Закон однонаправленности потока энергии кратко

Обновлено: 28.03.2024

Аксиома адаптированности (Ч. Дарвин) – каждый вид адаптирован к строго определенной, специфичной для него совокупности условий существования.

Аксиома об иерархической структуре биосферы (В.Б. Сочава, 1957 г.) – биосфера представляет собой систему, организованную в виде множества подсистем различного уровня.

Закон биогенной миграции атомов (В.И. Вернадский, 1942 г.) – миграция химических элементов на земной поверхности и в биосфере в целом осуществляется при непосредственном участии живого вещества (биогенная миграция) или же протекает в среде, геохимические особенности которой (кислород, углекислый газ, водород и т. д.) обусловлены живым веществом (тем, которое населяет биосферу в настоящее время, и тем, которое существовало на Земле в течение всей геологической истории).

закон биогенетический (Э. Геккель, Ф. Мюллер) – онтогенез (индивидуальное развитие) организма есть краткое повторение филогенеза (предковых форм) данного вида, т. е. индивид в своем развитии повторяет сокращенно историческое развитие своего вида.

закон биоклиматический (А. Хопкинс, 1918 г.) – По мере продвижения на север, восток и вверх в горы время наступления периодических явлений в жизнедеятельности организмов запаздывает на четыре дня на каждые 1 градус широты, 5 градусов долготы и примерно 100 м высоты.

закон больших чисел – совокупное действие большого числа случайных факторов приводит при некоторых общих условиях к результату, почти не зависящему от случая.

закон бумеранга – все, что извлечено из биосферы человеческим трудом, должно быть возвращено ей.

закон внутреннего динамического равновесия – любая природная система обладает внутренней энергией, веществом, информацией и динамическими качествами, связанными настолько, что любое изменение одного из этих показателей вызывает в другом или том же, но в другое время, изменения, сохраняющие всю сумму перечисленных показателей.

закон давления жизни (ограниченного роста) (Ч. Дарвин) – имеются ограничения, препятствующие тому, чтобы потомство одной пары особей, размножаясь в геометрической прогрессии, заполнило всю Землю.

Закон исторического саморазвития БИОСИСТЕМ (Э. Бауэр) – развитие биологических систем есть результат увеличения их внешней работы, т.е. воздействия этих систем на окружающую среду.

закон константности количества живого вещества биосферы (В.И. Вернадский, 1919 г.) – количество живого вещества (биомассы всех организмов) биосферы для данной геологической эпохи постоянно.

Закон корреляции (Ж. Кювье, 1793 г.) – в организме, как целостной системе, все его части соответствуют друг другу как по строению, так и по выполняемым функциям.

Закон максимизации энергии (Ю. и Э. Одумы, 1978 г.) – в соперничестве с другими системами выживает (сохраняется) та из них, в которой наилучшим образом обеспечивается поступление энергии и максимальное ее количество используется наиболее эффективным способом.

закон максимума биогенной энергии (энтропии) (В.И. Вернадский, Э.С. Бауэр) – любая биологическая или биокосная система, находясь в динамическом равновесии с окружающей средой и эволюционно развиваясь, увеличивает свое воздействие на среду, если этому не препятствуют внешние факторы.

закон минимума (Закон ограничивающего фактора) (Ю. Либих) – биотический потенциал (жизнеспособность, продуктивность организма, популяции, вида) лимитируется тем из факторов среды, который находится в минимуме, даже если все остальные условия благоприятны. Или: наиболее значим тот фактор, который больше всего отклоняется от оптимальных для организма значений; от него зависит в данный момент выживание особей; веществом, присутствующим в минимуме, управляется рост. Или: Относительное действие отдельного экологического фактора тем сильнее, чем в большей степени по сравнению с другими ощущается его нехватка.

Закон незаменимости биосферы – биосферу нельзя заменить искусственной средой, это единственная система, обеспечивающая устойчивость среды обитания при любых возникающих возмущениях. Нет никаких оснований надеяться на создании новых искусственных видов жизни, систем, обеспечивающих стабилизацию окружающей среды в той же степени, что и естественные сообщества.

закон необратимости эволюции (Л. Долло) – эволюция необратима; организм (популяция, вид) не может вернуться к прежнему состоянию, уже осуществленному в ряду его предков, даже вернувшись в среду их обитания.

Закон необходимого разнообразия – система не может состоять из абсолютно идентичных элементов, но может иметь иерархическую организацию и интегративные уровни.

закон неравномерности развития частей системы – система одного уровня развивается не строго синхронно: в то время как один достигает более высокой стадии развития, другие остаются в менее развитом состоянии.

закон ограниченности природных ресурсов – все природные ресурсы и условия Земли конечны, даже так называемые неисчерпаемы ресурсы. Например, солнечная энергия не может быть использована биосферой в неограниченных количествах без катастрофических для нее последствий. На примере одного поколения людей стало ясно, что чистая вода – исчерпаемый ресурс.

закон оптимальности – любая система с наибольшей эффективностью функционирует в некоторых характерных для нее пространственно-временных пределах. Или: никакая система не может сужаться и расширяться до бесконечности, т. е. размер любой системы должен соответствовать ее функциям. Например, млекопитающее не может быть мельче или крупнее тех размеров, при которых оно способно рождать живых детенышей и вскармливать их молоком. Никакой целостный организм не может превысить критические размеры, обеспечивающие поддержание его энергетики.

закон пирамиды энергий Р. Линдемана – см. правило десяти процентов.

Закон совокупности (совместного) действия природных факторов (Э. Митчерлих, А. Тинеман, Б. Бауле, 1911 г.) – величина урожая (благополучие вида, популяции, организма) зависит не от отдельного, пусть даже лимитирующего, фактора, но от всей совокупности экологических факторов одновременно.

закон сохранения жизни – жизнь может существовать только в процессе движения через живое тело потока веществ, энергии, информации.

закон сукцессионного замедления – процессы, идущие в зрелых равновесных системах, находящихся в устойчивом состоянии, как правило, проявляют тенденцию к снижению темпов.

закон убывающего естественного плодородия – каждое последующее прибавление для организма фактора дает меньший эффект, чем результат, полученный от предшествующей дозы того же фактора. Или: в связи с постоянным изъятием урожая (а потому химических веществ из почвы), нарушением естественных процессов почвообразования, а также из-за постепенного самоотравления почв при возделывании монокультур, происходит снижение естественного плодородия.

Закон усложнения организации организмов (К.Ф. Рулье, 1837 г.) – историческое развитие живых организмов (а также всех иных природных систем) приводит к усложнению их организации путем нарастающей дифференциации (разделения) функций и органов (подсистем), выполняющих эти функции.

Закон физико-химического единства живого вещества (общебиосферный закон) – живое вещество физико-химически едино; при всей разнокачественности живых организмов они физико-химически сходны: что вредно для одних, то не безразлично и для других (например, загрязняющие вещества опасны как животным, так и людям).

закон хиральной чистоты живого (от греч. heir – рука) – живое вещество состоит только из хирально чистых структур. Молекулы сахаров, входящих в состав биополимеров (например, ДНК, РНК), содержащихся в живых организмах, представляют собой так называемые D-изомеры (правовращающие стереоизомеры, которые поляризуют проходящий свет вправо). Структурные формулы
D- и L-изомеров отличаются как правая и левая рука. В неживых системах число право- и левовращающих изомеров примерно одинаково. Л. Пастер еще в середине XIX в. открыл оптическую изомерию и обнаружил, что плесневые грибы избирательно поглощают один из стереоизомеров. Этот закон важно учитывать при изготовлении лекарственных средств, пищевых добавок.

закон шагреневой кожи (Н.Ф. Реймерс) – глобальный исходный природно-ресурсный потенциал в ходе исторического развития непрерывно истощается.

Закон экологического оптимума (В. Шелфорд) – каждый экологический фактор имеет лишь определенные пределы положительного влияния на организм. Недостаточное или избыточное действие фактора отрицательно сказывается на жизни организмов. Границы благоприятного воздействия фактора – зона оптимума экологического фактора.

закон экологической корреляции – в экосистеме все входящие в нее живые и неживые экологические компоненты соответствуют друг другу, поэтому выпадение одной части системы, на-пример, уничтожение вида, неминуемо ведет к изменению всей системы в рамках закона внутреннего динамического равновесия.

Закон эмерджентности – целое всегда имеет особые свойства, отсутствующие у его частей.

Закономерность снижения природоемкости готовой продукции – удельное содержание природного вещества в усредненной единице общественного продукта неуклонно снижается. Это не означает, что в процесс производства вовлекается меньше природного вещества, наоборот, его количество увеличивается, но при этом выбрасывается около 95 % потребляемого в производстве природного вещества. снижение природоемкости конечной продукции объясняется миниатюризацией изделий, заменой естественных материалов синтетическими, сменой вещественных отношений информационными (например, безбумажные книги на электронных носителях).

Закономерность увеличения оборота вовлекаемых природных ресурсов – быстрота оборачиваемости вовлеченных первичных и вторичных природных ресурсов непрерывно возрастает и при этом требуется все больше энергии.

периодический закон географической зональности (А.А. Григорьев, М.М. Будыко) – со сменой физико-географических поясов Земли аналогичные ландшафтные зоны и некоторые общие свойства периодически повторяются, т. е. в каждом поясе (субарктическом, умеренном, субтропическом, тропическом, экваториальном) происходит смена зон по схеме: леса – степи – пустыни.

Правило Д. Аллена (Дж. Ален, 1877 г.) – выступающие части тела теплокровных животных в холодном климате короче, чем в теплом, поэтому в целом они отдают в окружающую среду меньше тепла.

правило К. Бергмана (К. Бергман, 1847 г.) – у теплокровных животных, подверженных географической изменчивости, размеры тела особей статистически (в среднем) больше у популяций, обитающих в более холодных частях ареала. (Подтверждается в 50 % случаев у млекопитающих и в 75–90 % случаев у птиц.)

правило биологического усиления – при переходе на более высокий уровень экологической пирамиды накопление ряда веществ, в том числе токсичных и радиоактивных, увеличивается примерно в такой же пропорции.

Правило Викариата (от лат. vicarious – замещающий) (Д. Джордан, 1887) – ареалы близкородственных форм животных (ви-дов или подвидов) обычно занимают смежные территории и существенно не перекрываются; родственные формы, как правило, викарируют, т. е. географически замещают друг друга.

Правило взаимоприспособленности организмов в биоценозе (К. Мёбиус, 1864) – виды в биоценозе приспособлены друг к другу настолько, что их сообщество составляет внутренне противоречивое, но единое и взаимно увязанное системное целое.

Правило внутренней непротиворечивости – в естественных экосистемах деятельность входящих в них видов направлена на поддержание этих экосистем как среды собственного обитания.

Правило географического оптимума – в центре ареала вида наблюдаются оптимальные условия для его существования, которые ухудшаются к периферии.

Правило Глогера (К. Глогер, 1833 г.) – виды животных, обитающих в холодных и влажных зонах, имеют более интенсивную пигментацию тела (чаще черную или темно-коричневую), чем обитатели теплых и сухих областей. Это позволяет им аккумулировать достаточное количество тепла.

Правило демографического насыщения – в глобальной совокупности количество народонаселения всегда соответствует максимальной возможности поддержания его жизнедеятельности, включая все аспекты сложившихся потребностей человека.

Правило замещения экологических условий (В.В. Алёхин, 1931 г.) – любое условие среды в некоторой степени может замещаться другим; следовательно, внутренние причины экологических явлений при аналогичном внешнем эффекте могут быть различными.

Правило интегрального ресурса (от лат. integer – цельный, единый) – отрасли хозяйства, конкурирующие в сфере использования определенных природных систем, неминуемо наносят ущерб друг другу.

правило константности числа видов в биосфере – в сформировавшейся биосфере число появляющихся видов в среднем равно числу вымерших, общее видовое разнообразие в биосфере есть константа.

Правило максимума энергии поддержания зрелой системы – сукцессия идет в направлении фундаментального сдвига потока энергии в стороны увеличения ее количества, направленного на поддержание системы.

Правило множественности экосистем – множественность конкурентно-взаимодействующих экосистем обязательна для поддержан6ия надежности биосферы.

Правило обязательного заполнения экологической ниши – пустующая экологическая ниша со временем обязательно заполнится.

Правило одного процента – для биосферы в целом доля возможного потребления чистой первичной продукции (на уровне консументов высшего порядка) не превышает 1 %.

правило соответствия условий среды генетической предопределенности организма – вид может существовать до тех пор, пока окружающая его среда соответствует генетическим возможностям приспособления этого вида к ее колебаниям и изменениям (богатству генофонда).

правило сохранения упорядоченности (И. Пригожин) – в открытых системах энтропия не возрастает, а уменьшается до тех пор, пока не достигается минимальная постоянная величина, всегда большая нуля.

Правило социально-экологического замещения – удовлетворение некоторых потребностей человека в определенных жизненных условиях может быть до определенной степени скомпенсировано более полным удовлетворением других, функционально близких потребностей.

правило А. Уоллеса – по мере продвижения с севера на юг видовое разнообразие увеличивается, т. к. северные биоценозы исторически моложе и испытывают недостаток солнечной энергии.

правило ускорения эволюции – с ростом сложности организации биосистем продолжительность существования вида в среднем сокращается, а темпы эволюции возрастают. Средняя продолжительность существования вида птиц – 2000000 лет, вида млекопитающих – 800000 лет. Число вымерших видов птиц и млекопитающих велико в сравнении с общим их количеством.

правило шварца экологическое (С.С. Шварц) – каждое изменение условий существования прямо или косвенно вызывает соответствующие перемены в способах реализации энергетического баланса организма.

правило экологического дублирования – исчезнувший или уничтоженный вид в рамках одного уровня экологической пирамиды заменяет другой, аналогичный. В этой схеме мелкий вид заменяет крупного, ниже организованный более высоко организованного, более генетически лабильный – менее генетически изменчивого. Особи измельчаются, но общая биомасса увеличивается.

правило экотона (краевого эффекта) – на стыках биоценозов увеличивается число видов и особей в них, т. к. возрастает число экологических ниш из-за возникновения на стыках новых системных свойств.

Принцип агрегации особей Олли (от лат. aggregates – присоединенный) (К. Олли, 1937) – агрегация (скопление) особей, как правило, усиливает конкуренцию между ними за жизненные ресурсы, но приводит к повышению жизнеспособности группы в целом. Для каждого вида животных существует оптимальный размер группы и оптимальная плотность популяции.

принцип генетической преадаптации – способность к приспособлению у организмов заложена изначально и обусловлена практической неисчерпаемостью генетического кода. В генетическом многообразии всегда находятся необходимые для адаптации варианты.

принцип дивергенции (Ч. Дарвин) – филогенез любой группы сопровождается разделением ее на ряд филогенетических стволов, которые расходятся в разных направлениях от среднего исходного состояния.

принцип конкурентного исключения, или правило (теорема) Гаузе (Г.Ф. Гаузе, 1934 г.) – два вида живых существ не могут обитать в одном и том же месте, если их экологические потребности идентичны, т. е. если они занимают одну и ту же экологическую нишу. Или: при полном перекрывании экологических ниш один вид быстро вытесняет другой.

принцип ле шателье – Брауна (принцип противодействия) – при внешнем воздействии, выводящем систему из состояния устойчивого равновесия, это равновесие смещается в том направлении, при котором эффект внешнего воздействия ослабляется. Человек нарушает в пределах биосферы этот принцип. К примеру, изменяет газовый состав атмосферы.

принцип минимального размера популяций – существует минимальный размер популяции, ниже которого ее численность не может опускаться.

принцип неполноты информации (Н.Ф. Реймерс) – информация при проведении мероприятий, связанных с изменением природы всегда недостаточна для априорного суждения о всех возможных результатах таких действий, особенно в далекой перспективе, когда разовьются все природные цепные реакции.

Принцип Реди – живое происходит только от живого, между живым и неживым веществом существует непроходимая граница, хотя и имеется постоянное взаимодействие.

принцип стабильности экосистем – видовое разнообразие экосистемы обеспечивает её устойчивость; сильные колебания численности характерны для простых экосистем и редки в многокомпонентных экосистемах.

принцип сукцессионного замещения – сообщества организмов формируют ряд закономерно сменяющих друг друга экосистем, ведущий к наиболее устойчивой в данных условиях климаксовой природной системе.

принцип формирования экосистемы – длительное существование организмов возможно лишь в рамках экологических систем, где их компоненты дополняют друг друга и взаимно приспособлены.

Закон однонаправленности потока энергии - в экологии - закон, согласно которому энергия, получаемая сообществом и усваиваемая продуцентами, вместе с их биомассой необратимо передается консументам первого, второго и других порядков, а затем редуцентам, с падением потока на каждом из трофических уровней в результате процессов, сопровождающих дыхание.

Устойчивость биосферы, то есть ее способность возвращаться в исходное состояние после любых возмущающих воздействий, очень велика. Биосфера существует уже около 3,8 миллиарда лет (Солнце и планеты — около 4,6 миллиарда), и за это время ее эволюция не прерывалась. Это следует из того, что все живые организмы, от вирусов до человека, имеют один и тот же генетический код, записанный в молекуле ДНК, а их белки построены из 20 аминокислот, одинаковых у всех организмов. И как бы ни были велики возмущающие воздействия, а некоторые из них можно отнести к разряду глобальных катастроф, приводивших к исчезновению многих видов, в биосфере всегда находились внутренние резервы для восстановления и дальнейшего развития.

Специфика живого вещества заключается в следующем:

1. Живое вещество биосферы характеризуется огромной свободной энергией. В неорганическом мире по количеству свободной энергии с живым веществом могут быть сопоставлены только недолговечные незастывшие лавовые потоки.

2. Резкое отличие между живым и неживым веществом биосферы наблюдается в скорости протекания химических реакций: в живом веществе реакции идут в тысячи и миллионы раз быстрее.

3. Отличительной особенностью живого вещества является то, что слагающие его индивидуальные химические соединения – белки, ферменты и пр. – устойчивы только в живых организмах (в значительной степени это характерно и для минеральных соединений, входящих в состав живого вещества).

4. Произвольное движение живого вещества, в значительной степени саморегулируемое. В. И. Вернадский выделял две специфические формы движения живого вещества: а) пассивную, которая создается размножением и присуща как животным, так и растительным организмам; б) активную, которая осуществляется за счет направленного перемещения организмов (она характерна для животных и в меньшей степени для растений). Живому веществу также присуще стремление заполнить собой все возможное пространство.

5. Живое вещество обнаруживает значительно большее морфологическое и химическое разнообразие, чем неживое. Кроме того, в отличие от неживого абиогенного вещества живое вещество не бывает представлено исключительно жидкой или газовой фазой. Тела организмов построены во всех трех фазовых состояниях.

6. Живое вещество представлено в биосфере в виде дисперсных тел – индивидуальных организмов. Причем, будучи дисперсным, живое вещество никогда не находится на Земле в морфологически чистой форме – в виде популяций организмов одного вида: оно всегда представлено биоценозами.

7. Живое вещество существует в форме непрерывного чередования поколений, благодаря чему современное живое вещество генетически связано с живым веществом прошлых эпох. При этом характерным для живого вещества является наличие эволюционного процесса, т. е. воспроизводство живого вещества происходит не по типу абсолютного копирования предыдущих поколений, а путем морфологических и биохимических изменений.

Продуценты, редуценты, консументы

Продуце́нты (также автотрофные организмы, автотрофы)— организмы, способные синтезировать органические вещества из неорганических. В основном, зелёные растения (синтезируют органические вещества из неорганических в процессе фотосинтеза), однако некоторые виды бактерий-хемотрофов способны на чисто химический синтез органики и без солнечного света. Являются первым звеном пищевой цепи.
Редуценты (также деструкуторы, сапротрофы, сапрофиты) — организмы, разрушающие остатки мёртвых растений и животных (черви, мокрицы, раки, сомы, грифы) и превращающие их в неорганические соединения (бактерии, грибы).
Консументы (гетеротрофные организмы, гетеротрофы) — организмы, неспособные синтезировать органические вещества из неорганических. Потребляют органические вещества в готовом виде (1-го порядка — растительноядные, 2-го и больших порядков — плотоядные и хищники; всеядные животные). Являются вторым, третьим и далее звеньями пищевой цепи.

· Воронков Н.А. Экология: общая, социальная, прикладная. Учебник для студентов вузов. М.: Агар, 2006. – 424 с. Рекомендован Минобр. РФ в качестве учебника для студентов вузов.

· Коробкин В.И. Экология: Учебник для студентов вузов/ В.И. Коробкин, Л.В.Передельский. -9-е изд., доп. И перераб.- Ростон н/Д: Феникс, 2005.

· Чернова Н.М. Общая экология: Учебник для студентов педагогических вузов/ Н.М.Чернова, А.М.Былова. - М.: Дрофа, 2004.-416 с. Допущено Минобр. РФ в качестве учебника для студентов высших педагогических учебных заведений.

Стоит подчеркнуть, что речь идет именно о термодинамическом аспекте, а не об информации вообще — понятно, что томик Пушкина в этом смысле очень серьезно отличается от тома технической документации на ядерный реактор, хотя с точки зрения теории информации они чрезвычайно схожи, хотя бы по набору использованных символов. Разница в смыслах — у Пушкина основное содержание это эмоция, а в документации — потенциальная энергия, которую способно дать сконструированное по ней устройство. Достаточно вспомнить какую ценность представляли для всех разведок мира чертежи первой атомной бомбы — вот сколько потенциальной энергии могут содержать несколько страниц информации.

Солнце является единственным энергетическим источником жизни на Земле. Световая энергия в соединении с углекислым газом и водой рождает процесс фотосинтеза. Фотосинтезирующие растения создают органическое вещество, которым питаются травоядные животные, ими в свою очередь -плотоядные и т.д. При этом,

Энергия, получаемая сообществом (экосистемой) и усваиваемая продуцентами, рассеивается или вместе с их биомассой необратимо передается консументами первого, второго и т.д. порядков, а затем редуцентами с падением потока на каждом из трофических уровней в результате процессов, сопровождающих дыхание.

Если энергия при переходе на более высокий уровень экологической пирамиды десятикратно теряется, то накопление ряда веществ, в том числе токсичных и радиоактивных, в примерно такой же пропорции увеличивается. Этот факт фиксирован в правиле биологического усиления. Оно справедливо для всех биоценозов.

Закон внутреннего динамического равновесия.

Закон сформулирован русским ученым, экологом, Николаем Федоровичем Реймерсом в 70-х годах двадцатого столетия и формулируется следующим образом:

Вещество, энергия, информация и динамические качества природных систем, включая экосистемы, взаимосвязаны настолько, что любое изменение одного из этих показателей вызывает сопутствующие функционально-структурные количественные и качественные перемены, сохраняющие общую сумму вещественно-энергетических, информационных и динамических качеств систем.

Справедливость закона внутреннего динамического равновесия доказывается всей практикой ведения хозяйства и особенно характером региональных катастроф типа приаральской, азовской, Чернобыльской, и других.

Из этого закона вытекают важные для управления природопользованием четыре следствия:

1.Любое изменение среды неизбежно приводит к развитию природных цепных реакций, идущих в сторону нейтрализации произведенного изменения или формирования новых природных систем, образование которых может принять необратимый характер.

2.Взаимодействие вещественно – энергетических компонентов (энергия, газы, жидкости, организмы – продуценты, консументы и редуценты), информации и динамических качеств природных экосистем нелинейно, т.е. слабое воздействие или изменение одного из показателей может вызвать сильное отклонение других. Например, малое отклонение в составе газов атмосферы, ее загрязнение оксидами серы, азота, диоксидом углерода вызывают огромные изменения в экосистемах суши и водной среды. Именно оно привело к возникновению кислотных осадков, а с ними к деградации и гибели лесов Европы и Северной Америке. Абсолютно незначительное изменение концентраций СО2 ведет к возникновению тепличного эффекта.

3. Производимые в крупных экосистемах изменения относительно необратимы – проходя по их иерархии снизу вверх, от места воздействия до биосферы в целом, они меняют глобальные процессы и тем самым переводят их на новый эволюционный уровень.

Солнце является единственным энергетическим источником жизни на Земле. Световая энергия в соединении с углекислым газом и водой рождает процесс фотосинтеза. Фотосинтезирующие растения создают органическое вещество, которым питаются травоядные животные, ими в свою очередь -плотоядные и т.д. При этом,

Энергия, получаемая сообществом (экосистемой) и усваиваемая продуцентами, рассеивается или вместе с их биомассой необратимо передается консументами первого, второго и т.д. порядков, а затем редуцентами с падением потока на каждом из трофических уровней в результате процессов, сопровождающих дыхание.




Если энергия при переходе на более высокий уровень экологической пирамиды десятикратно теряется, то накопление ряда веществ, в том числе токсичных и радиоактивных, в примерно такой же пропорции увеличивается. Этот факт фиксирован в правиле биологического усиления. Оно справедливо для всех биоценозов.

Закон внутреннего динамического равновесия.

Закон сформулирован русским ученым, экологом, Николаем Федоровичем Реймерсом в 70-х годах двадцатого столетия и формулируется следующим образом:

Вещество, энергия, информация и динамические качества природных систем, включая экосистемы, взаимосвязаны настолько, что любое изменение одного из этих показателей вызывает сопутствующие функционально-структурные количественные и качественные перемены, сохраняющие общую сумму вещественно-энергетических, информационных и динамических качеств систем.

Справедливость закона внутреннего динамического равновесия доказывается всей практикой ведения хозяйства и особенно характером региональных катастроф типа приаральской, азовской, Чернобыльской, и других.

Из этого закона вытекают важные для управления природопользованием четыре следствия:

1.Любое изменение среды неизбежно приводит к развитию природных цепных реакций, идущих в сторону нейтрализации произведенного изменения или формирования новых природных систем, образование которых может принять необратимый характер.

2.Взаимодействие вещественно – энергетических компонентов (энергия, газы, жидкости, организмы – продуценты, консументы и редуценты), информации и динамических качеств природных экосистем нелинейно, т.е. слабое воздействие или изменение одного из показателей может вызвать сильное отклонение других. Например, малое отклонение в составе газов атмосферы, ее загрязнение оксидами серы, азота, диоксидом углерода вызывают огромные изменения в экосистемах суши и водной среды. Именно оно привело к возникновению кислотных осадков, а с ними к деградации и гибели лесов Европы и Северной Америке. Абсолютно незначительное изменение концентраций СО2 ведет к возникновению тепличного эффекта.

3. Производимые в крупных экосистемах изменения относительно необратимы – проходя по их иерархии снизу вверх, от места воздействия до биосферы в целом, они меняют глобальные процессы и тем самым переводят их на новый эволюционный уровень.

Энергия, получаемая сообществом (экосистемой) и усваиваемая продуцентами, рассеивается или вместе с их биомассой необратимо передается консументам первого, второго и так далее порядков, а затем редуцентам с падением потока на каждом из трофических уровней в результате процессов, сопровождающих дыхание.

ПОДЕЛИТЬСЯ

Движение Ecocosm


Современный экологический кризис вызван не только пластиковым загрязнением, и одним eco-friendly проблемы не решить. Нужно комплексное знание предмета, поэтому здесь мы пишем о сложной науке простыми словами.

© 2022 Движение Ecocosm. Все права защищены.

Научная, проверенная на фактах,
экологическая и природоохранная
журналистика в российском
инфополе важна как никогда

Читайте также: