Валентность химических элементов определение валентности элементов по формулам их соединений кратко

Обновлено: 05.07.2024

В 19 веке ученые предположили, что атомы разных химических элементов обладают различной способностью присоединять к себе другие атомы. Так, было замечено, что атом водорода может присоединять лишь один атом другого химического элемента, кислород - два атома, азот - три. В настоящее время известно, что атомы, входящие в состав молекул, соединены между собой химическими связями в определенной последовательности. Чтобы показать это, используют структурные, или графические формулы, выражающие не только число атомов, но и последовательность их соединения. Химические связи между атомами в молекулах принято обозначать черточками. Число простых (одинарных ) связей, которые данный атом образует с другими атомами, называют валентностью. Слово "валентность" произошло от латинского слова valentia - сила, способность. [1]

Валентность – это способность атомов присоединять к себе определенное число других атомов.
Определение.

С одним атомом одновалентного элемента соединяется один атом другого одновалентного элемента (HС l ). С атомом двухвалентного элемента соединяются два атома одновалентного (H2O) или один атом двухвалентного (CaO). Значит, валентность элемента можно представить как число, которое показывает, со сколькими атомами одновалентного элемента может соединяться атом данного элемента. Валентность элемента – это число связей, которое образует атом:

Число черточек, отходящих от символа химического элемента в структурной формуле и есть валентность данного элемента.

Na – одновалентен (одна связь)

H – одновалентен (одна связь)

O – двухвалентен (две связи у каждого атома)

S – шестивалентна (образует шесть связей с соседними атомами)

Одновалентные (I) К, Na, Ag, Li, H

Двухвалентные (II) Ca, Mg, Ba, Zn, O

Трехвалентные (III) Al

Правила определения валентности
элементов в соединениях

1. Валентность водорода принимают за I (единицу). Тогда в соответствии с формулой воды Н2О к одному атому кислорода присоединено два атома водорода.

2. Кислород в своих соединениях всегда проявляет валентность II. Поэтому углерод в соединении СО2 (углекислый газ) имеет валентность IV.

3. Высшая валентность равна номеру группы.

4. Низшая валентность равна разности между числом 8 (количество групп в таблице) и номером группы, в которой находится данный элемент, т.е. 8 - N группы .

6. У неметаллов в основном проявляются две валентности: высшая и низшая.

Например: сера имеет высшую валентность VI и низшую (8 – 6), равную II; фосфор проявляет валентности V и III.

7. Валентность может быть постоянной или переменной.

Валентность элементов необходимо знать, чтобы составлять химические формулы соединений.

Алгоритм составления формулы соединения оксида фосфора

Составление формулы оксида фосфора

1. Написать символы элементов

2. Определить валентности элементов

3. Найти наименьшее общее кратное численных значений валентностей

4. Найти соотношения между атомами элементов путем деления найденного наименьшего кратного на соответствующие валентности элементов

5. Записать индексы при символах элементов

6. Формула соединения (оксида)

1) Низшую валентность проявляет тот элемент, который находится в таблице Д.И.Менделеева правее и выше, а высшую валентность – элемент, расположенный левее и ниже.

Например, в соединении с кислородом сера проявляет высшую валентность VI, а кислород – низшую II. Таким образом, формула оксида серы будет SO3.

В соединении кремния с углеродом первый проявляет высшую валентность IV, а второй – низшую IV. Значит, формула – SiC. Это карбид кремния, основа огнеупорных и абразивных материалов.

2) Атом металла стоит в формуле на первом месте.

Например, СаО – оксид кальция, NaCl – хлорид натрия, PbS – сульфид свинца.

Теперь вы сами можете написать формулы любых соединений металлов с неметаллами.

В образовании новых химических связей участвуют неспаренные электроны внешнего энергетического уровня. Именно они, как правило, определяют валентностъ элемента.

■ Валентность — это способность атомов химических элементов образовывать химические связи с другими атомами.



Валентность выражается числом атомов одновалентных элементов, которое атом данного элемента может замещать или присоединять во время образования определенного химического соединения. Валентность — свойство элемента, проявляемое в соединениях. Валентность обозначают римскими цифрами, она может составлять от I до VIII.

Существуют одновалентные (Н, Li, Na, K, F, Br), двухвалентные (Mg, Ca, Ba, O, S), трехвалентные (Al, N, P), четырехвалентные (C, Si) и т. п. элементы. Понятно, что один атом двухвалентного элемента соединяется с двумя атомами одновалентного элемента (CaCl2, Н2О), но с одним атомом двухвалентного атома (CaO). Атом трехвалентного элемента соединяется с тремя атомами одновалентного элемента FeCl3), два атома — трехвалентного (AlN).


Существуют атомы, имеющие постоянную (Na, K, Ca, Al, О) и переменную валентности. Например, валентность серы бывает II, IV и VI:

Рассмотрев электронно-графические формулы элементов, можно определить, что валeнтность атома водорода равна I (имеет один неспаренный электрон). По одному неспаренному электрону у лития, фтора, натрия, калия. Эти атомы тоже одновалентны. Магний двухвалентен, т. к. у него два неспаренных электрона. У атомов гелия, неона и аргона все электроны спарены и отсутствуют свободные орбитали. Эти элементы химически инертны, то есть обладают нулевой валентностью.

Однако химические элементы в соединениях далеко не всегда проявляют валентность, соответствующую количеству неспаренных электронов в основном состоянии атома. Например, углерод может проявлять валентность IV (CO2).

Возможность проявлять ту или иную валентность зависит также и от количества свободных орбиталей на внешнем электронном слое атома: при наличии незанятых электронами р-орбиталей один из спаренных s-электронов может переходить на свободную р-орбиталь (при условии получения определенной порции дополнительной энергии извне).

Состояние атома, при котором электроны переходят с одной орбитали на другую в пределах одного энергетического уровня, называется возбужденным.

валентность

Пример. Рассмотрим атом углерода в основном и возбужденном состояниях (значком * обозначается возбужденное состояние атома):

В основном состоянии атом углерода имеет два неспаренных электрона на р-подуровне; при переходе атома в возбужденное состояние один из двух электронов s-подуровня может переходить на свободную р-орбиталь. Количество неспаренных электронов в возбужденном состоянии увеличится до четырех. Валентность углерода при этом также изменится с двух до четырех.

Если в атомах нет свободных орбиталей (например, у кислорода или фтора), то разъединить электронные пары в этом случае невозможно. Поэтому вaлентность этих элементов будет совпадать с количеством неспаренных электронов: кислород двухвалентен, фтор одновалентен.

Как определить валентность по таблице Менделеева, по формулам химических элементов, таблица валентности элементов.

В этой статье рассмотрим способы и поймем, как определить валентность элементов таблицы Менделеева.

В химии принято, что валентность химических элементов можно узнать по группе (колонке) в таблице Менделеева. В действительности не всегда валентность элемента соответствует номеру группы, но в большинстве случаев определенная валентность по такому методу даст правильный результат часто элементы, в зависимости от разных факторов, имеют не одну валентность.

За единицу валентности принята валентность атома водорода, равная 1, то есть водород одновалентен. Поэтому валентность элемента указывает на то, со сколькими атомами водорода соединён один атом рассматриваемого элемента. Например, HCl, где хлор – одновалентен; H2O, где кислород – двухвалентен; NH3, где азот – трёхвалентен.

Как определить валентность по таблице Менделеева.

Таблица Менделеева содержит в себе химические элементы, которые размещены в ней по определенным принципам и законам. Каждый элемент стоит на месте, который определяется его характеристиками и свойствами и каждый элемент имеет свой номер. Горизонтальные линии называются периодами, которые возрастают от первой строки вниз. Если период состоит из двух рядов (что указано сбоку нумерацией), то такой период называется большим. Если он имеет только один ряд, то называется малым.

Кроме того, в таблице есть группы, которых всего восемь. Элементы размещаются в столбцах по вертикали. Здесь их размещение неравномерно – с одной стороны больше элементов (главная группа), с другой - меньше (побочная группа).

Валентностью называют способность атома образовывать некоторое количество химических связей с атомами других элементов. Как определить валентность по таблице Менделеева поможет понять знание видов валентности.

Виды валентности

Постоянная (у металлов главных подгрупп)

Переменная (у неметаллов и металлов побочных подгрупп)

Высшая (равна номеру группы)

Низшая (равна разности между числом 8 и номером группы)

Для элементов побочных подгрупп (а к ним относятся только металлы) валентность нужно запоминать, тем более что в большинстве случае она равна I, II, реже III. Также придется заучить валентности химических элементов, которые имеют более двух значений. Или постоянно держать под рукой таблицу валентности элементов.

Алгоритм определения валентности по формулам химических элементов.

1. Записать формулу химического соединения.

2. Обозначить известную валентность элементов.

3. Найти наименьшее общее кратное валентности и индекса.

4. Найти соотношение наименьшего общего кратного к количеству атомов второго элемента. Это и есть искомая валентность.

5. Сделать проверку путём перемножения валентности и индекса каждого элемента. Их произведения должны быть равны.

Пример: определим валентность элементов сульфида водорода.

1. Запишем формулу:

2. Обозначим известную валентность:

3. Найдём наименьшее общее кратное:

4. Найдём соотношение наименьшего общего кратного к количеству атомов серы:


Вы уже знаете, что в химических соединениях атомы разных элементов находятся в определенных числовых соотношениях. От чего зависят эти соотношения?

Рассмотрим химические формулы нескольких соединений водорода с атомами других элементов:


Нетрудно заметить, что атом хлора связан с одним атомом водорода, атом кислорода — с двумя, атом азота — с тремя, а атом углерода — с четырьмя атомами водорода. В то же время в молекуле углекислого газа СО2 атом углерода связан с двумя атомами кислорода. Из этих примеров видно, что атомы обладают разной способностью соединяться с другими атомами. Такая способность атомов выражается с помощью численной характеристики, называемой валентностью.

Валентность — численная характеристика способности атомов данного элемента соединяться с другими атомами.

Поскольку один атом водорода может соединиться только с одним атомом другого элемента, валентность атома водорода принята равной единице. Иначе говорят, что атом водорода обладает одной единицей валентности, т. е. он одновалентен.

Валентность атома какого-либо другого элемента равна числу соединившихся с ним атомов водорода. Поэтому в молекуле HCl у атома хлора валентность равна единице, а в молекуле H2O у атома кислорода валентность равна двум. По той же причине в молекуле NH3 валентность атома азота равна трем, а в молекуле CH4 валентность атома углерода равна четырем. Если условно обозначить единицу валентности черточкой |, вышесказанное можно изобразить схематически:


Следовательно, валентность атома любого элемента есть число, которое показывает, со сколькими атомами одновалентного элемента связан данный атом в химическом соединении.

Численные значения валентности обозначают римскими цифрами над символами химических элементов:


Определение валентности

Однако водород образует соединения далеко не со всеми элементами, а вот кислородные соединения есть почти у всех элементов. И во всех таких соединениях атомы кислорода проявляют валентность, равную двум. Зная это, можно определять валентности атомов других элементов в их бинарных соединениях с кислородом. (Бинарными называются соединения, состоящие из атомов двух химических элементов.)

Чтобы это сделать, необходимо соблюдать простое правило: в химической формуле вещества суммарные числа единиц валентности атомов каждого элемента должны быть одинаковыми.

Так, в молекуле воды H2O общее число единиц валентности двух атомов водорода равно произведению валентности одного атома на соответствующий числовой индекс в формуле:


Так же определяют число единиц валентности атома кислорода:


По величине валентности атомов одного элемента можно определить валентность атомов другого элемента. Например, определим валентность атома углерода в молекуле углекислого газа СО2:


Согласно вышеприведенному правилу х ·1 = II · 2 , откуда х = IV .


Существует и другое соединение углерода с кислородом — угарный газ СО, в молекуле которого атом углерода соединен только с одним атомом кислорода:


В этом веществе валентность углерода равна II , так как х ·1 = II · 1 , откуда х = II :


Постоянная и переменная валентность

Как видим, углерод соединяется с разным числом атомов кислорода, т. е. имеет переменную валентность. У большинства элементов валентность — величина переменная. Только у водорода, кислорода и еще нескольких элементов она постоянна (см. таблицу).

Постоянная и переменная валентность

Составление химических формул по валентности

Зная валентность элементов, можно составлять формулы их бинарных соединений. Например, необходимо записать формулу кислородного соединения хлора, в котором валентность хлора равна семи. Порядок действий здесь таков.

Составление химических формул по валентности

Еще один пример. Составим формулу соединения кремния с азотом, если валентность кремния равна IV , а азота — III .

Записываем рядом символы элементов в следующем виде:


Затем находим НОК валентностей обоих элементов. Оно равно 12 ( IV·III ).

Определяем индексы каждого элемента:


Записываем формулу соединения: Si3N4.

В дальнейшем при составлении формул веществ не обязательно указывать цифрами значения валентностей, а необходимые несложные вычисления можно выполнять в уме.

Краткие выводы урока:

  1. Численной характеристикой способности атомов данного элемента соединяться с другими атомами является валентность.
  2. Валентность водорода постоянна и равна единице. Валентность кислорода также постоянна и равна двум.
  3. Валентность большинства остальных элементов не является постоянной. Ее можно определить по формулам их бинарных соединений с водородом или кислородом.

Читайте также: