Влияние на формирование взглядов исаак ньютон кратко

Обновлено: 04.07.2024

Большое влияние на развитие науки и философской мысли XVII— XVIII вв. оказали труды Исаака Ньютона. Ньютон сформулировал основные законы классической механики, открыл закон всемирного тяготения, разработал теорию движения небесных тел, обосновал важнейшие принципы оптики, внес крупнейший вклад в математику, (дифференциальное и интегральное исчисление) и т.

Стремление Ньютона вывести все явления природы из начал механики нашло воплощение в созданной им механической системе мира. После Ньютона представление о господстве в природе определенных закономерностей, механическая картина мироздания входят в плоть и кровь науки. Такое же влияние на естествоиспытателей оказали представления Ньютона о материи, массе, движении, времени и пространстве.

Если Декарт стремился показать мир в его возникновении и изменении, если в рамках его механицизма имеются хотя бы элементы исторического подхода, то мир Ньютона косный, застывший, лишенный истории. Общие воззрения Ньютона еще глубоко увязают в теологии.

И. Ньютон – английский математик и естествоиспытатель, механик, астроном и физик, основатель классической физики. "Начала" ("Математические начала натуральной философии") как вершина научного творчества И. Ньютона. Его теория движения небесных тел.

Рубрика История и исторические личности
Вид реферат
Язык русский
Дата добавления 20.01.2017
Размер файла 379,7 K

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Введение

ньютон естествоиспытатель начала физика

Исаак Ньютон - английский математик и естествоиспытатель, механик, астроном и физик, основатель классической физики. Роль открытий Ньютона для истории науки сложно переоценить. Не случайно дерево в саду родового имения семьи Ньютонов в Вульсторе, неподалеку от Кембриджа, откуда сорвалось знаменитое яблоко, в течение многих лет, пока его не сломила буря, было музейным экспонатом. Но, быть может, еще ярче значение Ньютона передает эпиграмма

Был этот мир глубокой тьмой окутан.

Да будет свет! И вот явился Ньютон.

Создатель классической физики

Ньютоном были изучены все основные вопросы физики и математики, актуальные для его времени.

Могучий аппарат ньютоновской механики, его универсальность и способность объяснить и описать широчайший круг явлений природы, особенно астрономических, оказали огромное влияние на многие области физики и химии.

Ньютон писал, что было бы желательно вывести из начал механики и остальные явления природы, и при объяснении некоторых оптических и химических явлений сам использовал механической модели.

Влияние взглядов Ньютона на дальнейшее развитие физики огромно. Российский физик С.И.Вавилов писал: "Ньютон заставил физику мыслить по-своему, "классически", как мы выражаемся теперь. Можно утверждать, что на всей физике лежал индивидуальный отпечаток его мысли; без Ньютона наука развивалась бы иначе".

Углубленные занятия естественными науками и математикой совмещались у Ньютона с религиозностью. К концу жизни он даже написал сочинение о пророке Данииле и толкование Апокалипсиса.

После смерти Ньютона возникло научно-философское направление, получившее название ньютонианства, наиболее характерной чертой которого была абсолютизация и развитие высказывания Ньютона: "гипотез не измышляю" и призыв к феноменологическому изучению явлений при игнорировании фундаментальных научных гипотез.

Оптика: в споре рождается истина

Ньютон начал интересоваться оптикой ещё в студенческие годы, его исследования в этой области были связаны со стремлением устранить недостатки оптических приборов. В своей первой работе "Новая теория света и цветов", доложенной им в Лондонском королевском обществе в 1672 г., Ньютон высказал свои взгляды о "телесности света" (корпускулярную гипотезу света).

Эта работа вызвала бурную полемику: в то время господствовали волновые представления.

Особенно яростным противником корпускулярных взглядов на природу света выступил английский естествоиспытатель, физик и архитектор Роберт Гук (1635-1703)). Отвечая Гуку, Ньютон высказал гипотезу, сочетавшую корпускулярные и волновые представления о свете. Эту гипотезу он потом развил в сочинении "Теория света и цветов", в котором он описал также свои опыт с "кольцами Ньютона" и установил периодичность световых волн.

Однако при чтении этого сочинения на заседании Лондонского королевского общества Гук выступил с притязанием на приоритет, и раздражённый Ньютон принял решение не публиковать оптических работ. Многолетние оптические исследования Ньютона были опубликованы им лишь в 1704 г.- через год после смерти Гука - в фундаментальном сочинении "Оптика".

Принципиальный противник необоснованных и произвольных гипотез, Ньютон начинает "Оптику" словами: "Мое намерение в этой книге - не объяснять свойства света гипотезами, но изложить и доказать их рассуждениями и опытами". Он описал скрупулезно проведённые им эксперименты по обнаружению дисперсии света - разложения белого света с помощью призмы на отдельные компоненты, разного цвета и различной преломляемости. Ньютон показал, что дисперсия вызывает искажение в линзовых оптических системах - хроматическую аберрацию. Считая, что устранить искажение, вызываемое ею, невозможно, ученый сконструировал зеркальный телескоп.

Кроме того, Ньютон описал интерференцию света в тонких пластинках и изменение интерференционных цветов в зависимости от толщины пластинки в "кольцах Ньютона". По существу, он первым измерил длину световой волны. Он описал и свои опыты по дифракции света.

"Оптика" завершается специальным приложением "Вопросы", где Ньютон высказывает свои физические взгляды - в частности, воззрения на строение вещества, где присутствует (правда, в неявном виде) понятие атома и молекулы.

Ньютон приходит к идее иерархического строения вещества: он допускает, что "частички тел" (атомы) разделены промежутками - пустым пространством, а сами состоят из более мелких частичек, также разделённых пустым пространством и состоящих из ещё более мелких частичек, вплоть до окончательно неделимых твёрдых частичек.

Ньютон высказывает гипотезу о том, что свет может представлять собой сочетание движения материальных частиц с распространением волн эфира.

"Начала" Ньютона

Вершиной научного творчества Ньютона являются "Начала" ("Математические начала натуральной философии"), в которых он обобщил результаты, полученные его предшественниками - Г. Галилеем, И. Кеплером, Р. Декартом, Х. Гюйгенсом, Дж. Борелли, Р. Гуком, Э. Галлеем, и свои собственные исследования.

Он впервые создал единую стройную систему земной и небесной механики, которая легла в основу всей классической физики. Здесь были даны определения исходных понятий - количества материи, эквивалентного массе, плотности; количества движения, эквивалентного импульсу, и различных видов силы.

Формулируя понятие количества материи, Ньютон исходил из представления о том, что атомы состоят из некой единой первичной материи; плотность он понимал как степень заполнения единицы объёма тела первичной материей.

Пространство, время, силы

Ньютон впервые рассмотрел основной метод описания любого физического воздействия через посредство силы.

Определяя понятия пространства и времени, он отделял "абсолютное неподвижное пространство" от ограниченного подвижного пространства, называя "относительным", а равномерно текущее, абсолютное, истинное время, называя "длительностью", - от относительного, кажущегося времени, служащего в качестве меры "продолжительности". Эти понятия времени и пространства легли в основу классической механики.

Затем ученый сформулировал свои знаменитые "аксиомы, или законы движения": закон инерции (открытый Галилеем,первый закон Ньютона), закон пропорциональности количества движения силе (второй закон Ньютона) и закон равенства действия и противодействия (третий закон Ньютона.). Из 2-го и 3-го законов он выводит закон сохранения количества движения для замкнутой системы.

Ньютон также рассмотрел движение тел под действием центральных сил и доказал, что траекториями таких движений являются конические сечения (эллипс, гипербола, парабола). Он изложил своё учение о всемирном тяготении, сделал заключение, что все планеты и кометы притягиваются к Солнцу, а спутники - к планетам с силой, обратно пропорциональной квадрату расстояния, и разработал теорию движения небесных тел.

Ньютон показал, что из закона всемирного тяготения вытекают и законы Кеплера, и важнейшие отступления от них. Так, он объяснил особенности движения Луны (вариацию, попятное движение узлов и т.д.), явление прецессии и сжатие Юпитера, рассмотрел задачи притяжения сплошных масс, теории приливов и отливов, предложил теорию фигуры Земли.

В "Началах" Ньютон исследовал движение тел в сплошной среде (газе, жидкости) в зависимости от скорости их перемещения и привёл результаты своих экспериментов по изучению качания маятников в воздухе и жидкостях.

Здесь же он рассмотрел скорость распространения звука в упругих средах.

Посредством математического расчёта Ньютон доказал несостоятельность гипотезы Декарта, объяснявшего движение небесных тел с помощью представления о разнообразных вихрях в эфире, заполняющем Вселенную.

Ньютон нашёл закон охлаждения нагретого тела.

В этом же сочинении он уделил значительное внимание закону механического подобия.

Математика - орудие физика

Итак, в "Началах" впервые дана общая схема строгого математического подхода к решению любой конкретной задачи земной или небесной механики. Дальнейшее применение этих методов потребовало, однако, детальной разработки аналитической механики (Л. Эйлер, Ж. Д'Аламбер, Ж.. Лагранж, У. Гамильтон) и гидромеханики (Л. Эйлер и Д. Бернулли).

Последующее развитие физики выявило пределы применимости механики Ньютона (теория относительности, разработанная А. Эйнштейном, квантовая механика).

Задачи естествознания, поставленные Ньютоном, потребовали разработки принципиально новых математических методов. Математика для него была главным орудием в физических изысканиях; он подчёркивал, что понятия математики заимствуются извне и возникают как абстракция явлений и процессов физического мира, что по существу математика является частью естествознания.

Разработка дифференциального исчисления и интегрального исчисления явилась важной вехой в развитии математики. Большое значение имели также работы Ньютона по алгебре, интерполированию и геометрии.

Основные идеи метода флюксий сложились у Ньютона под влиянием трудов П. Ферма, Дж. Валлиса и его учителя И. Барроу в 1665-66 гг.. К этому времени относится его открытие взаимно обратного характера операций дифференцирования и интегрирования и фундаментальные открытия в области бесконечных рядов, в частности индуктивное обобщение "теоремы обиноме Ньютона" на случай любого действительного показателя.

Вскоре были написаны и основные сочинения Ньютона по анализу, изданные, однако, значительно позднее. Некоторые математические открытия ученого получили известность уже в 70-е гг. благодаря его рукописям и переписке.

Всемирное тяготение

Созданная Ньютоном теория движения небесных тел, основанная на законе всемирного тяготения, была признана крупнейшими английским учёными того времени и резко отрицательно встречена на европейском континенте.

Противниками взглядов Ньютона (в частности, в вопросе о тяготении) были картезианцы, воззрения которых господствовали в Европе, особенно во Франции, в первой половине XVIII в.

Убедительным доводом в пользу теории Ньютона явилось обнаружение рассчитанной им приплюснутости земного шара у полюсов - и это вместо выпуклостей, ожидавшихся по учению Декарта!

Исключительную роль в укреплении авторитета теории Ньютона сыграла работа А. К. Клеро по учёту возмущающего действия Юпитера и Сатурна на движение кометы Галлея. Успехи теории Ньютона в решении задач небесной механики увенчались открытием планеты Нептун (1846 г.), основанном на расчётах возмущений орбиты Юпитера (У. Леверье и Дж. Адамс).

Вопрос о природе тяготения во времена Ньютона сводился в сущности к проблеме взаимодействия, т. е. наличия или отсутствия материального посредника в явлении взаимного притяжения масс. Не признавая картезианских воззрений на природу тяготения, Ньютон, однако, уклонился от каких-либо объяснений, считая, что для них нет достаточных научно-теоретических и опытных оснований.

Заключение

Слава Ньютона неразрывно связана с его приоритетом в систематическом применении математических методов к исследованию природы, а также в открытии закона тяготения. Ньютон упрочил основания динамики как надежной опоры механической картины мира, приложив ее законы к небесным явлениям. Достижения Ньютона в применении бесконечных рядов и в дифференциальном и интегральном исчислениях намного превосходят все, что было сделано до него, и поэтому Ньютона считают основоположником этих методов анализа.

Что касается влияния на развитие физической науки, то его трудно преуменьшить. Только к 20 в. основные положения, на которые опирался Ньютон, потребовали коренного пересмотра. Ревизия привела к созданию теории относительности и квантовой теории. Ньютону принадлежат также многочисленные сочинения по теологии, хронологии, алхимии и химии.

В 1725 Ньютон вынужден был оставить Лондон и переехать в Кенсингтон. Умер Ньютон в Кенсингтоне 20 марта 1727.

Литература

1. Кудрявцев С.П. История физики. Т. М., 1956.

2. Вавилов С.И. Исаак Ньютон. М., 1961.

Подобные документы

Английский математик и естествоиспытатель, механик, астроном и физик, основатель классической физики. Роль открытий Ньютона для истории науки. Юность. Опыты ученого. Проблема планетарных орбит. Влияние на развитие физической науки.

реферат [290,3 K], добавлен 12.02.2007

М.В. Ломоносов как первый русский ученый-естествоиспытатель мирового значения, энциклопедист, химик и физик, краткий очерк его жизни и научного становления, место в истории и самые известные открытия. Анализ произведений и научных трудов Ломоносова.

презентация [6,1 M], добавлен 25.12.2011

Древнегреческий мыслитель, религиозный и политический деятель Пифагор Самосский. Аристотель - древнегреческий ученый и философ. Математик и астроном Клавдий Птолемей, философ Платон (Аристокл), древнегреческий физик и математик Архимед, философ Сократ.

презентация [714,3 K], добавлен 08.04.2013

Функции науки: описательная, систематизирующая, объяснительная, производственно-практическая, прогностическая, мировоззренческая. Творцы открытий в эпоху Средневековья: Роджер Бэкон, Гутенберг, Коперник, Тихо Браге, Галилео Галилей, Ньютон и да Винчи.

реферат [34,3 K], добавлен 10.05.2014

"Смутное время" в русской истории начала XVII в. Царствование Бориса Годунова, вторжение Лжедмитрия. Воцарение Василия Шуйского, восстание под предводительством Болотникова. Первое ополчение, семибоярщина. Русская культура начала XX в. ("серебряный век").

Современная наука охватывает огромную отрасль знаний - около 15 тысяч дисциплин, которые в различной степени отдалены друг от друга. Современная наука имеет очень сложную организацию. Она разделяется на множество отраслей знания.

Естествознание - наука о природе; совокупность естественных наук, взятая как целое; одна из трех основных областей человеческого знания (наряду с науками об обществе и мышлении). В Новое время природа впервые становится объектом тщательного научного анализа и вместе с тем поприщем активной практической деятельности человека, масштабы которой в силу успехов капитализма постоянно нарастают. Относительно низкий уровень развития науки и вместе с тем овладение человеком мощными силовыми агентами природы (тепловой, механической, а затем и электрической энергией) не могли не привести к хищническому отношению к природе, преодоление которого растянулось на века, вплоть до наших дней.

Объект естествознания - сама природа, предмет - различные виды материи и формы их движения, проявляющиеся в природе, их связи и закономерности.

Физика как ведущая отрасль всего естествознания играет роль стимулятора по отношению к другим отраслям естествознания. Конституирование физики как науки связано в первую очередь с гениальными открытиями Галилео Галилея (1562 - 1642) и Исаака Ньютона (1643 - 1727). Особенно значительны научные прозрения Ньютона.

Роль Ньютона в становлении механистической научной картины мира

В истории развития естествознания можно выделить три научных революции.

Первая революция (аристотелевская) произошла в VI - IV вв. до н.э. в познании мира, в результате которой и появилась на свет наука. Важнейшим фрагментом античной научной картины мира стало последовательное геоцентрическое учение о модели мира. В центре конечной Вселенной находится неподвижная Земля, а Солнце, Луна, планеты и звёзды обращаются вокруг неё по круговым орбитам, расположенным на восьми сферах. Что лежит за последней сферой, не объяснялось.

Вторая глобальная научная революция (ньютоновская) пришлась на XVI - XVIII вв. Её исходным пунктом считается переход от геоцентрической модели мира к гелиоцентрической. В центре бесконечной Вселенной находится Солнце, а Луна, планеты и звёзды обращаются вокруг него. Основной смысл второй научной революции - становление классического естествознания. Итог - механистическая научная картина мира, завершенная И. Ньютоном.

Динамический закон - это физический закон, отображающий объективную закономерность в форме однозначной связи физических величин, выражаемых количественно. Динамической теорией является физическая теория, представляющая совокупность динамических законов. Исторически первой и наиболее простой теорией такого рода и явилась классическая механика Ньютона. Она претендовала на описание механического движения, то есть перемещения в пространстве с течением времени любых тел или частей тел относительно друг друга, с какой угодно точностью.

Метод, примененный Ньютоном, называется сейчас правилом индукции (от единичного к особенному, а от него - к общему). Процесс индукции связан с такой операцией, как сравнение - установление сходства и различия объектов, явлений. Благодаря этому методу Ньютон сумел распространить область применимости законов механики на всю Вселенную и доказать универсальность тяготения.

К величайшим научным достижениям ХVII - ХVIII вв. надо отнести закон всемирного тяготения И. Ньютона. Закон всемирного тяготения носит универсальный характер, т.к. ему подчиняется все - малое и большое, земное и небесное. G - постоянная закона тяготения Ньютона.

Закон всемирного тяготения открыл широкие возможности для развития научного подхода к исследованию Вселенной и ее составных частей на основе лишь немногих фундаментальных законов и взаимодействий, имеющих одинаковую силу на Земле, в научной лаборатории и в космосе.

Естественно-научные представления о пространстве и времени прошли длинный путь становления и развития. Самые первые из них возникли из очевидного существования в природе твердых физических тел, занимающих определенный объем. Здесь основными были представления о пространстве и времени как о субстанции - нечто относительно устойчивое, то, что существует само по себе, не зависит ни от чего другого (Аристотель, Демокрит). Первая законченная теория пространства - геометрия Евклида. Она была создана примерно 2 000 лет назад и до сих пор считается образцом научной теории. Геометрия Евклида оперирует идеальными математическими объектами, которые существуют как бы вне времени, и в этом смысле пространство в этой геометрии - идеальное математическое пространство. Такой взгляд и позволил Ньютону сформулировать концепцию абсолютного пространства и времени. Абсолютное пространство существует независимо от времени и независимо от наполняющей его материи, остается всегда одинаковым и неподвижным. Пространство - лишь сцена, на которой разворачиваются события, немой и безучастный свидетель того, что происходит с материей. Абсолютное время при этом течет равномерно и независимо ни от чего, и иначе называется длительностью. Течение абсолютного времени изменяться не может. Длительность или продолжительность существования вещей одна и та же, быстры ли движения (по которым измеряется время), медленны ли или их совсем нет… Время и пространство составляют как бы вместилища самих себя и всего существующего.




Следует, однако, отметить, что, создав стройную научную теорию, И. Ньютон допускал возможность божественного первотолчка. Ведь представление о Вселенной как о гигантской заводной игрушке, часовщиком в которой был Бог, преобладало в XVII - XVIII вв..

В конце XVII в. произошла также революция в математике. И. Ньютон и Г. Лейбниц независимо друг от друга разработали принципы интегрального и дифференциального исчисления.

Ньютон разработал математический анализ. Он создал свой вариант дифференциального и интегрального исчисления, благодаря этому ему удалось точно сформулировать законы динамики и закон всемирного тяготения, согласно которому все тела, независимо от их свойств и от свойств среды, в которой они находятся, испытывают взаимное притяжение, прямо пропорциональное их массам и обратно пропорциональное квадрату расстояния между ними.

Дифференциальное исчисление дало возможность математически описывать не только устойчивые состояния тел, но и текущие процессы, не только покой, но и движение. Эти исследования стали основой математического анализа и математической базой всего современного естествознания.

Итак, изучение природы должно было начаться с установления законов такой простейшей формы движения материи, какой являются механические процессы. Занявшись экспериментальным исследованием свободно падающих тел, выдающийся итальянский ученый Галилео Галилей сформулировал управляющие ими законы и заложил основы механики, которую превратил в научную дисциплину знаменитый английский ученый Исаак Ньютон.

Введение

Всемирный тяготение ньютон закон

Современная наука охватывает огромную отрасль знаний - около 15 тысяч дисциплин, которые в различной степени отдалены друг от друга. Современная наука имеет очень сложную организацию. Она разделяется на множество отраслей знания.

Естествознание - наука о природе; совокупность естественных наук, взятая как целое; одна из трех основных областей человеческого знания (наряду с науками об обществе и мышлении). В Новое время природа впервые становится объектом тщательного научного анализа и вместе с тем поприщем активной практической деятельности человека, масштабы которой в силу успехов капитализма постоянно нарастают. Относительно низкий уровень развития науки и вместе с тем овладение человеком мощными силовыми агентами природы (тепловой, механической, а затем и электрической энергией) не могли не привести к хищническому отношению к природе, преодоление которого растянулось на века, вплоть до наших дней.

Объект естествознания - сама природа, предмет - различные виды материи и формы их движения, проявляющиеся в природе, их связи и закономерности.

Физика как ведущая отрасль всего естествознания играет роль стимулятора по отношению к другим отраслям естествознания. Конституирование физики как науки связано в первую очередь с гениальными открытиями Галилео Галилея (1562 - 1642) и Исаака Ньютона (1643 - 1727). Особенно значительны научные прозрения Ньютона.

Роль Ньютона в становлении механистической научной картины мира

В истории развития естествознания можно выделить три научных революции.

Первая революция (аристотелевская) произошла в VI - IV вв. до н.э. в познании мира, в результате которой и появилась на свет наука. Важнейшим фрагментом античной научной картины мира стало последовательное геоцентрическое учение о модели мира. В центре конечной Вселенной находится неподвижная Земля, а Солнце, Луна, планеты и звёзды обращаются вокруг неё по круговым орбитам, расположенным на восьми сферах. Что лежит за последней сферой, не объяснялось.

Вторая глобальная научная революция (ньютоновская) пришлась на XVI - XVIII вв. Её исходным пунктом считается переход от геоцентрической модели мира к гелиоцентрической. В центре бесконечной Вселенной находится Солнце, а Луна, планеты и звёзды обращаются вокруг него. Основной смысл второй научной революции - становление классического естествознания. Итог - механистическая научная картина мира, завершенная И. Ньютоном.

Динамический закон - это физический закон, отображающий объективную закономерность в форме однозначной связи физических величин, выражаемых количественно. Динамической теорией является физическая теория, представляющая совокупность динамических законов. Исторически первой и наиболее простой теорией такого рода и явилась классическая механика Ньютона. Она претендовала на описание механического движения, то есть перемещения в пространстве с течением времени любых тел или частей тел относительно друг друга, с какой угодно точностью.

Метод, примененный Ньютоном, называется сейчас правилом индукции (от единичного к особенному, а от него - к общему). Процесс индукции связан с такой операцией, как сравнение - установление сходства и различия объектов, явлений. Благодаря этому методу Ньютон сумел распространить область применимости законов механики на всю Вселенную и доказать универсальность тяготения.

К величайшим научным достижениям ХVII - ХVIII вв. надо отнести закон всемирного тяготения И. Ньютона. Закон всемирного тяготения носит универсальный характер, т.к. ему подчиняется все - малое и большое, земное и небесное. G - постоянная закона тяготения Ньютона.

Закон всемирного тяготения открыл широкие возможности для развития научного подхода к исследованию Вселенной и ее составных частей на основе лишь немногих фундаментальных законов и взаимодействий, имеющих одинаковую силу на Земле, в научной лаборатории и в космосе.

Естественно-научные представления о пространстве и времени прошли длинный путь становления и развития. Самые первые из них возникли из очевидного существования в природе твердых физических тел, занимающих определенный объем. Здесь основными были представления о пространстве и времени как о субстанции - нечто относительно устойчивое, то, что существует само по себе, не зависит ни от чего другого (Аристотель, Демокрит). Первая законченная теория пространства - геометрия Евклида. Она была создана примерно 2 000 лет назад и до сих пор считается образцом научной теории. Геометрия Евклида оперирует идеальными математическими объектами, которые существуют как бы вне времени, и в этом смысле пространство в этой геометрии - идеальное математическое пространство. Такой взгляд и позволил Ньютону сформулировать концепцию абсолютного пространства и времени. Абсолютное пространство существует независимо от времени и независимо от наполняющей его материи, остается всегда одинаковым и неподвижным. Пространство - лишь сцена, на которой разворачиваются события, немой и безучастный свидетель того, что происходит с материей. Абсолютное время при этом течет равномерно и независимо ни от чего, и иначе называется длительностью. Течение абсолютного времени изменяться не может. Длительность или продолжительность существования вещей одна и та же, быстры ли движения (по которым измеряется время), медленны ли или их совсем нет… Время и пространство составляют как бы вместилища самих себя и всего существующего.

Следует, однако, отметить, что, создав стройную научную теорию, И. Ньютон допускал возможность божественного первотолчка. Ведь представление о Вселенной как о гигантской заводной игрушке, часовщиком в которой был Бог, преобладало в XVII - XVIII вв..

В конце XVII в. произошла также революция в математике. И. Ньютон и Г. Лейбниц независимо друг от друга разработали принципы интегрального и дифференциального исчисления.

Ньютон разработал математический анализ. Он создал свой вариант дифференциального и интегрального исчисления, благодаря этому ему удалось точно сформулировать законы динамики и закон всемирного тяготения, согласно которому все тела, независимо от их свойств и от свойств среды, в которой они находятся, испытывают взаимное притяжение, прямо пропорциональное их массам и обратно пропорциональное квадрату расстояния между ними.

Дифференциальное исчисление дало возможность математически описывать не только устойчивые состояния тел, но и текущие процессы, не только покой, но и движение. Эти исследования стали основой математического анализа и математической базой всего современного естествознания.

Итак, изучение природы должно было начаться с установления законов такой простейшей формы движения материи, какой являются механические процессы. Занявшись экспериментальным исследованием свободно падающих тел, выдающийся итальянский ученый Галилео Галилей сформулировал управляющие ими законы и заложил основы механики, которую превратил в научную дисциплину знаменитый английский ученый Исаак Ньютон.


НЬЮ́ТОН (Newton) Иса­ак (25.12.1642, Вул­сторп – 20.3.1727, Кен­синг­тон, ны­не ра­й­он Лон­до­на), сэр, англ. ма­те­ма­тик, ме­ха­ник, оп­тик, фи­ло­соф, гос. дея­тель; чл. (1672) и пре­зи­дент (1703) Лон­дон­ско­го ко­ро­лев­ско­го об-ва (ЛКО), чл. Па­риж­ской АН (1699), пэр Анг­лии (1705). Один из соз­да­те­лей ма­те­ма­тич. ана­ли­за, от­крыв­ше­го но­вую эпо­ху в ко­ли­че­ст­вен­ном опи­са­нии при­род­ных яв­ле­ний. Раз­ра­бо­тал ос­но­вы клас­сич. ме­ха­ни­ки, фи­зич. оп­ти­ки.

Читайте также: