Закон сохранения материи и движения кратко

Обновлено: 06.07.2024

Зако́ны сохране́ния — фундаментальные физические законы, согласно которым при определённых условиях некоторые измеримые физические величины, характеризующие замкнутую физическую систему, не изменяются с течением времени.

Философские предпосылки к открытию закона были заложены ещё античными философами, а также Декартом и М. В. Ломоносовым.

Некоторые из законов сохранения выполняются всегда и при всех условиях (например, законы сохранения энергии, импульса, момента импульса, массы, электрического заряда), или, во всяком случае, никогда не наблюдались процессы, противоречащие этим законам. Другие законы являются лишь приближёнными и выполняющимися при определённых условиях (например, закон сохранения чётности выполняется для сильного и электромагнитного взаимодействия, но нарушается в слабом взаимодействии).

Законы сохранения связаны с симметриями физических систем (теорема Нётер). Так, законы сохранения энергии, импульса и момента импульса являются следствиями пространственно-временных симметрий (соответственно: однородности времени, однородности и изотропности пространства). При этом перечисленные свойства пространства и времени в аналитической механике принято понимать как инвариантность лагранжиана относительно изменения начала отсчета времени, переноса начала координат системы и вращения ее координатных осей.

Литература

  • Визгин В. П. Развитие взаимосвязи принципов инвариантности с законами сохранения в классической физике. М.: Наука, 1972. 240 с.

См. также

Примечания

Wikimedia Foundation . 2010 .

Полезное

Смотреть что такое "Законы сохранения" в других словарях:

ЗАКОНЫ СОХРАНЕНИЯ — ЗАКОНЫ СОХРАНЕНИЯ, физические законы, согласно которым некоторое свойство замкнутой системы остается неизменным при каких либо изменениях в системе. Самыми важными являются законы сохранения вещества и энергии. Закон сохранения вещества… … Научно-технический энциклопедический словарь

законы сохранения — [laws of conservation] физические закономерности, согласно которым численные значения некоторых физичических величин не изменяются со временем в любых процессах или в определенном классе процессов. Важнейшими, справедливыми для любых… … Энциклопедический словарь по металлургии

СОХРАНЕНИЯ ЗАКОНЫ — физич. закономерности, согласно к рым численные значения нек рых физ. величин не изменяются со временем в любых процессах или в определ. классе процессов. Полное описание физ. системы возможно лишь в рамках динамич. законов, к рые детально… … Физическая энциклопедия

СОХРАНЕНИЯ ЗАКОНЫ — СОХРАНЕНИЯ ЗАКОНЫ, наиболее общие физические законы, согласно которым численные значения некоторых физических величин, характеризующих физическую систему, при определенных условиях не изменяются с течением времени при различных процессах в этой… … Современная энциклопедия

СОХРАНЕНИЯ ЗАКОНЫ — законы, согласно которым численные значения некоторых физических величин не изменяются с течением времени при различных процессах. Важнейшие законы сохранения законы сохранения энергии, импульса, момента количества движения, электрического заряда … Большой Энциклопедический словарь

Сохранения законы — в аэро и гидродинамике фундаментальные законы механики, сформулированные для движущейся сплошной среды и выражающие собой законы сохранения массы, импульса и энергии. Если поверхностные интегралы с помощью формулы Грина выразить через объёмные и… … Энциклопедия техники

СОХРАНЕНИЯ ЗАКОНЫ — законы, согласно к рым численные значения нек рых физ. величин не изменяются с течением времени в любых процессах или в определ. классе процессов. Важнейшие С. з., справедливые для любых изолиров. систем, законы сохранения энергии, импульса,… … Естествознание. Энциклопедический словарь

сохранения принципы — СОХРАНЕНИЯ ПРИНЦИПЫ особый класс научных принципов, отображающих постоянство фундаментальных свойств или отношений природы. В структуре физических теорий С. п. формулируются как законы сохранения и как принципы инвариантности. В настоящее … Энциклопедия эпистемологии и философии науки

СОХРАНЕНИЯ ПРИНЦИПЫ — утверждения, выражающие идею сохранения вещей, свойств или отношений природы и выступающие в качестве принципов науч. теорий. К числу С. п. относятся, напр. известные в физике законы сохранения – энергии, массы, импульса, момента импульса,… … Философская энциклопедия

Сохранения законы — физические закономерности, согласно которым численные значения некоторых физических величин не изменяются со временем в любых процессах или в определённом классе процессов. Полное описание физической системы возможно лишь в рамках… … Большая советская энциклопедия

Сохранения материи закон, согласно которому при всех явлениях природы количество вещества остается постоянным: при всяком явлении, будет ли оно физическое, химическое или биологическое, вещество может изменять свой вид, форму, но количество его остается неизменным, общий вес тел, участвующих в явлении, остается неизменным. Как философское положение, закон этот был высказан еще в глубокой древности: греческие философы V века до Рождества Христова Анаксагор (см.) и Эмпедокл (см.) учили, что в природе ничто не происходит из ничего и ничто не может быть уничтожено. Такое же положение лежит в основе учения древних атомистов (ср. атом) Левкиппа (см.) и Демокрита (см.) (V век до Рождества Христова).

Дóлтоном (Дальтоном) (см.) была введена в химию атомистическая теория, в основе которой лежит положение о сохранении вещества, и за ХІХ век достаточно набралось косвенных доказательств, чтобы считать закон постоянства веса основным законом природы, соответствующим практическим результатам количественной химии. Укажем, что при классических исследованиях бельгийского ученого Стаса (1865 г.) (см.), предпринятых для определения атомных весов, отступления от закона постоянства веса колебались в пределе 0,002%, лежащих вне предела точности опытов.

В 1890 году заслуживший своими точными работами почетную известность немецкий физикохимик Г. Ландольт (см.) предпринял серию экспериментальных работ, законченных в 1908 году и отличающихся поразительной точностью, с целью проверить закон постоянства веса при химических реакциях. Опыты производились в сосудах из тюрингенского, потом из иенского стекла, а впоследствии даже из кварца; кроме того, в некоторых опытах были применены цилиндрические стеклянные сосуды в роде сосудов Дьюара с двойными стенками, между которыми находится безвоздушное пространство. В некоторых случаях сосуды на внутренних стенках были покрыты слоем парафина. Емкость сосудов была значительна, вес участвующих тел колебался в различных опытах от 41,0 г до 416,0 г. Весы были таковы, что максимальная ошибка опытов достигала 0,024 миллиграмма, так что всякая разница в весе до и после реакции, превышающая 0,03 миллиграмма, наверно могла быть установлена как не относящаяся более к ошибкам наблюдателя. При опытах в 1890-1901-1905 годах Ландольт нашел, что при химических реакциях взаимодействия двух тел в водном растворе (например, осаждение золота, серебра солями железа и т. под.) как бы нормальным явлением представляется уменьшение веса после реакции, следовательно, нарушение закона постоянства веса. Но можно было предположить, что эта убыль происходит от какой-либо внешней причины, и опыты, предпринятые Ландольтом в 1906 году, действительно показали, что существует источник ошибок, происходящих особенно при реакциях, сопровождающихся выделением тепла. Приняв во внимание эти ошибки, Ландольт пришел к окончательному выводу, что при всех произведенных разнородных химических реакциях не наблюдалось изменения общего веса взаимодействующих тел.

Доставленное Ландольтом экспериментальное доказательство закона постоянства веса при химических реакциях находится в согласии с результатами работ других ученых исследователей этого вопроса.

Закон постоянства веса часто называют законом вечности материи (см. XXVI, 356). Такое название получило свое основание в том представлении о строении материи и об элементах, которое получило свое развитие в первой половине XIX века и поддерживалось такими авторитетами, как Клерк Максуэлл (см.) и др.

Таким образом, нельзя говорить о законе вечности материи, а можно только утверждать, что в пределах явлений и опытов, совершающихся на земле, наблюдается закон сохранения веса участвующих в явлении тел.

Деятельность Михаила Васильевича Ломоносова была связана с Академией наук. Несмотря на противодействие занимавших руководящие посты иностранцев, ученый развернул в ней интенсивную научную работу. По широте интересов, глубине проникновения в тайны мироздания Ломоносову принадлежит одно из самых видных мест в истории культуры всего человечества. Его можно сравнить с такими гигантами мировой культуры, как Леонардо да Винчи и Гете. Не было почти ни одной отрасли современной ему науки, техники и культуры, которой бы он не знал и в развитие которой не внес бы свой вклад. А. С. Пушкин сказал о гениальном русском ученом, что он, соединяя необыкновенную силу воли с необыкновенной силой понятия, обнял все отрасли просвещения.

Ломоносов хорошо владел научным методом познания. Он учил, что сначала нужно произвести наблюдения, потом на основании наблюдений установить теорию и затем проверить ее на практике. Исходя из этого правила, он для отыскания причин явлений всегда обращался к опыту. Отличительными чертами творчества Ломоносова были широта и практическая ценность разрабатываемых им научных проблем, смелость и оригинальность их решения.

Всякое явление Ломоносов пытался объяснить математически. Он считал, что в природе нет ничего, что нельзя было бы изучить, понять. Он полагал, что Солнце и планеты не были созданы богом, а возникли по естественным законам.

Ломоносов работал в самых различных отраслях науки, но наибольших успехов достиг в области физики и химии.

Замечательно, что под движением Ломоносов понимает не только механическое перемещение, но и тепловое; по сути дела он высказывал мысль о переходе одних форм движения в другие.

Ломоносов не только сформулировал свой закон, но и применял его. Так, пользуясь этим законом, он объяснил процесс перехода энергии при теплопередаче, процессы, происходящие в охлаждающих смесях, и другие случаи перехода энергии.

С развитием физики и техники формулировка закона сохранения энергии все более и более уточняется. Необходимость улучшения тепловых машин и их коэффициента полезного действия заставила более обстоятельно заняться изучением тепловых процессов. Это привело к окончательному выяснению того, что теплота является формой энергии, и к установлению впоследствии Майером, Джоулем, Гельмгольцем и Линцом механического эквивалента теплоты. Таким образом, Ломоносов является прямым предшественником этих ученых.

Читайте также: