Волновая функция химия кратко

Обновлено: 05.07.2024

Так как электронам присущи волновые свойства и они обладают неопределенностью положения в пространстве, их движение характеризуется при помощи волновой функции и описывается волновым уравнением. Физический смысл волновой функции заключается в том, что ее квадрат  2 пропорционален вероятности нахождении электрона в элементарном объеме атома V с координатами x, y, z.

Значение волновой функции находят при решении волнового уравнения Шредингера:

 2 /x 2 +  2 /y 2 + 2 /z 2 +82m/h 2 *(E–U)=0

В этом сложном дифференциальном уравнении с частными производными: Е–полная энергия частицы, U – потенциальная энергия, –волновая функция.

Волновая функция, получаемая при решении уравнения Шредингера, может иметь ряд значений. Эти значения зависят от квантовых параметров n, l, me, названных квантовыми числами

В итоге – значения квантовых чисел есть не что иное как результат решения уравнения Шредингера. Следовательно, при решении уравнения Шредингера получены значения волновой функции и возможные /допустимые/ значения квантовых чисел.

2.1.4. Квантовые числа. Атомные орбитали.

Так как электрон имеет четыре степени свободы, то для характеристики его поведения в атоме требуется четыре квантовых числа.

Главное квантовое число n определяет удаленность атомной орбитали от ядра и характеризует общий запас энергии электрона на данном энергетическом уровне. n принимает целочисленные значения от единицы до бесконечности. В зависимости от цифровых значений главного квантового числа приняты буквенные обозначения квантовых уровней n=1, 2, 3, 4,…

обозначение К, L, M, N,…

Чем больше n, тем слабее электрон связан с ядром и более емким становится квантовый уровень. Числовые значения n определяют также и количество подуровней, содержащееся на данном квантовом уровне /т.е. числовые значения n определяют емкость квантового уровня/. Так, если n=3, то это значит, что имеем третий квантовый уровень, который состоит из трех подуровней.

Орбитальное квантовое число l характеризует момент количества движения электрона относительно центра орбитали. Наличие такого движения приводит к делению квантового уровня на подуровни. Орбитальное квантовое число характеризует так же пространственную форму электронного облака. Это квантовое число предопределяется главным квантовым числом n и принимает ряд целочисленных значений от нуля до n–1. В зависимости от числовых значений l приняты буквенные обозначения подуровней:

обозначение подуровня: s, p, d, f,…

Магнитное квантовое число ml характеризует магнитный момент электрона. Определяет ориентацию квантового подуровня в пространстве. Число проекций подуровня на направление магнитных силовых линий квантуется и оно равно количеству орбиталей на данном подуровне. Можно сказать, что магнитное квантовое число определяет количество орбиталей на подуровне. ml принимает значения от –l через ноль до +l.

Рассмотрим подуровень s. Для него: l=0, ml=0

Подуровень Р имеет l=1, а ml = –1, 0, +1

В данном случае согласно правил квантования уже три проекции.

Следовательно на р-подуровне три р-орбитали. рис2.2.

Для d-подуровня: l=2, ml = –2, –1, 0, +1, +2. Это значит, что согласно квантовой теории d-подуровень состоит из пяти d-орбиталей.

Подуровень f имеет l=3, ml = –3, –2, –1, 0, +1, +2, +3. Следовательно f-подуровень состоит из семи f-орбиталей.

Число орбиталей на подуровне можно определить из выражения ml =2l+1:

значение l: 0, 1, 2, 3, …….

подуровень: s, p, d, f, …….

число орбиталей: 1, 3, 5, 7, …….

Оно получено из опытов Штерна и Герлаха.

Рассмотренные квантовые числа определяют энергию электрона, объем и форму пространства, в котором вероятно его пребывание в околоядерном объеме, т.е. размер, форму и ориентацию орбитали в пространстве.

Так как волновая функция является решением уравнения Шредингера при всевозможных значениях квантовых чисел, то можно сказать, что волновая функция является в свою очередь функцией рассмотренных квантовых параметров n, l и ml, где:

Атомные орбитали. Так как вероятность нахождения электрона в пространстве далеком от ядра очень мала, когда говорят об орбиталях, то имеют в виду такую область вокруг ядра атома внутри которой сосредоточено 90–95% электронного заряда. С точки зрения квантовой механики атомные орбитали являются геометрическим изображением волновой функции  (n, l, ml).

Z Электронное облако. Если бы в каждый момент времени

y определяли положение электрона в трехмерном пространстве и

ставили в том месте точку, то через множество таких определений

X получили бы картину в виде пространственного облака изображен-

ного точками с размытыми краями /рис.2.3.)

Такое зарядовое облако называют электронным облаком. Его плотность, пропорциональная  2 , является непосредственной мерой вероятности нахождения электрона. Граничная поверхность облака, внутри которой содержится 90–95% электронного заряда, дает форму орбитали.

Z s-орбиталь. Она существует при l=0. Значение ml тоже равно

Y нулю. Имеем только одно значение ml =0. Следовательно,

s-орбиталь имеет максимальную симметричность. У нее

X сферическая форма (рис.2.4.). В этом случае вероятность на–

хождения электрона в околоядерном пространстве определя–

рис.2.4. ется только радиусом-вектором и не зависит от угла координат.

 Радиальное распределение электронной плотности для 1s

электрона соответствует кривой с максимумом (рис.2.5.).

Максимум распространения вероятности находится на

0 r1 r,A 0 расстоянии от ядра r1, которые соответствует радиусу

рис.2.5. первой боровской орбиты.

р-орбиталь. Существует при l=1. ml = –1, 0, +1.

Z р-орбиталь появляется на втором и всех последующих

Рz уровнях. Так как ml имеет три значения, то на р-подуров-

Y не каждого уровне может быть три р-орбитали. р-орбиталь

имеет гонтелеобразную форму. Все три р-орбитали распо-

X лагаются в пространстве по направлению координатных

Px осей. Их называют соответственно рх, рy, рz-орбитали

Рис.2.6. Z Y Y Z Z

dz 2 dx 2 y 2 dxy dxz dyz

d-орбиталь. Появляется при l=2 на третьем квантовом уровне. На d-подуровне может быть уже пять различных состояний электронов, поэтому на d-подуровне каждого квантового уровня содержится пять d-орбиталей. В этом случае ml принимает пять значений: ml = –2, –1, 0, +1, +2, d-орбитали имеют более сложную форму, чем р-орбитали, они либо в виде четырех лепестков либо в виде гантели с ободком (рис.2.7.).

f-орбиталь. Появляется при значении l=3. f-орбитали могут быть только на четвертом и более отдаленных уровнях. Так как при l=3 ml имеет 7 значений /–3, –2, –1, 0, +1, +2, +3/, то на f-подуровне может быть семь орбиталей. Форма f-орбиталей еще более сложная, чем у d-орбиталей. f-орбитали изображают в виде сложных шестилепестковых фигур.

Форма орбиталей и ее направленность играют существенную роль при образовании химических связей, т.к. эти два фактора определяют характер и степень перекрывания электронных облаков соединяющихся атомов.

Волновая функция - это функция состояния электрона (электронов или других элементарных частиц), которая полностью определяет динамические свойства системы. Волновая функция зависит от координат и времени. В общем виде функция состояния системы (волновая функция) записывается в следующем виде

Часто зависимость от времени исключают (Y(q1, q2 . qn)). Здесь аргументы q1, q2 . qn есть координаты пространства и проекция спина одной или нескольких микрочастиц. При этом в отличие от классической механики координаты xi, yi, zi рассматриваются не как функция времени, а как независимые переменные. В квантовой механике волновую функцию находят путем решения волнового уравнения (в частности уравнения Шредингера). При этом применяют только регулярные функции, т.е. функции, подчиняющиеся следующим условиям:

1. Конечность во всем пространстве. В противном случае невозможно определить параметры системы в тех точках, где волновая функция обращается в бесконечность.

2. Однозначность. В любой точке пространства функция принимает одно единственное значение.

3. Непрерывность. Нет разрывов. Функция определена при любых значения аргументов.

В качестве примера рассмотрим волновую функцию для свободного электрона, которая описывает состояние плоской монохроматической волны, распространяющуюся вдоль координаты X


Y = (1.1)

где l - длина волны, n - частота. В зависимости от начальных граничных условий вместо sin может быть cos. В случае стоячей волны вид функции принимает вид

Y= или Y= . (1.2)

В приведенных записях учитывается как положение в пространстве, так и зависимость от времени. В дальнейшем мы будем иметь дело только с функциями, не зависимыми от времени.

В квантовой механике волновая функция представляет собой амплитуду распределения вероятности положения частицы (аналог амплитуды для волнового движения в классической механике). Вероятность найти частицу около точки x - =, а в объеме dt - .

Отметим некоторые свойства волновых функций. Так, если Y - решение волнового уравнения, то и Y1 = СY (где С - константа) является решением этого волнового уравнения.

Другим свойством волновой функции является принцип суперпозиции. Если система может находиться в состояниях, описываемых волновыми функциями Y1 и Y2 (решения волнового уравнения), то она может находиться и в состоянии Y = aY1 + bY2. где a и b простые числа (т.е. Y также решение исходного уравнения). Это легко показать подстановкой новой волной функции в исходное волновое уравнение.

Примером принципа суперпозиции является волновая функция свободного электрона

Y = A( + ) = A. (1.3)

Используя принцип суперпозиции можно получить волновые функции для p-состояния атома (три независимые друг от друга функции).


Y+1 = (x + iy); (1.4)


Y-1 = (x - iy); (1.5)


Yo = z, (1.6)

где - сферически симметричная волновая функция (соответствует s-состоянию атома). = e -ar .


При расчётах в квантовой химии используют нормированные волновые функции. Нормировка волновой функции заключается в определении нормировочного множителя (множителей). Произведём нормировку волновой функции, соответствующей s-электрону в атоме, Y = , т.е. определим множитель С.


Условие нормировки: .

; ==

=

; .

4. Ортогональность волновых функций. Важным свойством волновых функций, используемых в квантовой химии, является их ортогональность.

Условие ортогональности имеет вид:


. (1.7)

Современная теория строения атома была впервые предложена австрийским физиком Э. Шредингером (1925–1926), который объединил в едином волновом уравнении описание движения электрона как частицы с его описанием в виде волны. Уравнение Шредингера – фундаментальное уравнение квантовой механики. Оно описывает движение электронов в атоме с учетом их двойственной природы:

где h – постоянная Планка; m – масса электрона; Е – его полная энергия; U – потенциальная энергия, x, y, z – координаты; ψ – волновая функция электрона – амплитуда его волнового движения в трёхмерном пространстве.

При решении уравнения Шредингера находят энергию электрона и его волновую функцию ψ. Точное решение уравнения получается для атома водорода или водородоподобных ионов, а для многоэлектронных систем используются различные приближения. Квадрат волновой функции ψ 2 определяет вероятность обнаружения электрона на том или ином расстоянии от ядра атома.

Согласно принципу Гейзенберга невозможно одновременно определить положение частицы в пространстве и её импульс. Следовательно, нельзя рассчитать траекторию движения электрона в поле ядра, можно лишь оценить вероятность его нахождения в атоме с помощью волновой функции ψ, которая заменяет классическое понятие траектории. Волновая функция ψ характеризует амплитуду волны в зависимости от координат электрона, а ее квадрат ψ 2 определяет вероятность нахождения электрона в определенной точке пространства.

В связи с новыми представлениями о движении электров в атомах в квантовой механике появляется новое понятие – атомная орбиталь.

Атомная орбиталь (АО) – область атомного пространства, в которой движется электрон. Форму АО характеризуют линиями и поверхностями с одинаковым значением ψ 2 , которую называют плотностью электронного облака.

Таким образом, атомной орбитали соответствует волновая функция ψ. Атомная орбиталь характеризуется энергией, формой и направлением в пространстве. Все эти характеристики квантованы (изменяются скачками), они описываются с помощью квантовых чисел.

Волновая теория строения атома

Современная теория строения атома была впервые предложена австрийским физиком Э. Шредингером (1925–1926), который объединил в едином волновом уравнении описание движения электрона как частицы с его описанием в виде волны. Уравнение Шредингера – фундаментальное уравнение квантовой механики. Оно описывает движение электронов в атоме с учетом их двойственной природы:

где h – постоянная Планка; m – масса электрона; Е – его полная энергия; U – потенциальная энергия, x, y, z – координаты; ψ – волновая функция электрона – амплитуда его волнового движения в трёхмерном пространстве.

При решении уравнения Шредингера находят энергию электрона и его волновую функцию ψ. Точное решение уравнения получается для атома водорода или водородоподобных ионов, а для многоэлектронных систем используются различные приближения. Квадрат волновой функции ψ 2 определяет вероятность обнаружения электрона на том или ином расстоянии от ядра атома.

Согласно принципу Гейзенберга невозможно одновременно определить положение частицы в пространстве и её импульс. Следовательно, нельзя рассчитать траекторию движения электрона в поле ядра, можно лишь оценить вероятность его нахождения в атоме с помощью волновой функции ψ, которая заменяет классическое понятие траектории. Волновая функция ψ характеризует амплитуду волны в зависимости от координат электрона, а ее квадрат ψ 2 определяет вероятность нахождения электрона в определенной точке пространства.

В связи с новыми представлениями о движении электров в атомах в квантовой механике появляется новое понятие – атомная орбиталь.

Атомная орбиталь (АО) – область атомного пространства, в которой движется электрон. Форму АО характеризуют линиями и поверхностями с одинаковым значением ψ 2 , которую называют плотностью электронного облака.

Таким образом, атомной орбитали соответствует волновая функция ψ. Атомная орбиталь характеризуется энергией, формой и направлением в пространстве. Все эти характеристики квантованы (изменяются скачками), они описываются с помощью квантовых чисел.

Исходя из представления о наличии у электрона волновых свойств. Шредингер в 1925 г. предположил, что состояние движущегося в атоме электрона должно описываться известным в физике уравнением стоячей электромагнитной волны. Подставив в это уравнение вместо длины волны ее значение из уравнения де Бройля , он получил новое уравнение, связывающее энергию электрона с пространственными координатами и так называемой волновой функцией , соответствующей в этом уравнении амплитуде трехмерного волнового процесса.

Особенно важное значение для характеристики состояния электрона имеет волновая функция . Подобно амплитуде любого волнового процесса, она может принимать как положительные, так и отрицательные значения. Однако величина всегда положительна. При этом она обладает замечательным свойством: чем больше значение в данной области пространства, тем выше вероятность того, что электрон проявит здесь свое действие, т. е. что его существование будет обнаружено в каком-либо физическом процессе.

Более точным будет следующее утверждение: вероятность обнаружения электрона в некотором малом объеме выражается произведением . Таким образом, сама величина выражает плотность вероятности нахождения электрона в соответствующей области пространства.

Рис. 5. Электронное облако атома водорода.

Для уяснения физического смысла квадрата волновой функции рассмотрим рис. 5, на котором изображен некоторый объем вблизи ядра атома водорода. Плотность размещения точек на рис. 5 пропорциональна значению в соответствующем месте: чем больше величина , тем гуще расположены точки. Если бы электрон обладал свойствами материальной точки, то рис. 5 можно было бы получить, многократно наблюдая атом водорода и каждый раз отмечая местонахождение электрона: плотность размещения точек на рисунке была бы тем больше, чем чаще обнаруживается электрон в соответствующей области пространства или, иначе говоря, чем больше вероятность обнаружения его в этой области.

Представление о состоянии электрона как о некотором облаке электрического заряда оказывается очень удобным, хорошо передает основные особенности поведения электрона в атомах и молекулах и будет часто использоваться в последующем изложении. При этом, однако, следует иметь в виду, что электронное облако не имеет определенных, резко очерченных границ: даже на большом расстоянии от ядра существует некоторая, хотя и очень малая, вероятность обнаружения электрона. Поэтому под электронным облаком условно будем понимать область пространства вблизи ядра атома, в которой сосредоточена преобладающая часть (например, ) заряда и массы электрона. Более точное определение этой области пространства дано на стр. 75.

Читайте также: