Возникновение клеточной организации живого кратко

Обновлено: 06.07.2024

Прокариотические клетки появились на Земле приблизительно 3,5 млрд. лет назад в результате спонтанного образования органических молекул и продолжительной эволюции (гипотеза А.И. Опарина).

Появление ферментативных (каталитических) молекулярных механизмов стало решающим этапом в этом процессе.

В первых клетках использовались каталитические свойства белков и РНК, а в качестве вещества наследственности в них содержалась только РНК. Структура и функции клеток усложнялись, накоплялись дополнительные каталитические белки и в результате молекулу РНК заменила двухцепочная ДНК, которая сохраняла генетическую информацию.

Происхождение эукариотических клеток объясняют симбиотической гипотезой, согласно которой клеткой-хозяином был анаэроб. Переход к аэробному дыханию связан с проникновением аэробных бактерий в клетку – хозяина и сосуществование с ней в виде митохондрий.

Зелёные растения благодаря наличию в них хлоропластов способны к фотосинтезу. Считают, хлоропластам дали начало прокариотические синезелёные водоросли, которые являлись симбионтами клетки-хозяина. Основным аргументом в пользу симбиотической гипотезы является наличие в митохондриях и хлоропластах собственной ДНК.

Производными внешней мембраны клетки, способной ветвиться, является система внутриклеточных мембран, образующих гладкую и зернистую эндоплазматические сети, комплекс Гольджи, ядерную оболочку.

Достаточно сложным является вопрос о происхождении генетического материала ядра. Предполагают, что оно так же образовалось из симбиотических прокариот. Наверное, количество ядерной ДНК увеличивалось постепенно – генетический материал перемещался из геномов симбионтов в ограниченный мембраной участок клетки.

Очень важно и возникновение митоза как механизма равномерного распределения генетического материала и воспроизведения клеток. В ходе дальнейшей эволюции появился ещё один механизм деления клеток – мейоз, благодаря чему решилась проблема размножения многоклеточных организмов. Переход к половому размножению содействовал появлению комбинативной изменчивости, а при этом существенно увеличилась скорость эволюции.

Готовые работы на аналогичную тему

Благодаря этим процессам за 1 млрд. лет эволюции эукариотический тип клеточной организации обусловил разнообразие живых организмов от простейших к человеку.

Эволюция клетки прокариот

На основании изучения ископаемых останков бактерий и цианобактерий предполагают, что изначальной клеточной формой была примитивная прокариотическая клетка, которая возникла около 3,5 млрд лет назад.

Клетки такого типа для обеспечения своего существования сначала использовали органические молекулы небиологического происхождения. Первым шагом в формировании примитивной клетки было образование мембраны, окружающей клеточное вещество.

В дальнейшем у примитивных прокариот в клетках развились механизмы синтеза и энергетического обеспечения. Предположительно, что первые прокариотические клетки имели самые простые каталитические системы, в результате чего обеспечение их энергией базировалось на брожении.

Далее у отдельных видов прокариот клетки перешли из процесса брожения на процесс дыхания, что способствовало более эффективому получению энергии.

Эволюция клетки эукариот

Изменения клеток эукариот в процессе эволюции шли путём возрастания разнообразия форм, структуры и функций с одновременной компартментализацией биохимических систем и сохранением общего для всех клеток аэробного метаболизма.

Предположительно, что эукариотические клетки возникли из прокариотических менее 1 млрд. лет назад.

Для объяснения их происхождения выдвинуто четыре гипотезы.

Согласно одной из этих гипотез (гипотезы клеточного симбиоза), наиболее распространённой, предполагают, что эукариотическая клетка является симбиотической структурой, которая состоит из нескольких клеток различных типов, окружённых общей мембраной. В частности, предполагают, что пластиды в клетках современных зелёных растений берут начало от бактерий, предков современных цианобактерий, способных к аэробному фотосинтезу, а митохондрии эукариотических клеток берут начало от аэробных бактерий, которые вступали в симбиоз с примитивными анаэробными клетками, способными к фотосинтезу, что вызвало образование клеток, способных к существованию в кислородной атмосфере и к использованию кислорода путём дыхания.

Относительно ядра предполагают, что оно является рудиментом так же какого-то внутриклеточного симбионта, который потерял свою цитоплазму после включения в исходную клетку.

Этой гипотезе соответствуют и данные о временных симбиотических связях некоторых организмов.

Одноклеточная зелёная водоросль хлорелла (Chlorella) живёт в цитоплазме зелёного лишайника парамеции (Paramecium bussaria). Благодаря способности к фотосинтезу она поставляет парамеции питательные вещества.

В пластидах и митохондриях содержится собственная система генетической информации о синтезе белков в виде ДНК, тРНК, мРНК, рРНК и соответсвующих ферментов.

Для хлоропластов и митохондрий прокариот характерны схожие способы репродукции (все они одинаково размножаются путём простого деления надвое).

Согласно другой гипотезе считают, что эукариотическая клетка образовавшаяся от клетки прокариот, содержала несколько геномов, прикреплённых к клеточной мембране.

В результате впячивания клеточной мембраны внутрь цитоплазмы образовывались мезосомы, которые первоначально могли фотосинтезировать. Но в дальнейшем эти органеллы специализировались: одна утратила способность к дыханию и фотосинтезу и преобразовалась в ядро, а другие, наоборот, эти функции развивали и дали начало митохондриям и пластидам.

Подтверждением этой гипотезы является двойное строение мембран ядра, пластид и митохондрий.

Третья гипотеза базируется на информации о происхождении всех живых форм от предковых анаэробных гетеротрофов. Эукариоты являются сублинией бесстеночных (анаэробных) прокариот способных к эндоцитозу.

Согласно четвёртой гипотезе припускают, что клетки эукариот возникли из клеток прокариот, содержали много распадающихся на части геномов, которые дали начало структурам с различными функциями. В дальнейшем шло клонирование структур с подобными функциями. После чего они покрывались двойными мембранами, образовались ядро, митохондрии, а позже и мембранная сеть. Есть данные и о схожести содержащегося в митохондриальной и ядерной ДНК генетического кода, а так же подобие в регуляции дыхательной функции ядра и митохондрий.

Как сказано выше, сейчас наиболее популярной является симбиотическая гипотеза происхождения эукариотических клеток. Однако, соглашаясь с этой гипотезой, нельзя не отметить, что митохондрии и хлоропласты вопреки их подобности с временными бактериями-аэробами и цианобактериями всё же имеют существенные отличия. В частности, в митохондриях и хлоропластах намного меньше ДНК, чем в клетках бактерий.

В ходе эволюции хлоропласты и митохондрии подверглись значительным изменениям в направлении своих размеров.

Далее развитие генома эукариот шло путём объединения молекул ДНК и белков. При этом формировался хроматин и хромосомы различной формы и в разном количестве. Происходила специализация хроматина: формировался эухроматин и гетерохроматин, формировались аутосомы и половые хромосомы. Пока что тяжело объяснить эволюционную тенденцию количества хромосом, поскольку в клетках многих примитивных организмов содержится большее число хромосом, чем в клетках более эволюционно развитых организмов. Однако несомненно, структурные и количественные изменения в кариотипах имели важное значение в образовании новых видов. Параллельно и усложнялись структура и функции компонентов клетки компонентов, развитие регуляторных механизмов.

Несомненно и эволюционное значение митоза. Точность распределения хромосом в процессе митоза - это условие, благодаря которому обеспечивается многоклеточность. Однако нет достаточных объяснений происхождения самого. Предположительно, что развивался он из примитивного митоза, при котором в процессе расхождения реплицировавшихся хромосом ядерная мембрана не разрушается.

В 1665г. Р.Гук впервые обнаружил растительные клетки. В 1674г. А.Левенгук открыл животную клетку. В 1831 Броун описан ядро растительной клетки В 1839г. Т.Шванн и М.Шлейден сформулировали клеточную теорию. Основным положением клеточной теории было то, что клетка является структурной и функциональной основой живых систем. Но они ошибочно считали, что клетки образуются из бесструктурного вещества. В 1859г. Р.Вирхов доказал, что новые клетки образуются лишь путем деления предшествующих.

Основные положения клеточной теории:

1)Клетка является структурной и функциональной единицей всего живого. Все живые организмы состоят из клеток.

2)Все клетки в основном сходны по химическому составу и обменным процессам.

3)Новые клетки образуются путем деления уже существующих.

4)Все клетки одинаковым образом хранят и реализуют наследственную информацию.

5)Жизнедеятельность многоклеточного организма в целом обусловлена взаимодействием составляющих его клеток.

5.Возникновение клеточной организации в процессе эволюции живого.

Существуют два этапа в эволюции клетки:

1.Химический.

2.Биологический.

Химический этап начался около 4,5 млрд лет назад. Под действием ультрафиолетового излучения, радиации, грозовых разрядов (источники энергии) происходило образование сначала простых химических соединений – мономеров, а затем более сложных – полимеров и их комплексов (углеводов, липидов, белков, нуклеиновых кислот).

Биологический этап образования клеток начинается с появления пробионтов – обособленных сложных систем, способных к самовоспроизведению, саморегуляции и естественному отбору. Пробионты появились 3-3,8 млрд. лет назад. От пробионтов произошли первые прокариотические клетки – бактерии.

6.Этапы эволюции клетки. Гипотезы происхождения эукариотических клеток.

Существуют два этапа в эволюции клетки:

1.Химический.

2.Биологический.

Химический этап начался около 4,5 млрд лет назад. Под действием ультрафиолетового излучения, радиации, грозовых разрядов (источники энергии) происходило образование сначала простых химических соединений – мономеров, а затем более сложных – полимеров и их комплексов (углеводов, липидов, белков, нуклеиновых кислот).

Биологический этап образования клеток начинается с появления пробионтов – обособленных сложных систем, способных к самовоспроизведению, саморегуляции и естественному отбору. Пробионты появились 3-3,8 млрд. лет назад. От пробионтов произошли первые прокариотические клетки – бактерии.

Эукариотические клетки произошли от прокариот (1-1,4 млрд. лет назад) двумя путями:

1)Путем симбиоза нескольких прокариотических клеток – это симбиотическая гипотеза;

2)Путем инвагинации клеточной мембраны. Суть инвагинационной гипотезы заключается в том, что прокариотическая клетка содержала несколько геномов, прикрепленных к клеточной оболочке. Затем происходила инвагинация – впячивание, отшнуровка клеточной мембраны, и эти геномы превращались в митохондрии, хлоропласты, ядро.

7.Клетка как открытая система. Организация потоков вещества, энергии и информации в клетке.

Клетка — открытая система, поскольку ее существование возможно только в условиях постоянного обмена веществом и энергией с окружающей средой. Жизнедеятельность клетки обеспечивается процессами, образующими три потока: информации, энергии веществ.

Благодаря наличию потока информации клетка приобретает структуру, отвечающую критериям живого, поддерживает ее во времени, передает в ряду поколений. В этом потоке участвуют ядро, макро молекулы, переносящие информацию в цитоплазму (мРНК), цитоплазматический аппарат транскрипции (рибосомы и полисомы, тРНК, ферменты активации аминокислот). Позже полипептиды, синтезированные на полисомах, приобретают третичную и четвертичную структуру, и используется в качестве катализаторов или структурных белков. Также функционируют геномы митохондрий, а в зеленых растениях — и хлоропластов.

8. Элементарный химический состав живых систем. Микроэлементы и их значение. Вода и неорганические вещества, их роль в клетке.

Все живые системы содержат в различных соотношениях химические элементы и построенные из них химические соединения, как органические, так и неорганические.

По количественному содержанию в клетке все химические элементы делят на 3 группы: макро-, микро - и ультрамикроэлементы.

Макро- 98% H, O , N ,C

Микроэлементы — преимущественно поим металлов Ca (чсс, сверт.крови), Fe(гемоглобин в эритроцитах), Mg(вх.в сост.хлорфилла), P(кости, зубы), S(белки), Na, K, Cl. Они содержатся в количествах от 1,8%

Ультрамикроэлементы. Содержатся 0,2%: I(тироксин), F (эмаль зубов), Zn(инсулин), Сo, Mn, Cu, Zn.

Из неорганических веществ, входящих в состав клетки, важнейшим является вода. Количество ее составляет от 60 до 95% общей массы клетки. Вода играет важнейшую роль в жизни клеток и живых организмов в целом. Помимо того что она входит в их состав, для многих организмов это еще и среда обитания

9. Структура и функции белков.

Белки - это полимеры, мономерами которых являются аминокислоты. В основном они состоят из углерода, водорода, кислорода и азота. Молекула белка может иметь 4 уровня структурной организации (первичная, вторичная, третичная и четвертичная структуры).

Первичная структура – первичный белок, состоящий из цепочки аминокислот, соединенных между собой пептидной связью. Две соединенные аминокислоты называются дипептид, три – трипептид, небольшое число аминокислот (от 2 до 10) – олигопептид. Большое число –(больше 10) полипептид. Кроме пептидной, есть еще дисульфидная связь, которая формируется за счет двух остатков цистеина. Именно первичная структура белковой молекулы определяет свойства и пространственную конфигурацию

Вторичная структура — упорядоченное свертывание полипептидной цепи в спираль (имеет вид растянутой пружины). Витки спирали укрепляются водородными связями, возникающими между карбоксильными группами и аминогруппами.

Третичная структура — укладка полипептидных цепей в глобулы, возникающая в результате возникновения химических связей (водородных, ионных, дисульфидных) и установления гидрофобных взаимодействий между радикалами аминокислотных остатков.

Четвертичная структура характерна для сложных белков, молекулы которых образованы двумя и более глобулами. Субъединицы удерживаются в молекуле благодаря ионным, гидрофобным и электростатическим взаимодействиям. Иногда при образовании четвертичной структуры между субъединицами возникают дисульфидные связи.

1) защитная (интерферон усиленно синтезируется в организме при вирусной инфекции);

2) структурная (коллаген входит в состав тканей, участвует в образовании рубца);

3) двигательная (миозин участвует в сокращении мышц);

4) запасная (альбумины яйца);

5) транспортная (гемоглобин эритроцитов переносит питательные вещества и продукты обмена);

6) рецепторная (белки-рецепторы обеспечивают узнавание клеткой веществ и других клеток);

7) регуляторная (регуляторные белки определяют активность генов);

8) белки-гормоны участвуют в гуморальной регуляции (инсулин регулирует уровень сахара в крови);

Учеными было доказано, что после испарения воды из реакционного объема в амфифильных липидоподобных и липидных молекулах формируются жидкокристаллические агрегаты, в которых молекулы расположены периодическими слоями, как в смектических кристаллах. Такие липотропные жидкокристаллические фазы, дающие в поляризованном свете характерную оптическую картину, при последующем разбавлении легко превращаются в мембраноподобные структуры за счет полиморфных переходов (Чистяков, Селезнев, 1977, с. 38–45). Эти и другие исследования подтвердили тот факт, что на самых ранних стадиях химической эволюции могли возникнуть достаточно простые липидоподобные и липидные молекулы, спонтанно образующие мембранные структуры. Следовательно, и формирование систем, подобных протоклеткам, могло предшествовать синтезу более сложных полимерных молекул. Имеются все основания считать, что в период биопоэза (его первого этапа) на Земле за счет высоких температур в присутствии руд различных металлов и при воздействии на смеси газов ультрафиолетового и у-излучения синтезировались не только аминокислоты, но и некоторые сахара, жирные кислоты и азотистые основания. Жирные кислоты в последующем, соединившись со спиртами, могли образовывать липидные пленки на поверхности водоемов, в которых были растворены азотистые основания, сахара и аминокислоты. Растворенные в водоемах белковые молекулы могли адсорбироваться на поверхности липидной пленки благодаря электрическому притяжению к заряженным обращенным в воду липидным головкам. По-видимому, эти условия и предопределили возникновение мембран и встроенных в них белков.

1) способность использовать энергию макроэргических фосфатных связей для выполнения различных жизненных функций;

2) ступенчатый перенос электронов в промежуточном обмене;

3) использование металлопротеидов в качестве катализаторов окислительных процессов;

4) включение Z-аминокислот в естественные белки;

5) активный транспорт ионов через клеточную мембрану;

6) использование одних ионов внутри клеток и удаление других;

7) избирательная проницаемость мембран;

8) регуляция белкового синтеза нуклеиновыми кислотами и многие другие свойства, присущие живым организмам.

Закончившийся процесс формирования первичных организмов предоставил им единственный источник энергии – это питание за счет друг друга. Но насыщаемость океана органикой была ограничена. Поэтому перед эволюцией стоял выбор: или остановиться на этом этапе – в таком случае дальнейшее совершенствование биоты стало бы невозможным – или найти иной вариант обеспечения организмов неиссякаемым источником пищи.

Данный текст является ознакомительным фрагментом.

Продолжение на ЛитРес

VI. Возникновение жизни на Земле

VI. Возникновение жизни на Земле Из опытов Спалланцани и Пастера мы уже знаем, что при высокой температуре жизнь прекращается. Большинство организмов погибает уже при 70–80 градусах тепла. Значит, для их жизни требуются определенные условия температуры. Требуются для

ВОЗНИКНОВЕНИЕ ЖИЗНИ

ВОЗНИКНОВЕНИЕ ЖИЗНИ Происхождение жизни, ее сущность — одна из наиболее трудных загадок науки, ибо жизнь — это самое сложное из известных нам явлений природы. Никто не видел и не наблюдал ее возникновения; более того, в природе не сохранилось никаких прямых или косвенных

ВОЗНИКНОВЕНИЕ КОЛОНИИ

ВОЗНИКНОВЕНИЕ КОЛОНИИ Образование отводка происходит обычно в определенные для каждого вида сроки. Вот как происходил начальный этап выделения нового муравейника у волосистого лесного муравья в 1967 г. в подмосковном ельнике (Солнечногорский лесокомбинат). В течение

§ 28. Возникновение отделов головного мозга

§ 28. Возникновение отделов головного мозга Ранний период истории возникновения предков позвоночных, до формирования хорошо структурированного скелета, довольно туманен. Если допустить, что предковые формы хордовых были мягкотелыми существами размером около 10–15 см,

§ 49. Возникновение мозга млекопитающих

§ 49. Возникновение мозга млекопитающих Небольшие рептилийные предки млекопитающих вышли из древесных завалов карбона с развитым обонянием, вестибулярным аппаратом, неважным зрением и ассоциативными центрами в среднем мозге. Эти существа начали загадочный

2. Строение клеточной стенки и цитоплазматической мембраны

2. Строение клеточной стенки и цитоплазматической мембраны Клеточная стенка – упругое ригидное образование толщиной 150–200 ангстрем. Выполняет следующие функции:1) защитную, осуществление фагоцитоза;2) регуляцию осмотического давления;3) рецепторную;4) принимает

Порочные круги во внутриклеточных системах как основа клеточной патологии

Порочные круги во внутриклеточных системах как основа клеточной патологии Вводные замечания можно распространить и на порочные потенциально патогенетические круги во внутриклеточных системах. Следует сказать, что в клетке труднее, чем в физиологических системах,

Глава 2. Возникновение жизни: самозарождение и панспермия

Глава 2. Возникновение жизни: самозарождение и панспермия Трудно создать хорошую теорию, теория должна быть разумной, а факты не всегда таковы. Джордж У. Бидл, генетик, лауреат Нобелевской премии 1958 г. в области физиологии и медицины Физик Филипп Моррисон как-то заметил,

Возникновение филогенетической линии, ведущей к человеку

Возникновение филогенетической линии, ведущей к человеку Направление, ведущее к человеку, по мнению многих антропологов, берет свое начало от проконсула – крупной обезьяны, жившей около 20 млн лет назад в Африке, возможного родоначальника подсемейства дриопитеков.

Возникновение рода Homo

Возникновение сегментов

Возникновение сегментов Сегментация зародыша дрозофилы в своей основе выглядит как ряд латеральных впячиваний зародышевой полоски, образующихся почти одновременно на стадии гаструляции. Несмотря на кажущийся мозаичный характер этого процесса, можно показать, что

Пролог Возникновение понимания

Пролог Возникновение понимания Галилей указал точку поворота, в которой научные усилия приняли новое направление, в которой ученые — анахронический, конечно, для того времени термин — поднялись со своих кресел, поставили под вопрос состоятельность прошлых попыток

Глава первая Эволюция Возникновение сложности

Глава первая Эволюция Возникновение сложности Без света эволюции ничто в биологии не имеет смысла. Феодосий Добжанский Великая идея: эволюция идет путем естественного отбораЖизнь столь совершенна, что, как долгое время считали, ее было необходимо сотворить особо. Ибо

5.5. О значении элементов случайности на разных этапах клеточной эволюции

5.5. О значении элементов случайности на разных этапах клеточной эволюции Мы рассмотрели основные этапы химической, предклеточной и клеточной эволюции вплоть до формирования эукариотических клеток, основавших царства животных и растений. Это сделано, в частности, для

9.3. Возникновение клеток

9.3. Возникновение клеток Предполагается, что этапом возникновения жизни на Земле следует считать период, когда сформировались простейшие клеточные системы, ставшие элементарной ячейкой живого. Сведения, касающиеся этой проблемы, освещены в обзорах, посвященных

9.3. Возникновение клеток

9.3. Возникновение клеток Предполагается, что этапом возникновения жизни на Земле следует считать период, когда сформировались простейшие клеточные системы, ставшие элементарной ячейкой живого. Сведения, касающиеся этой проблемы, освещены в обзорах, посвященных

Химический этап начался около 4,5 млрд лет назад. Под действием ультрафиолетового излучения, радиации, грозовых разрядов (источники энергии) происходило образование сначала простых химических соединений – мономеров, а затем более сложных – полимеров и их комплексов (углеводов, липидов, белков, нуклеиновых кислот).

Биологический этап образования клеток начинается с появления пробионтов – обособленных сложных систем, способных к самовоспроизведению, саморегуляции и естественному отбору. Пробионты появились 3-3,8 млрд. лет назад. От пробионтов произошли первые прокариотические клетки – бактерии. Эукариотические клетки произошли от прокариот (1-1,4 млрд. лет назад) двумя путями:

1)Путем симбиоза нескольких прокариотических клеток – это симбиотическая гипотеза;

2)Путем инвагинации клеточной мембраны. Суть инвагинационной гипотезы заключается в том, что прокариотическая клетка содержала несколько геномов, прикрепленных к клеточной оболочке. Затем происходила инвагинация – впячивание, отшнуровка клеточной мембраны, и эти геномы превращались в митохондрии, хлоропласты, ядро.

Дифференциация и специализация клеток.

Дифференциация – это формирование различных типов клеток и тканей в ходе развития многоклеточного организма. Одна из гипотез связывает дифференцировку с экспрессией генов в процессе индивидуального развития. Экспрессия – процесс включения тех или иных генов в работу, который создает условия для направленного синтеза веществ. Поэтому происходит развитие и специализация тканей в том или ином направлении.

Строение ядра. Деление клетки

План

1.Строение и функции клеточного ядра.

2.Хроматин и хромосомы.

3.Клеточный и митотический циклы клетки.

Строение и функции клеточного ядра.

Ядро – обязательная часть эукариотической клетки. Главная функция ядра – хранение генетического материала в форме ДНК и передача ее дочерним клеткам при клеточном делении. Кроме того, ядро управляет белковыми синтезами, контролирует все процессы жизнедеятельности клетки. ( в растительной клетке ядро описал Р.Броун в 1831г., в животной – Т.Шванн в 1838г.)

Большинство клеток имеет одно ядро, обычно округлой формы, реже неправильной формы.

Размеры ядра колеблются от 1мкм (у некоторых простейших) до 1мм (в яйцеклетках рыб, земноводных).

Встречаются двуядерные клетки (клетки печени, инфузорий) и многоядерные (в клетках поперечно – полосатых мышечных волокон, а так же в клетках ряда видов грибов и водорослей).

Некоторые клетки (эритроциты) – безъядерные, это редкое явление, носит вторичный характер.

В состав ядра входят:

4)хроматин или хромосомы. Хроматин находится в неделящемся ядре, хромосомы – в митотическом ядре.

Оболочка ядра состоит из двух мембран (наружной и внутренней). Наружная ядерная мембрана соединяется с мембранными каналами ЭПС. На ней располагаются рибосомы.

В мембранах ядра имеются поры (3000-4000). Через ядерные поры происходит обмен различными веществами между ядром и цитоплазмой.

Кариоплазма (нуклеоплазма) представляет собой желеобразный раствор, который заполняет пространство между структурами ядра (хроматином и ядрышками). Она содержит ионы, нуклеотиды, ферменты.

Ядрышко, обычно шаровидной формы (одно или несколько), не окружено мембраной, содержит фибриллярные белковые нити и РНК.

Ядрышки – не постоянные образования, они исчезают в начале деления клетки и восстанавливаются после его окончания. Ядрышки имеются только в неделящихся клетках. В ядрышках происходит формирование рибосом, синтез ядерных белков. Сами же ядрышки образуются на участках вторичных перетяжек хромосом (ядрышковых организаторах). У человека ядрышковые организаторы находятся на 13,14,15,21 и 22 хромосомах.

Существуют два этапа в эволюции клетки:

Химический этап начался около 4,5 млрд лет назад. Под действием ультрафиолетового излучения, радиации, грозовых разрядов (источники энергии) происходило образование сначала простых химических соединений – мономеров, а затем более сложных – полимеров и их комплексов (углеводов, липидов, белков, нуклеиновых кислот).




Биологический этап образования клеток начинается с появления пробионтов – обособленных сложных систем, способных к самовоспроизведению, саморегуляции и естественному отбору. Пробионты появились 3-3,8 млрд. лет назад. От пробионтов произошли первые прокариотические клетки – бактерии. Эукариотические клетки произошли от прокариот (1-1,4 млрд. лет назад) двумя путями:

1)Путем симбиоза нескольких прокариотических клеток – это симбиотическая гипотеза;

2)Путем инвагинации клеточной мембраны. Суть инвагинационной гипотезы заключается в том, что прокариотическая клетка содержала несколько геномов, прикрепленных к клеточной оболочке. Затем происходила инвагинация – впячивание, отшнуровка клеточной мембраны, и эти геномы превращались в митохондрии, хлоропласты, ядро.

Дифференциация и специализация клеток.

Дифференциация – это формирование различных типов клеток и тканей в ходе развития многоклеточного организма. Одна из гипотез связывает дифференцировку с экспрессией генов в процессе индивидуального развития. Экспрессия – процесс включения тех или иных генов в работу, который создает условия для направленного синтеза веществ. Поэтому происходит развитие и специализация тканей в том или ином направлении.

Строение ядра. Деление клетки

План

1.Строение и функции клеточного ядра.

2.Хроматин и хромосомы.

3.Клеточный и митотический циклы клетки.

Строение и функции клеточного ядра.

Ядро – обязательная часть эукариотической клетки. Главная функция ядра – хранение генетического материала в форме ДНК и передача ее дочерним клеткам при клеточном делении. Кроме того, ядро управляет белковыми синтезами, контролирует все процессы жизнедеятельности клетки. ( в растительной клетке ядро описал Р.Броун в 1831г., в животной – Т.Шванн в 1838г.)

Большинство клеток имеет одно ядро, обычно округлой формы, реже неправильной формы.

Размеры ядра колеблются от 1мкм (у некоторых простейших) до 1мм (в яйцеклетках рыб, земноводных).

Встречаются двуядерные клетки (клетки печени, инфузорий) и многоядерные (в клетках поперечно – полосатых мышечных волокон, а так же в клетках ряда видов грибов и водорослей).

Некоторые клетки (эритроциты) – безъядерные, это редкое явление, носит вторичный характер.

В состав ядра входят:

4)хроматин или хромосомы. Хроматин находится в неделящемся ядре, хромосомы – в митотическом ядре.

Оболочка ядра состоит из двух мембран (наружной и внутренней). Наружная ядерная мембрана соединяется с мембранными каналами ЭПС. На ней располагаются рибосомы.

В мембранах ядра имеются поры (3000-4000). Через ядерные поры происходит обмен различными веществами между ядром и цитоплазмой.

Кариоплазма (нуклеоплазма) представляет собой желеобразный раствор, который заполняет пространство между структурами ядра (хроматином и ядрышками). Она содержит ионы, нуклеотиды, ферменты.

Ядрышко, обычно шаровидной формы (одно или несколько), не окружено мембраной, содержит фибриллярные белковые нити и РНК.

Ядрышки – не постоянные образования, они исчезают в начале деления клетки и восстанавливаются после его окончания. Ядрышки имеются только в неделящихся клетках. В ядрышках происходит формирование рибосом, синтез ядерных белков. Сами же ядрышки образуются на участках вторичных перетяжек хромосом (ядрышковых организаторах). У человека ядрышковые организаторы находятся на 13,14,15,21 и 22 хромосомах.

Благодаря появлению и изобретению светового микроскопа начала писаться история открытия клетки. Придумал первый простой микроскоп голландец Захарий Янсен, совместив линзы вместе. Но мощности линз было недостаточно, чтобы увидеть строение растений на клеточном уровне. Только много лет спустя английский изобретатель Гук сконструировал свой микроскоп установив в него мощные линзы. Он был одним из первых, кто применил его для исследования всего живого.

История открытия клетки

История открытия кратко

Ученый, который открыл клетку, был Роберт Гук. Он был разносторонним человеком, великолепным изобретателем.

В 1665 году, рассматривая строение среза пробки с помощью своего микроскопа, он увидел частицы, которые были похожи на соты в пчелином улье. Так было открыто существование клеточного строения в живых организмах. Этим ячейкам он дал понятие клетка. В дальнейшем этот термин стали использовать для обозначения основы строения и жизнедеятельности всех животных и растений.

Роберта Гук

За всю свою жизнь Левенгук изучил большое количество различных микроорганизмов. Сам того не подозревая он был первым, кто подробно описал эритроциты, бактерии и сперматозоиды, занес в таблицы и сделал подробные зарисовки. В дальнейшем их стали называть одноклеточными.

Марчелло Мальпиги, итальянский врач и биолог помимо исследования человеческого организма при помощи микроскопа, занимался изучением строения растений.

Еще задолго до открытия клетки, Уильям Гарвей, считал, что все развиваются из яйца.

Впоследствии русский ученый Карл Максимович Бэр в результате своих исследований, подтвердил его предположение, когда открыл у животных наличие яйцеклетки.

Чешский биолог Ян Пуркине тоже внес большой вклад в это учение. Тема его исследований была: исследование яйцеклетки птиц. В этом реферате он опубликовал итоги своего продолжительного труда и поделился, что в клетках человека и животного присутствует ядро.

Развитие клеточной теории

Исследования продолжили немецкие ученые. В XIX веке световой микроскоп был усовершенствован. В результате этого был сделан большой прорыв в изучении клеточного строения живых организмов.

Маттиас Шлейден занимался физиологией растений. Пытаясь разобраться в рождении клеток, он сделал заключение, что ядро играет главную роль в этом процессе. В 1838 году Шлейден выдвинул предположение, что они являются структурной единицей всех растений.

Теодор Шван

В 1937 году он рассказал об этом своему другу Теодору Швану. В это же время Шван занимался изучением строения спинной струны у животных. Это подтолкнуло его на более глубокое изучение этой темы.

Ее смысл заключался в том, что:

  • все организмы состоят из простейших частиц — клеток, которые имеют ядро;
  • при этом в отдельности это самостоятельный организм;
  • несмотря на значительные отличия друг от друга по форме и функциям, все равно образуют единую сложную сеть в каждом отдельном организме.

Клеточная теория стала фундаментом науки цитология.

Цитология — раздел биологии, изучает строение живой клетки, ее функционирование, процессы клеточного размножения, старения и смерти.

Эта невероятная клетка

На текущий момент изучение клеточного строения происходит при помощи самых разнообразных методов, но микроскопия по-прежнему остается одним из самых важных и тесно связана с ее применением.

Прокариоты и эукариоты

С их помощью ученые узнали очень много нового и интересного об этой маленькой частичке, из которой состоят все живые организмы:

  1. Все они делятся на две основные группы — содержащие ядро и не содержащие.
  2. У клеток человека, животных и растений есть ядро, а у бактерий нет.
  3. С ядром называются эукариотическими, а без ядра — прокариотическими.
  4. Было во всех подробностях описано ее деление.
  5. Поняли биохимические процессы, происходящие в ней.
  6. Открыли структуру ДНК и расшифровали ее.

Открытие Роберта Гука положило начало истории изучения клетки, приоткрыло завесу таинственного и волнующего ее микромира и заложило основание для продвижения и развития биологии в целом и таких дисциплин, как цитология, эмбриология, гистология и физиология.

Читайте также: