выключатель питания, сетевой шнур и клемма заземления.

Рис. 3. Передняя панель генератора:

1- выходной разъем; 2 -ЖКИ; 3 — энкодер.

С помощью системы меню можно задать частоту выходного сигнала генератора, амплитуду выходного сигнала, значение ослабления аттенюатора, считать или записать предустановку частоты, а также выключить или включить выходной сигнал. Увеличение или уменьшение значения выбранного параметра производится поворотом энкодера по (вправо) или против (влево) направления часовой стрелки соответственно.

В исходном состоянии генератора на индикатор выводится главное меню, в котором отображается текущее значение частоты, амплитуды и состояние аттенюатора. При повороте энкодера или нажатии кнопки энкодера происходит переход в меню установки частоты (рис. 4).

Одиночный поворот энкодера вправо или влево приводит к изменению частоты на один шаг.

Если на протяжении примерно 5 секунд регулировка частоты не производится, происходит автоматический переход на главное меню, за исключением меню калибровки частоты и амплитуды.

Нажатие кнопки энкодера в меню установки частоты приводит к переходу в меню установки амплитуды (рис. 4а,б). Значение амплитуды выводится в вольтах с запятой, которая отделяет десятые доли вольта, если значение больше 1 В, или без запятой в милливольтах, если значение меньше 1 В. На рис. 17.4,б показан пример индикации амплитуды, равной 10 В, а на рис. 17.4,в -амплитуды 10 мВ.

Нажатие кнопки энкодера в меню установки амплитуды приводит к переходу в меню установки ослабления аттенюатора. Возможные значения ослабления аттенюатора 0, -20, -40, -60 дБ.

Нажатие кнопки энкодера в меню установки ослабления аттенюатора приводит к переходу в меню установки шага изменения частоты. Шаг изменения значения частоты может иметь значение 0.01 Гц. 10 КГц. Нажатие кнопки энкодера в меню установки шага изменения частоты приводит к переходу в меню установки шага изменения значения амплитуды (рис. 5). Шаг изменения значения амплитуды может иметь значение 1мВ. 1В.

Порядок выполнения работы.

4. Подключитенаушники к генератору;

5.Уменьшая значение амплитуды до 100 мВ, добейтесь отсутствия шума в наушниках;

7.Запишите полученные значения частотыν, амплитудыUген и ослабления L в таблицу результатов измерений (таблица 1);

8.Аналогично добейтесь отсутствия звука для каждой из предложенных частотν;

9.Произведите расчёт амплитуды на выходе генератораUвыхпо формулеUвых = Uген ∙ K,где коэффициент ослабленияKопределяется по величинеослабления Lиз таблицы2;

10.Определите минимальное значениеамплитуды на выходе генератораUвых minкак наименьшееиз совокупности всех полученных значенийамплитуды на выходе генератораUвыхдля всех частот;

11. Произведите расчёт уровня громкости на пороге слышимости E по формуле E=20lg Uвых/ Uвых min;

12.Постройте график зависимости величины уровня громкости на пороге слышимости Eот значения логарифма частоты lg ν. Полученная кривая будет представлять собой порог слышимости.

Таблица 1. Результаты измерений.

ν, Гц lg ν Uген , мВ L, дБ Коэффициент ослабления, K Uвых = К·Uген мВ Уровень интенсивности (дБ) E =20 lg (Uвых/ Uвых min)
2,0
2,3
2,7
3,0
3,3
3,5
3,7
4,0
4,2

Таблица 2. Связь показаний аттенюатора L (0, -20, -40, -60 дБ) и коэффициента ослабления по напряжению K ( 1, 0,1, 0,01, 0,001).

Ослабление аттенюатора L, дБ - 20 - 40 - 60
Коэффициент ослабления, K 0,1 0,01 0,001

Контрольные вопросы:

1. Природа звука. Скорость звука. Классификация звуков (тоны, шумы).

2. Физические и физиологические характеристики звука (частота, интенсивность, спектральный состав, высота, громкость, тембр).

3. Диаграмма слышимости (порог слышимости, порог болевого ощущения, область речи).

4. Закон Вебера-Фехнера. Уровни интенсивности и уровни громкости звука, связь между ними и единицы измерения.

5. Методика определения порога слышимости (спектральной характеристики уха на пороге слышимости)

Решить задачи:

1.Интенсивность звука частотой 5 кГц равна 10 -9 Вт/м 2 . Определить уровни интенсивности и громкости этого звука.

2. Уровень интенсивности звука от некоторого источника равен 60 дБ. Чему равен суммарный уровень интенсивности звука от десяти таких ис­точников звука при их одновременном действии?

3. Уровень громкости звука частотой 1000 Гц после его прохождения че­рез стенку понизился от 100 до 20 фон. Во сколько раз уменьшилась ин­тенсивность звука?

1. В.Г.Лещенко, Г.К.Ильич. Медицинская и биологическая физика.- Мн.: Новое знание. 2011.

2. Г.К.Ильич. Колебания и волны, акустика, гемодинамика. Пособие. – Мн.: БГМУ, 2000.

3. А.Н. Ремизов. Медицинская и биологическая физика.- М.: Высш. шк. 1987.


"Интенсивность ощущения пропорциональна логарифму интенсивности стимула" - так звучит формулировка закона Вебера-Фехнера. Сразу видно, умные слова, глубокий смысл в них и ценная информация. Понимать бы еще, что все это значит! А как раз в этом мы сейчас и разберемся. Итак, начнем по порядку. Во-первых, нужно разобраться с тем, чей это закон и при каких обстоятельствах он появился в уме своего создателя.

Кто такой "Вебер-Фехнер"?

Для начала, немного изучим того человека, который является непосредственно создателем закона Вебера-Фехнера. И сразу же поправочка. Их два. Нет, не закона, а человека.

Эрнст Генрих Вебер - это психофизиолог и анатом из Германии и брат известного физика Вильгельма Эдуарда Вебера, в честь которого даже была названа единица измерения магнитного потока.

Эрнст Вебер

Густав Теодор Фехнер - психолог из Германии, а также основоположник психофизиологии и психофизики.

Густав Фехнер

История экспериментов и сущность закона Вебера-Фехнера

История зарождения этого закона началась еще в далеком одна тысяча восемьсот тридцать четвертом году, когда начали проводиться первые эксперименты Эрнста Вебера. Как раз в них ученый показал, что ощущения от нового раздражителя будут отличительны от раздражений, получаемых новым раздражителем в том случае, если интенсивность нового будет отличаться от интенсивности старого на величину, которая будет пропорциональна интенсивности предыдущего раздражителя. А уже, основываясь на этих экспериментах, Густав Фехнер сформулировал закон, о котором говорилось в данной статье выше. Закон Вебера-Фехнера в психологии также оставил большой след.

Формула закона

Ранее рассмотренная формулировка закона Вебера-Фехнера приобрела даже свою особую формулу: p=k*log\ - сила ощущения пропорциональна логарифму интенсивности раздражителя.

В этой формуле S_0 - будет являться значением, которое отражает интенсивность раздражителя.

Расшифровка формулировки закона

Для того чтобы понять эти слова лучше, представьте перед собой люстру, которая имеет восемь лампочек и все они включены. Также представьте люстры с четырьмя включенными лампочками и третью люстру со всего лишь двумя включенными лампочками. Согласитесь, первая люстра настолько же ярче второй, насколько вторая ярче третьей. Для того чтобы у нас возникало ощущение постоянного прироста яркости, количества лампочек в люстре должно будет увеличиваться в разы. И в тот же момент, наоборот! Нам может казаться, что прирост яркости уменьшается в тот момент, когда увеличивается количество включенных лампочек в люстре. Чтобы понять это, представьте, словно перед вами находится люстра с двенадцатью включенными лампочками. А после этого представьте люстру, в которой будут включены тринадцать лампочек. Вы ведь тоже практически не замечаете, что яркость увеличилась? Но если бы мы добавили одну лампочку к той люстре, что состояла из двух, то не было бы места вопросу об увеличении яркости света, исходящего от люстры.

люстра с лампочками

Итак, были подтверждены наблюдения, что человек способен чувствовать совсем не любые раздражения, а только те, которые обладают достаточно большой интенсивностью.

Пороги чувствительности в законе Вебера-Фехнера

Было обнаружено, что для того, чтобы человека почувствовал на себе действие того или иного раздражителя, его интенсивность должна будет достичь определенного уровня. Нижний порог чувствительности - это слабое и едва заметно воздействие интенсивности.

Логичным и правильным будет предположение о том, что помимо нижнего порога чувствительности существует также и верхний порог. Это тот уровень воздействия, после увеличения которого чувства уже не способны делаться сильнее.

Любое из воздействий на себя человек может чувствовать исключительно в промежутке между двумя этими состояниями. Именно из-за этого их называют внешними порогами чувствительности (или внешними порогами ощущения).

Стоит упомянуть и о том, что невозможно существовать параллелизму между интенсивностями чувствительности и раздражения, даже в межпороговом промежутке.

Расшифровка порогов чувствительности

Приведем тому пример. А для этого представьте, словно в руки вы берете какую-либо сумку, которая обладает некоторым весом. Теперь положите в вашу сумку бумажный лист. На самом деле, теперь вес сумки увеличился. Но вы этого не чувствуете, хотя эта разница находится в промежутки между этими двумя порогами чувствительности.

листы бумаги

В данном случае можно рассуждать о том, что увеличение раздражения, на самом деле, слишком мало. Порогом различения называется та величина, на которую увеличивается раздражение. Теперь можно сделать вывод о том, что раздражение со слишком малым порогом различения является допороговым, а со слишком сильным, наоборот, запороговым. Но так же уровень таких показателей зависит от чувствительности различения. Чем выше чувствительность к ней, тем ниже порог различения.

Именно Вебер был первым человеком, который обратил внимание на то, что порог различения может быть абсолютным и релятивным. Очень важно отличать первый от второго. Абсолютным порогом является тот прирост интенсивности раздражения, который необходим, чтобы достичь порога различения. Снова приведем пример.

Чтобы почувствовать изменение двух тысячи граммового веса, к нему следует добавить еще двести грамм веса. Эта величина и является абсолютным порогом чувствительности. Но в случае, если вес нашего раздражителя составляет четыре тысячи грамм, этих двух сот грамм нам окажется недостаточно для того, чтобы ощутить на себе разницу.

Особенности психологии человека

Если эти же двести грамм представить числом, выражающим отношение между добавочным раздражением и основным раздражением, то это окажется релятивным порогом различения.

Закон Вебера — Фехнера — эмпирический психофизиологический закон, заключающийся в том, что интенсивность ощущения пропорциональна логарифму интенсивности стимула.

В ряде экспериментов, начиная с 1834 года, Э. Вебер показал, что новый раздражитель, чтобы отличаться по ощущениям от предыдущего, должен отличаться от исходного на величину, пропорциональную исходному раздражителю. Так, чтобы два предмета воспринимались как различные по весу, их вес должен различаться на 1/30, для различения яркости двух источников света необходимо, чтобы их яркость отличалась на 1/100 и т. д.

p=k \log\frac<S></p>
<p>

где S0 — граничное значение интенсивности раздражителя: если S , раздражитель совсем не ощущается.

Так, люстра, в которой 8 лампочек, кажется нам настолько же ярче люстры из 4-х лампочек, насколько люстра из 4-х лампочек ярче люстры из 2-х лампочек. То есть, количество лампочек должно увеличиваться в несколько раз, чтобы нам казалось, что прирост яркости постоянен. И наоборот, если прирост яркости постоянен, нам будет казаться, что он уменьшается. Например, если добавить одну лампочку к люстре из 12 лампочек, то мы практически не заметим прироста яркости. В то же время, одна лампочка, добавленная к люстре из двух лампочек, даёт значительный кажущийся прирост яркости.

Можно сказать и так: Отношение минимального приращения силы раздражителя, впервые вызывающего новые ощущения, к исходной величине раздражителя, есть величина постоянная, (const).

Закон Вебера — Фехнера можно объяснить тем, что константы скорости химических реакций, проходящих при рецептировании, нелинейно зависят от концентрации химических посредников физических раздражителей или собственно химических раздражителей.

См. также

Wikimedia Foundation . 2010 .

Полезное

Смотреть что такое "Вебера-Фехнера закон" в других словарях:

ВЕБЕРА-ФЕХНЕРА ЗАКОН — ВЕБЕРА ФЕХНЕРА ЗАКОН, связывает едва заметный прирост раздражителя с первоначальной величиной раздражителя. Исследования, произведенные Вебером, показали, что для ощущения давления можно установить след. закон: едва заметный прирост ощущения веса … Большая медицинская энциклопедия

ВЕБЕРА–ФЕХНЕРА ЗАКОН — – открытый Э.Г. Вебером (1834) и развитый дальше Г.Т. Фехнером осн. закон психофизики, согласно которому при увеличении силы раздражения в геометрической прогрессии (1, 2, 4, 8, 16 и т. д.) интенсивность ощущения увеличивается в арифметической… … Философская энциклопедия

Вебера-Фехнера закон — логарифмическая зависимость силы ощущения (Е) от физической интенсивности раздражителя (Р): Е=k log P+ + c, где k и с нек рые постоянные, определяемые данной сенсорной системой. Эта зависимость была выведена немецким психологом и физиологом Г. Т … Большая психологическая энциклопедия

Вебера-Фехнера закон — Вебера ≈ Фехнера закон, основной психофизический закон, определяет связь между интенсивностью ощущения и силой раздражения, действующего на какой либо орган чувств. Основан на наблюдении немецкого физиолога Э. Вебера, который установил (1830≈34) … Большая советская энциклопедия

Вебера-Фехнера (закон) — Возникновение экспериментальной психологии Основной психофизический закон Вебера Фехнера Если социология (в духе позитивизма) успешно развивалась во Франции, то Германия стала родиной научной психологии в ее тесной связи с физикой, биологией … Западная философия от истоков до наших дней

ВЕБЕРА-ФЕХНЕРА, ЗАКОН — Так как закон Фехнера является производным из закона Вебера, то этот объединенный термин иногда используется для того, чтобы охватить обобщения обоих. В более старой литературе возникает некоторая путаница в том, чей закон называется, чьим именем … Толковый словарь по психологии

ВЕБЕРА-ФЕХНЕРА ЗАКОН — [по имени нем. физиолога и анатома Э.Г. Вебера (E.H. Weber, 1795 1878) и нем. врача и физика Г.Т. Фехнера (G.Th. Fechner, 1801 1887)] закон, устанавливающий зависимость между интенсивностью раздражителя и вызванного им ощущения; согласно В. Ф. з … Психомоторика: cловарь-справочник

Вебера - Фехнера закон — основной психофизический закон, определяет связь между интенсивностью ощущения и силой раздражения, действующего на какой либо орган чувств. Основан на наблюдении немецкого физиолога Э. Вебера, который установил (1830 34), что… … Большая советская энциклопедия

Вебера-Фехнера закон — (Е. Н. Weber, 1795 1878, нем. физиолог и анатом; G. Th. Fechner, 1801 1887, нем. врач и физик) см. Психофизический закон … Большой медицинский словарь

Закон Вебера — Фехнера — Закон Вебера Фехнера эмпирический психофизиологический закон, заключающийся в том, что интенсивность ощущения пропорциональна логарифму интенсивности стимула. В ряде экспериментов, начиная с 1834 года, Э. Вебер показал, что новый… … Википедия

Закон Вебера-Фехнера — один из важнейших в психологии.

Прежде чем приступить к теории закона Вебера-Фехнера, мы должны знать, что одной из наиболее важных частей психологии является функциональный анализ, который может существовать между физическими стимулами и эффекторными или открытыми реакциями , поскольку именно он породил психофизические законы.

закон вебера

Изучение стимулов и наблюдаемых реакций позволило узнать о сенсомоторной обусловленности . Кроме того, можно узнать, как внешние стимулы вызывают неполноценные реакции, которые касаются субъективных переживаний, доступных только через интроспективный процесс, как в случае с ощущениями.

Это означает, что все имеет свои следствия-причины, которые вызваны агентом как внутренним, так и внешним, и который имеет ряд видимых последствий в человеческом существе ясным и чувствительным образом, который не для всех может быть одинаковым, для чего как минимум, восприятие может быть относительным в некоторых случаях, если не применяется правильная формула, которая в этом случае является ясным и абсолютным свидетельством перед любым примером.

Кто такой Вебер и Фехнер?

Э. Х. ВЕБЕР (1795-1878), профессор анатомии и физиологии, был соучредителем современной физиологии, особенно сенсорной физиологии и психофизики.

С помощью различных экспериментов он смог доказать, что расстояние между двумя сенсорными стимулами в отдельных точках на поверхности тела должно быть очень разным, чтобы можно было воспринимать два отдельных стимула.

Г. Т. ФЕХНЕР (1801–1887) был профессором физики и главным стимулятором психофизики. Фехнер продолжил результаты Вебера и пришел к выводу, что усиление стимула, которое только что ощущалось, постоянно пропорционально начальному стимулу.

Пример: Если увеличение освещенности с 10 до 12 свечей почти не ощущается, то при 10 свечах необходимы 2 дополнительные свечи, при 20 свечах еще 4, при 30 свечах еще 6 и т. д. Арифметические серии растут, когда соответствующие стимулы увеличиваются в геометрических рядах. Это закон Фехнера в психологии применяется примерно в средних областях почти всех сенсорных зон.

История экспериментов и сущность закона Вебера-Фехнера

Истоки этой теории исходят от немецкого философа Фехнера, который также был дипломированным врачом и профессором физики и философии. Он разработал психофизический закон, а точнее первый закон психофизики, используя прямые методы.

Для достижения результатов своей теории он начал с закона Вебера, устанавливающего количественную связь между величиной физического стимула и тем, как он воспринимается.

Со своей стороны, Вебер установил закон ощущения (Закон Вебера), в котором он предложил математическую связь, существующую между интенсивностью любого стимула и ощущением, которое он производит.

Благодаря основному психофизическому закону Вебера-Фехнера, основанным на научных исследованиях, относящихся к области психологии, был сделан вывод, что все человеческие действия могут быть объяснены физико-химическими принципами, что позволило нам рассматривать психологию, в частности, психофизику, как зарождающуюся науку.

Формула закона

психофизический закон вебера

S – ощущение;

Е = стимул;

R 0 = константа (постоянная) интеграции (пороговый стимул), разная для каждой сенсорной модальности;

C = фактор (коэффициент), зависящий от стимула.

закон вебера психология

Расшифровка формулировки закона

Люди постоянно подвергаются воздействию множества различных раздражителей в окружающей их среде — в первую очередь звука и света. Эти компоненты играют важную роль не только для здоровья, но и для оценки физики здания при планировании внутренних и внешних помещений.

Закон Вебера-Фехнера или основной психофизический закон определяет субъективно воспринимаемую интенсивность стимула E, пропорциональную логарифму интенсивности физического стимула R.

В упрощенном виде это означает, что увеличение объективной (измеряемой) интенсивности стимула вызывает значительное увеличение субъективного восприятия — например, чем выше воздействие звука, тем чувствительнее человек на него реагирует.

Пороги чувствительности в законе Вебера-Фехнера

Закон Вебера-Фехнера

Расшифровка порогов чувствительности

Абсолютный порог

Абсолютный порог определяет пределы нашего восприятия. Чтобы мы могли уловить стимул, он должен иметь минимальную или максимальную величину; в некоторых сенсорных модальностях — звук, стр. Например, — также бывает, что когда стимул имеет очень большую величину, мы также не можем его воспринимать. Абсолютные пороги определяют эти пределы восприятия. Не все виды имеют одинаковый порог, и различия можно даже увидеть между разными особями.

  • Минимальный абсолютный порог: относится к минимальной величине, которую должен иметь стимул для восприятия. Некоторые исследования, кажется, показывают, что ниже этого порога все еще существуют определенные типы стимулов, которые могут быть уловлены нашим разумом, хотя и не сознательно, и которые могут, так или иначе, воздействовать на субъекта (так называемоеподсознательное восприятие).
  • Максимальный абсолютный порог: максимальная величина стимула, которая может быть перенесена или ощутима субъектом.

Дифференциальный порог

Дифференциальный порог относится к различающей способности наших чувств. То есть он описывает, какова минимальная интенсивность, при которой стимул должен увеличиваться, чтобы мы заметили его усиление; Например, если мы держим в руке предмет весом в сто грамм, на сколько должен увеличиться этот стимул, чтобы мы заметили усиление ощущения веса.

Замечено, что для каждой сенсорной модальности дифференциальный порог различен, зрительная модальность является наиболее тонкой для улавливания увеличения, а запах — самым грубым.

Закон Вебера-Фехнера

Отношение между раздражением и ощущением

Каждый тип восприятия имеет место в определенном динамическом диапазоне. Мы можем оценить вес объекта от нескольких миллиграммов до 70, 80, 90 или, в зависимости от силы мышц, даже больше килограммов.

Для сравнения: большинство весов для ванной имеют динамический диапазон от 2 до 150 кг. В зависимости от сенсорного рецептора динамический диапазон нашего восприятия может колебаться. Он относительно невелик для веса, но для восприятия громкости он представляет собой увеличение звукового давления в триллион раз между самым тихим, все же ощутимым шумом и самым громким, но не болезненным звуком.

Однако наше восприятие имеет ограниченную точность, как и любой физический измерительный прибор. Интервал неопределенности определяет диапазон физически различных стимулов, которые мы воспринимаем психологически, т.е. в нашем опыте, как один и тот же.

Другими словами, дуб, например, должен вырасти немного больше нашего интервала неопределенности, чтобы мы ощутили его как более крупный.

Итак, дуб обычно не становится меньше, но другие объекты могут изменяться в обоих направлениях, поэтому интервал неопределенности состоит из порогов различий (также называемых реалиями уровня) вниз и вверх.

Если стимул изменяется сверх порога различия, то мы воспринимаем это изменение, в противном случае — нет.

Как следует из примера с дубом, размер порогов различий зависит от размера исходного стимула. Если в случае с дубом ощутимое увеличение стимула должно быть довольно большим, то для дерева бонсай уже достаточно небольшой новой ветки, чтобы казалось, что оно выросло.

Но закон Вебера-Фехнера не распространяется на чувствительность. Эксперимент Вебера с тремя чашами впечатляющим образом показывает, насколько сильно на наше восприятие влияет предыдущий опыт.

Для этого он взял три миски. Одну наполнил очень холодной водой, другую — очень горячей, а третью — водой комнатной температуры.

Подержав одну руку в миске с холодной водой, а другую руку — в миске с горячей водой примерно одну-две минуты. Затем погрузил обе руки в миску с водой комнатной температуры. В зависимости от того, была ли одна или другая рука ранее в холодной или горячей воде, теперь руки ощущают разную температуру воды при комнатной температуре.

Закон специфической энергии

Физиологические исследования привели Мюллера (1801-1858, немецкий физиолог и психолог) к защите тезиса о том, что качество ощущений зависит не столько от типа стимула, воздействующего на наши органы чувств, сколько от типа нервных волокон, участвующих в восприятии.

Другими словами, если стимулировать зрительную систему, мы будем испытывать зрительные ощущения, если стимулировать нервы, специализирующиеся на вызывании ощущений тепла, мы будем испытывать тепло, независимо от того, является ли стимул светом или нет, является ли он теплом или нет — в этом случае мы можем вспомнить парадоксальный холод.

Закон Мюллера также заинтересовал философов, потому что он, кажется, предлагает определенное одобрение идеалистического тезиса, противоположного философскому реализму: в применении к предмету восприятия философский реализм утверждает, что чувственные качества, которые мы воспринимаем в объектах, являются следствием объективных свойств, которыми они сами обладают.

Для философского идеализма, напротив, эти качества являются проекцией нашего разума на предполагаемый мир, в котором, как мы полагаем, мы находимся.

Сегодня исследователи не полностью принимают закон Мюллера, указывая на то, что эволюция, похоже, наделила органы чувств анатомическими и функциональными особенностями, которые показывают специализацию на различных модальностях стимулов. То есть, эволюция, похоже, наделила нас зрительной системой для восприятия цветов, форм и размеров для объектов, которые имеют цвета, формы и размеры, и не иметь этих ощущений для других видов стимулов.

Закон Вебера — Фехнера гласит о том, что сила звука увеличивается в геометрической прогрессии, а громкость — в арифметической. В этой статье вы узнаете, как расшифровывается формулировка психофизического закона, и как он был создан.


Согласно закону, интенсивность ощущений прямо пропорциональна логарифму интенсивности стимула. Его авторами являются специалист в области психологии Г. Фехнер и психофизиолог Э. Вебер. В ходе своих экспериментов Вебер пришел к выводу, что новый раздражитель принесет другие ощущения, если он будет по интенсивности отличаться от старого, воздействуя на величину, пропорциональную интенсивности первоначального раздражителя.

Стоит отметить, что фундаментальной основой для закона Вебера — Фехнера стали законы физика Бугера и Стивенса, имеющие тесную связь.

Как расшифровывается закон?

Чтобы лучше понять суть закона, надо рассмотреть пример. Так, если в комнате будет находиться 3 люстры с 2, 4 и 8 включенными лампочками, то каждая из люстр будет светиться одинаково ярче предыдущей. Чтобы у человека было ощущение, что яркость становится больше, количество ламп должно в разы увеличиваться. Например, если человек будет смотреть на люстру с десятью лампочками, а потом посмотрит сразу же на люстру с одиннадцатью включенными лампами, то практически ничего не заметит. В ходе наблюдений выявили, что человек способен реагировать не на любой раздражитель, а только на достаточно интенсивный.

Понятие порогов чувствительности

Если порог чувствительности слишком мал, действие раздражителя будет практически незаметно. Также стоит отметить, что если в чувствительности есть нижний показатель, то существует и верхний. Ощущение изменений происходит при нахождении между этими двумя показателями.

Если говорить о порогах чувствительности, то тут различие очевидно. Например, если взять в одну руку пустую сумку, а в другую — сумку с листом бумаги, человек этого абсолютно не заметит, так как лист весит мало. В данном случае происходит допороговое раздражение. Если же раздражитель имеет значительный вес, то раздражение можно назвать запороговым. Чем выше будет чувствительность, тем ниже эффект различения.

Закон Вебера — Фехнера имеет формулу: Y(ощущение) = k(константа) * S(стимул) и n(показатель степени функции). При этом показатель степени функции может изменяться в зависимости от ощущений.

Основным отличием сенсорной системы является умение замечать различия при одновременно или постепенно действующих раздражителях. Сенсорная адаптация бывает глобальной и селективной. Если при глобальной адаптации происходит снижение абсолютной и повышение дифференциальной чувствительности, то при селективной происходит постепенное привыкание к раздражителю. Селективная адаптация распространяется на всю нервную систему, снижая чувствительность.

То, как человек воспринимает различные раздражители, влияет на его понимание окружающей действительности. А восприятие во многом зависит от активности и эффективности работы мозга. Тренажеры Викиум помогают держать мозг в тонусе и развивать когнитивные функции.

Читайте также: