Вихревой расходомер принцип работы кратко

Обновлено: 02.07.2024

Расходомер (другие названия - расходомер-счетчик или счетчик) – прибор, предназначенный для определения объема или массы вещества (жидкости или газа), прошедшего по сечению трубы в единицу времени. Они могут иметь различный способ измерения. К наиболее распространённым относят электромагнитные, тахометрические, ультразвуковые, с сужающими устройствами, кориолисовые и вихревые расходомеры. В статье будут рассмотрены расходомеры газа вихревого принципа действия.

Принцип действия вихревого расходомера

Принцип измерения основан на следующем эффекте: если в поток вязкого газа ввести плохообтекаемый предмет, то за ним формируется след, состоящий из цепочки регулярных вихрей (дорожки Кармана). Вихри представляют собой зоны более высокого и низкого давления, а чувствительный элемент преобразует энергию регулярных вихрей в выходной электрический частотный сигнал. Частота следования вихрей, а, следовательно, и частота сигнала пропорциональна объемному расходу в широком диапазоне скоростей и зависит от параметров измеряемой среды (вязкости и плотности газа), геометрических параметров трубопровода и формы тела обтекания. Совокупность свойств среды и геометрических размеров сечения проточной части определяется безразмерной величиной Sh - число Струхаля.

Одна из особенностей принципа действия вихревого расходомера – образование вихрей возможно лишь при скоростях потока не ниже определенной величины. На малых скоростях течение будет ламинарным, и вихреобразования не происходит. Характер течения определяется безразмерной величиной Re - число Рейнольдса. При значениях числа Рейнольдса Re≤1000 поток будет ламинарным, при значениях от 1000 до 2300 переходным, а при Re≥2300 турбулентным.

Установлено, что при значениях числа Рейнольдса от 20 000 до 7 000 000 число Струхаля Sh практически неизменно. Благодаря этому эффекту частота вихрей зависит от скорости потока линейно с постоянным коэффициентом преобразования, который не зависит от вязкости и плотности измеряемого вещества и одинаков для всех типов сред. Это свойство и легло в основу принципа действия вихревых расходомеров.

Область применения вихревых расходомеров

Благодаря своим преимуществам и особенностям принципа действия вихревые расходомеры могут применяться для измерения параметров расхода и дополнительных параметров различных сред, например пар, сжатый воздух, вода, различные промышленные газы (включая природный) и их смеси. Далее рассмотрим по отдельности 3 наиболее популярных вещества, расход которых измеряют вихревыми расходомерами.

Перегретый и насыщенный пар

Особенность данной среды – высокие, близкие к экстремальным параметры давления и температуры. Вместе с полезной средой (паром) по паропроводу перемещаются механические частицы накипи, продуктов коррозии, а также конденсат. В связи с этим реально работать в качестве расходомера в таких условиях способны только вихревые и расходомеры с сужающим устройством. Вихревые расходомеры обладают более высокой точностью и более широким динамическим диапазоном измерений, а более длительный межповерочный интервал позволит сэкономить на эксплуатационных расходах. Расходомеры вихревого принципа действия могут применяться для измерения пара с параметрами:

  • Температура до 350 С;
  • Давление до 10 МПа;
  • Скорость движения 2-70 м/с.

Природный газ

Возможность применения вихревых расходомеров для учета (в том числе коммерческого) природного газа обусловлена сочетанием их преимуществ: возможность обеспечения точности измерений до 1%, наличие методики беспроливной поверки, в том числе без демонтажа датчика с трубопровода, а значит без остановки подачи газа, более длительный межповерочный интервал. Недостатки принципа измерения вихревых расходомеров, например, чувствительность к вибрациям решаются путем применения алгоритмов цифровой обработки сигналов первичных датчиков, спектрального анализа, применением тела обтекания специальной сложной формы, взаимным расположением тела обтекания и сенсоров давления и т.д. В сочетании с высокой надежностью эти преимущества позволяют строить узлы коммерческого учета с существенной экономией затрат денежных средств на эксплуатацию комплекса.

Сжатый воздух

Узлы учета сжатого воздуха устанавливаются чаще всего для оценки энергозатрат на работу какой-либо технологической установки. В потоке сжатого воздуха всегда присутствуют как механические примеси, так и жидкие фракции – влага, масло и т.д. Применение вихревых расходомеров благодаря их надежности и неприхотливости для учета в таких условиях позволяет не устанавливать фильтры, осушители и уловители для очистки измеряемой среды, что снижает общие затраты на внедрение измерительного комплекса и его дальнейшую эксплуатацию.

Промышленные газы с различными параметрами

Отсутствие подвижных элементов в конструкции вихревого расходомера позволяет аттестовать приборы на соответствие уровню взрывозащиты 1ExibIIC, что делает возможным их применение для измерения взрывоопасных газов – кислород, водород, углеводороды и т.д. Также имеется возможность устанавливать расходомеры вихревого принципа действия на узлы учета аммиака, углекислоты и других технологических газов.

Конструкция вихревого счетчика-расходомера

Счетчик-расходомер состоит из проточной части, блока обработки сигналов и микропроцессорного вычислителя. На входе проточной части закреплено тело обтекания. Также в проточной части устанавливаются первичные преобразователи - датчик избыточного давления, датчик температуры и пара пъезодатчиков. Датчик избыточного давления используется тензорезисторного принципа действия и устанавливается перед телом обтекания. Сенсором температуры служит, как правило, термопреобразователь сопротивления и встраивается внутрь тела обтекания, при этом необходимо обеспечить термический контакт с измеряемым веществом. Пъезодатчики устанавливаются за телом обтекания по ходу движения измеряемой среды и служат для преобразования пульсаций давления потока в электрический сигнал.

Сигналы от всех датчиков поступают в блок обработки, где осуществляется преобразование аналоговых сигналов в цифровые с требуемой точностью, их цифровая фильтрация и спектральный анализ. На основании полученной информации измеряются как основные параметры – объемный расход, скорость потока, так и расширенные – массовый расход, температура, давление, плотность. Далее данные передается на блок вычислителя, где они снабжаются метками времени и архивируются. С помощью программного обеспечения верхнего уровня по интерфейсам связи: цифровому, токовая петля, импульсный выход могут быть собраны как архивные данные с требуемым интервалом усреднения, так и текущие значения мгновенного расхода, температуры, давления. Несколько счетчиков, установленных на распределительной сети предприятия, можно объединить в автоматизированную систему и получать оперативную информацию по расходу энергоресурсов различными производственными подразделениями, сводить баланс, получать своевременную информацию об аварийных ситуациях.

Энергетическая промышленность использует для подсчета добычи и расхода ресурсов различные счетчики. Одним из таких устройств является вихревой расходомер. Статья подробно описывает принцип действия этого устройства, разновидности, области применения.

Вихревой расходомер

Физические принципы

Вихревые расходомеры используется в качестве устройств для подсчета объемов расхода пара, жидкости, газа. Сконструирован вихревой расходомер с использованием принципа Кармана. Данный принцип основан на физическом законе обтекания и завихрения газов. Согласно ему, если газ движется при определенном давлении и обтекает плохо обтекаемые предметы, то за этими предметами создаются вихри. В зависимости от величины проходящего давления, вихри образуют области повышенного и пониженного давления.

Вихревой поток принцип Кармана

В данном принципе основополагающую роль имеет давление проходящего газа. Низкому давлению свойственна низкая скорость перемещения в пространстве. В такой ситуации, за плохо обтекаемыми предметами не может образоваться вихрь. В этом случае недостаточная скорость перемещения является ламинарной. Высокое давление образует большую скорость, а значит среду для вихревого образования. Такая скорость считается турбулентной. Скорость потока газа или пара является безразмерной величиной. Но ее рассчитывают, для того, чтобы создать возможности для увеличения давления до турбулентных скоростей. Для этого берется значение Рейнольдса или Re. Согласно этому значению, турбулентная скорость начинает находится в пределах 1000–2500Re.

Вихревой расходомер принцип действия

Для работы вихревых расходомеров используется еще одна неизменная величина.

Вихревой расходомер конструкция

Это число Струхаля или Sh. Данная величина определяет постоянство колебаний газа при прохождении в средах с геометрическим размером сечений, иными словами по трубам. Согласно величине Sh, при скоростях движения газа от 20 тысяч до 7 миллионов Re, число Струхаля неизменно. Этот эффект дает возможность при постоянной скорости производить наиболее устойчивые завихрения, а значит производить самые точные подсчеты.

Конструкция

Вихревой расходомер представляет собой полую трубу, в которую заключены несколько предметов с острыми краями. В эту трубу опущен пьезосенсор, который передает импульсы на электронный блок управления. Блок преобразует импульсы в энергию или числовое значение. Значение выводится на экран или вращает шестерни счетчика.

Принцип работы

Чтобы точно описать вихревой расходомер, необходимо знать принцип его действия. Газ проходя по трубе под высоким давлением, сталкивается с несколькими телами обтекания. За счет скорости движения и острых краев тел обтекания, за ними образуются завихрения текущего газа. Завихрения происходят под определенным давлением. Это давление приводит в действие пьезосенсор. При колебании пьезосенсора образуются электрические импульсы, которые перенаправляются на блок управления для расчета. Расчет выводится на экран.

Сенсоры

Основой для создания и передачи импульсов вихревого расходомера является сенсор. Эти устройства бывают следующих типов:

От сенсора зависит точность получаемых и преобразованных данных.

Разновидности

Вихревые расходомеры сложное устройство. Существует несколько разновидностей этого прибора:

  1. Устройство на основе обтекаемого тела. В подобном вихревом расходомере вихрь создается за счет обтекаемого тела. Такие устройства используются на участках с прямыми трубами и очень высоким давлением.
  2. Устройства для образования воронкообразных вихрей. У них нет не обтекаемых тел. Поток газа закручивается по горизонтали, за счет углубления в полости трубы. Для создания пульсации используется переход с трубой большего диаметра. Именно в нее вмонтирован пьезодатчик.
  3. Струйные вихревые расходомеры или осциллирующие. Совсем иной вид устройств. В них нет тел для создания завихрения. Пульсация создается за счет сложного перехода по узким коридорам. При быстром изменение направления и сечений, газ создает колебания, которые считываются сенсорами.

Все эти разновидности расходомеров используются в современной промышленности, для точного расхода потребляемой энергии.

Сфера применения

Вихревой расходомер используется в различных сферах промышленности и производства. Выбор устройства зависит от газа, пара, жидкости, их смесей и степени опасности при перегоне. Из основных можно выделить:

  1. Насыщенный или перегретый пар. Для этой среды используются приборы с коридорами сужения или вихревые расходомеры. При перегоне пара есть доля посторонних веществ и предметов, которые попадают в камеру счетчиков. Так вместе с паром проходит накипь, различные отслоения, железная стружка, конденсат. При этом перегон проходит под очень высоким давлением и температурой. Температура рабочей среды доходит до 400 градусов, скорость движения до 75 м/с, давление более 10–15 МПа.
  2. Газы. Сложная и взрывоопасная среда. Для учета перегона газа используются обычные вихревые расходомеры. Они часто применяются для учета расхода и добычи природного газа. Их применение обусловлено высокой точностью расчета, надежностью и безопасностью. Так большая доля применения приходится в сфере добычи газа и подачи энергии населению. Расчет коммунальных компаний с поставщиками проводится именно на основе этих устройств.
  3. Сжатый воздух. Для перегона этого состава используется обычный вихревой расходомер. Часто используется для расчета потребления различных устройств и механизмов. У подобной среды существует определенная доля жидких примесей. Из-за плохого состояния коммуникаций и оборудования, при перегоне в сжатый воздух попадает масло, вода, гидравлические масла, части металлической стружки. Использование вихревого расходомера исключает дополнительную необходимость в фильтрации до счетчика. Это значительно сокращает время на демонтаж оборудования, чистку, общие денежные затраты и время простоя.
  4. Газы с высокими параметрами взрывоопасности. В таких средах применение вихревого счетчика просто незаменимо. Это обусловлено полным отсутствием подвижных элементов в конструкции. Для особо вредных примесей просто достаточно изменить материал необтекаемых тел внутри датчика. Высокая надежность устройств и конструктивная особенность, позволяет использовать их для низко температурных газов и жидкостей. Также по причине простоты конструкции, длительная эксплуатация проходит без разгерметизации датчика.
  5. Вода. Для учета расхода воды, подобные расходомеры используются только на предприятиях или в котельных. На атомных электростанциях приборы используются для подсчета радиоактивной воды в отстойники. Соленая вода для опреснителей также проходит через расходомер, для сопоставления разницы после фильтрации.

Сфера применения вихревых расходомеров

Расходомеры простой конструкции подходят для прогона газов и жидкостей с высокой степенью вязкости. Могут использоваться расходомеры с круглым, обтекаемым телом, в зависимости от давления, с которым поступает вязкая масса.

Преимущества и недостатки устройств

Вихревой расходомер используется в промышленности очень давно. За это время его не смогли заменить более совершенным оборудованием. Данные приборы имеют ряд следующих преимуществ:

  1. Безопасность. Устройства не оборудованы движущимися элементами конструкции. Это позволяет использовать расходомеры в самых опасных средах.
  2. Устройства универсальны. Их можно использовать при перегоне воды, жидкой нефти, различных по составу газов, пара. Простота конструкции дает возможность использовать одну коммуникацию для разных веществ.
  3. Простота. Конструктивные особенности позволили использовать счетчики без дополнительных фильтров. Счетчики не забиваются, инородные примеси не влияют на расчет.
  4. Надежность. За счет малого количества конструктивных элементов, приборы обладают высокой надежность и долговечностью. Благодаря особенностям конструкции, расходомеры не имеют множества соединений, прокладок, соединительных швов.
  5. Точность. При перегоне любых газов и жидкостей, расчет проводится с максимальной точностью, без погрешностей со стороны электронной части счетчика.
  6. Устройства полностью не восприимчивы к изменению величины давления. На их работу не может повлиять вибрация, скачки температуры, механические воздействия.
  7. Возможность создания цепи устройств под контролем одного блока управления. Такая возможность позволяет использовать расходомеры в группе при их существенном удалении друг от друга. Современные аналогам уже не нужны кабельные коммуникации, передача данных осуществляется через интернет, а данные передаются с настроенным временным интервалом.

Подобные плюсы делают использование расходомеров финансово экономичным.

Не лишены устройства своих минусов. Они главным образом связаны с регламентом и требованиями к их установке.

  1. Через расходомеры нельзя прогонять вещества с высокой вязкостью, сухие и сыпучие составы.
  2. Установка устройств возможна только на прямых участках трубопровода.
  3. Устройства забиваются и могут повредиться при попадании твердых предметов, частей установок, различных крепежных элементов.

Подобные минусы не могут стать причиной отказа от использования вихревого расходомера.

Заключение

Промышленность всегда ищет максимально простые, дешевые и функциональные устройства и приборы. Вихревой расходомер относится именно к таким устройствам. При всей своей простоте, он максимально надежен, прост в эксплуатации и может быть использован для коммерческого расчета на основе точных данных.

Вихревыми называют такие расходомеры, измерение расхода в которых происходит путем измерения частоты колебания давления. Такие колебания давления в потоке появляются в процессе образования вихрей или колебания струи, путем обтекания препятствия некоторой формы, которое устанавливается в трубопроводе, либо путём закручивания потока другими средствами.

Вихревой расходомер EMERSON

Рисунок 1. Вихревой расходомер EMERSON

Впервые, вихревой расходомер появился в Америке, Советском союзе и Японии в начале 60-х гг XX века. Конечно, это были не такие современные приборы, какие можно увидеть в настоящее время, однако, именно в те года была заложена база, для развития приборостроения в этой отрасли. В современной России, первые модели вихревых расходомеров пара и газа, относятся к середине 90-х гг. XX века.

Вихревой расходомер, использующий метод, заключающийся в измерении перепадов давления на сужающем устройстве, является наиболее универсальным расходомером, поскольку подходит для вычисления скорости расхода любой жидкой или газообразной среды, за некоторым исключением, в трубах большого и малого диаметров в широком диапазоне температур и избыточного давления.

Так как же работает вихревой расходомер?!

Поток жидкости или газа пытается обогнуть тело, установленное в расходомере, в результате движения меняет направление обтекающих струй и увеличивает скорость, уменьшая при этом давление. После прохождения препятствия (тела) за миделевым сечением, происходит уменьшение скорости и увеличение давления. Таким образом, на передней части обтекаемого тела наблюдается повышенное давление, а на задней - пониженное давление. Пройдя миделевое сечение, пограничный слой потока отрывается от тела и под действием перепада давлений (из высокого в низкое), образуемого за телом, меняет направление своего движения, создавая завихрения. При этом, образование завихрений происходит поочередно с обеих сторон тела (рисунок 2).

Рисунок 2. Образование завихрений в вихревом расходомере.

Некоторые вихревые расходомеры, для усиления выходного сигнала используют несколько обтекаемых тел (чаще два), которые равноудалены друг от друга. Тела обтекания, при этом, могут иметь различную форму: круглую, квадратную, треугольную, трапециевидную (рисунок 3). Например, обтекаемое тело в виде прямоугольной призмы, устанавливаемое на некоторые приборы, может иметь специальные пьезоэлементы на боковых гранях, защищенные эластичными мембранами, и исключающие влияние шумовых помех.

Формы тела обтекания вихревых расходомеров

Рисунок 3. Формы тела обтекания вихревых расходомеров.

В таких расходомерах может использоваться несколько вариантов преобразования колебаний вихревого потока в подлежащий обработке выходной сигнал. Как правило, для этих целей, применяется метод измерения периодического колебания давления либо измерение скорости струй с обеих сторон обтекаемого тела. В этом случае, чувствительным элементом преобразователя, будет являться один или несколько полупроводниковых термоанемометров. Для разных производителей вихревых расходомеров характерны такие типы преобразователей расхода, как: емкостный, индуктивный, ультразвуковой, струнный, интегрирующий и др.

Что касается зависимости формы тела обтекания от диаметра труб, то для расходомеров с треугольным, трапециевидным и квадратным типом тела обтекания используются трубы диаметром от 50 до 300 мм, погрешность измерения, при этом, составляет ±0,5-2 %.

Для труб большого диаметра (300-350мм), использование вихревых уровнемеров затруднено, вследствие того, что частота срыва вихрей совпадает с частотой свободных колебаний тела. К тому же эффективность вихреобразования при малых значениях относительного диаметра обтекаемого тела достаточно низка, а большие его значения неприемлемы из-за громоздкости получающейся конструкции и снижения частоты образования завихрений.

Среди всех разновидностей вихревых расходомеров для учета газовых и жидких сред, хотелось бы выделить следующие, как самые надежные, и не раз доказавшие свою эффективность:

Взлет-ВРС (ВРСГ)

ВРСГ-1

ДРК-В(М)

ИРВИС-РС4

Вихревые расходомеры принято разделять по признаку, в зависимости от типа преобразователя:

1. Вихревые расходомеры с обтекаемым телом - это расходомеры, в которых первичным преобразователем расхода является неподвижное тело (рисунок 4). Именно о них мы говорили в самом начале. В таких расходомерах, после обтекания тела (тело обтекания), то с одной, то с другой стороны, по очереди, возникают завихрения, которые и создают пульсацию давления. Следует упомянуть о том, что перед любым вихревым расходомером с обтекаемым телом должен быть установлен прямой участок трубы.

Вихревой расходомер с обтекаемым телом

Рисунок 4. Вихревой расходомер с обтекаемым телом. Где, 1 - трубопровод, 2- тело обтекания круглой формы, 3 - вихри.

2. Вихревые расходомеры с прецессией воронкообразного вихря - это расходомеры, поток в которых закручивается в первичном преобразователе, а попадая в широкую часть трубы, принимает воронкообразный вид и прецессирует - т.е. создает пульсации давления. Здесь, для преобразования частоты пульсации в унифицированный измерительный сигнал используются полупроводниковые термоанемометры или пьезоэлементы. Данный тип вихревых расходомеров подразделяется на приборы с винтовым завихряющим устройством (рисунок 5) и с тангенциальным вводом в камеру (рисунок 6). Их различие состоит в том, что в приборах с тангеницальным вводом в камеру, поток входит по касательной, и закручивается в ивде воронки

Схема первой ступени вихревых преобразователей с винтовым завихряющим устройством

Рисунок 5. Схема первой ступени вихревых преобразователей с винтовым завихряющим устройством. Где, 1 - труба входящего потока, 2 - участок трубы с большим диаметром, 3 - патрубок, 4 - цилиндрическая камера с резьбой для закручивания потока

Схема первой ступени вихревых преобразователей с тангенциальным вводом в камеру

Рисунок 6. Схема первой ступени вихревых преобразователей с тангенциальным вводом в камеру. Где, 1 - труба входящего потока, 2 - участок трубы с большим диаметром, 3 - патрубок, 4 - цилиндрическая камера для закручивания потока

3. Вихревые расходомеры с осциллирующей струей - это расходомеры, где первичным преобразователем является струя. Пульсации давления, в данном случае, создаются при вытекании струи из отверстия путем её автоколебания, вызываемого специальной конструкции расходомера. Вихревые расходомеры с осциллирующей струей могут быть двух типов: релаксационный (рисунок 7) и с обратной гидравлической связью (рисунок 8). Приборы, имеющие преобразователь с обратной связью лучше, поскольку, такой преобразователь позволяет более строго обеспечить процесс осцилляции и имеет едва ли не линейную зависимость между расходом и частотой колебания. Такие расходомеры могут быть использованы с маленькими трубами, диаметром от 12 до 100 мм.

Релаксационный преобразователь вихревого расходомера с осциллирующей струей

Рисунок 7. Релаксационный преобразователь вихревого расходомера с осциллирующей струей. Где 1-сопло, 2- диффузор,3- обводная трубка.

Преобразователь вихревого расходомера с колеблющейся струей с обратной гидравлической связью

Рисунок 8. Преобразователь вихревого расходомера с колеблющейся струей с обратной гидравлической связью. Где, 1-дифузор 2- выходной парубок, 3- сопло 1, 4-сопло 2, 5-верхний отводной канал,6-нижний обводной канал.

Кстати, для измерения скорости расхода газообразных (реже, жидких сред), могут быть использованы вихревые расходомеры с качающимся элементом. Принцип их действия чем то схож с приборами с обтекаемым телом. Здесь, раскачивание обтекаемого тела при движении среды возникает благодаря случайным возмущениям потока, которые вызываются турбулентностью. Частота колебаний подвижного элемента, при этом, пропорциональна скорости потока.

Вихревой уровнемер с качающимся элементом

Рисунок 9. Вихревой уровнемер с качающимся элементом.

Итак, вот мы и добрались до преимуществ и недостатков вихревых расходомеров. Начнем с преимуществ вихревых расходомеров:

- Надежность и простота в эксплуатации;

- Отсутствие движущихся частей;

- Высокая точность измерений;

- Большой диапазон измерения по давлению и температуре, диаметру трубы;

- Подходит практически для всех жидких и газообразных сред;

- Нечувствительность к загрязнениям и отложениям.

Недостатки, у данного типа расходомеров, тоже присутствуют:

- Невозможность использования при малых скоростях потока;

- Значительная потеря давления (потери до 45 кПа);

- Невозможность использования с трубами диаметром выше 300 мм и сложность при использовании с трубами до 150 мм;

- Чувствительность к вибрационным, шумовым и звуковым помехам (от насосов, компрессоров и др.).

Вот, пожалуй, и всё, что мы хотели бы рассказать про вихревые расходомеры. Стоит, только напомнить о том, что сегодня, вихревые расходомеры могут быть применены для измерения объёмного расхода любых жидких и газообразных сред. При этом, приборы прекрасно справляются со своими обязанностями даже при температурах среды до 500 o C и давлении до 30Мпа. Это прекрасные универсальные, усредненные по всем своим параметрам расходомеры, подходящие практически для каждого промышленного предприятия.

Вихревой расходомер — это стандартный расходомер, в основе работы которого лежит измерение скорости движения потока. Этим расходомерами можно измерять расход потока таких сред, как пар или газ с твердыми частицами во взвешенном состоянии. В конструкции вихревых расходомеров отсутствуют подшипники или двигающиеся рабочие детали, которые могут повреждаться из-за попадания твердых частиц.

Схема вихревого расходомера

Схема вихревого расходомера

Принцип работы вихревого расходомера

Как не трудно догадаться, название вихревой расходомер происходит от слова вихрь. Вихревое движение или движение с завихрениями возникает тогда, когда на пути движущегося потока помещают какой-либо объект. То, как часто формируются завихрения зависит непосредственно от скорости потока. Другими словами, чем выше скорость потока движущейся среды, тем больше количество завихрений, формирующихся за определенный промежуток времени.

Пример потока с завихрениями

Пример потока с завихрениями

Для того, чтобы получить завихрения, в центре расходомера помещают плохообтекаемый предмет, называемый турбулизатором потока. Форма типовых турбулизаторов потока обычно треугольная.

Поток обходит острые выступы турбулизатора, формируя завихрения. Область низкого давления, образующаяся в центре каждого завихрения, способствует дальнейшему созданию силового напряжения, воспринимаемого турбулизатором. До формирования первого завихрения давление по обе стороны турбулизатора одинаково, но в результате формирования завихрения с одной стороны турбулизатора образуется область низкого давления, а наличие областей низкого и высокого давления в месте установки турбулизатора приводит к появлению режима перепада давления. В результате режима перепада давления турбулизатор потока оказывается под воздействием силового напряжения то с одной, то с другой стороны, в соответствии с переменной последовательностью формирования завихрений. Другими словами, нагрузка или напряжение воспринимается турбулизатором потока то с одной, то, с другой стороны.

Переменное чередование завихрений

Переменное чередование завихрений

В вихревом расходомере имеются датчики, которые реагируют на это напряжение, считывая любое отклонение турбулизатора в результате воздействия завихрений. Выходной сигнал датчиков — это сигнал небольшого напряжения, который представляет собой частоту формирования завихрений, чья величина прямо пропорциональна расходу потока. Сигнал напряжения передается на другое устройство со стрелкой или каким-либо другим визуальным индикатором, который выдает показания расхода потока жидкости, газа или пара, проходящих через расходомер.

Расходомер жидкости, газа и пара специальное устройство для измерения расхода жидкости, газа и пара в промышленных системах

Электромагнитный расходомер жидкости, газа и пара работа этого расходомера основана на принципе электромагнитной индукции

Турбинный расходомер рименим только в системах с чистыми движущимися средами, не содержащими твердых частиц

Читайте также: