Ультразвуковой расходомер принцип работы кратко

Обновлено: 05.07.2024

Расходомеры StreamLux предназначены для измерения объёмного расхода и количества различных жидкостей в напорных и безнапорных трубопроводах, а также открытых каналах. Расходомеры работают по время-проходному (transit-time), допплеровскому методам измерения, а также измерения ультразвуком расстояния до поверхности потока в лотках и каналах.

Время-проходные ультразвуковые расходомеры серии SLS-720

Среда: Относительно чистые жидкости с наличием посторонних включений не более 10% по объему, в т.ч. напорные канализационные стоки.

Условия измерения: полностью заполненная труба. Давление не имеет значения.

Принцип действия – технология измерения времени прохождения ультразвуковой волны. Датчики накладные ультразвуковые. Они не блокируют поток воды, легко устанавливаются и демонтируются с помощью магнитов или хомутов.

Расходомер использует два накладных ультразвуковых датчика, которые работают одновременно как ультразвуковой передатчик и ультразвуковой приемник. Накладные ультразвуковые датчики крепятся к трубопроводу снаружи на определенном расстоянии друг от друга. Ультразвуковые датчики могут быть установлены V-образным способом, при котором ультразвук пересекает трубу дважды, W-образным способом, когда ультразвук пересекает трубу четыре раза или Z-образным способом, когда накладные ультразвуковые датчики монтируются на противоположных сторонах трубы и ультразвук пересекает трубопровод один раз. Выбор способа монтажа зависит от трубопровода и характеристик жидкости.

Расходомеры StreamLux работают по принципу поочередной передачи и приема частотно-модулированного всплеска звуковой энергии между двумя ультразвуковыми датчиками и измерения времени, за которое звуковой сигнал проходит между ними. Разница в измеренном времени прохождения сигнала прямо и точно определяет скорость жидкости в трубопроводе, как показано на рисунке:



Установка V-образным способом является наиболее распространенным способом при внутреннем диаметре трубы в пределах от 20 мм до 300 мм. Этот способ также называется отражающий способ.


Z-образный способ используется, если диаметр трубы более 500мм. Этот способ можно применять, когда V-образное отражение в трубе большого диаметра “гасит” исходный сигнал настолько, что производить измерения не представляется возможным.


W-образный способ обычно используется на трубах малого диаметра (от 10 мм до 100 мм). Этот способ позволяет значительно повысить точность измерения, но стабильно работает только на трубах малого диаметра из-за больших потерь при прохождении сигнала по трубе.


Допплеровские ультразвуковые Расходомеры серии SLD-800

Среда: Многофазные жидкости, пульпы, суспензии, любые другие среды с наличием посторонних включений в виде пузырьков или твердых фракций, в т.ч. канализационные стоки.

Условия измерения: полностью заполненная труба. Давление не имеет значения.

Метод Допплера для измерения скоростей жидлкостей в трубах, хорошо знаком всем по радарам, используемым сотрудниками ДПС для замера скоростей автотранспорта. Ультразвуковой сигнал, отражаясь от едущего автомобиля, изменяет свою частоту и форму в зависимости от того, удаляется или приближается автомобиль и как быстро это происходит. Для измерения скорости потока жидкости ультразвуку также нужно от чего-нибудь отражаться, поэтому этот метод применим только для жидкостей, имеющих в составе пузырьки, твердые либо неоднородные фракции и включения. Метод идеально подходит для измерения расхода пульп, суспензий, взвесей, пищевых продуктов, а также при транспортировке твердых веществ в водяном потоке.

Датчики располагаются по обеим сторонам трубы друг напротив друга:

Измеренная скорость потокаV, умноженная на площадь сечения трубопровода (π*Ду), дает нам объёмный расход:


Расходомеры серии SLD-850, работающие по методу Допплера,
для открытых каналов и безнапорных трубопроводов

Среда: Любые водные потоки естественного или техногенного происхождения, в т.ч. хозяйственно-бытовые сточные воды.

Условия измерения: полностью либо частично заполненный трубопровод, открытый канал, измерительный лоток.

Метод Допплера также подходит для измерения расхода воды в открытых каналах и в частично заполненных трубах. Специализированный ультразвуковой датчик помещается на дне и производит измерение по двум каналам одновременно: высота водяного потока Hнад датчиком и его скорость.Данные по высоте используются для расчета площади заполненного сечения потокаS, которое также необходимо умножить на скорость V, чтобы получить объёмный расход.



При пусконаладке прибора требуется ввести данные об измеряемом объекте, вся остальная информация рассчитывается автоматически.

Расходомеры серии SLO-500, ультразвуковые,
для открытых каналов и измерительных лотков

Среда: Любые водные потоки естественного или техногенного происхождения, в т.ч. хозяйственно-бытовые сточные воды.

Условия измерения: полностью либо частично заполненный трубопровод, открытый канал, измерительный лоток.

Ультразвуковой датчик устанавливается на определенной высоте над потоком и методом отражения измеряет расстояние до воды. Данный параметр при известных остальных (тип и размеры измерительного лотка или водослива) дает нам информацию о текущем объёмном расходе, так как для стандартных типов лотков Вентури, Паршаллаи водосливов эта величина является табличной либо рассчитывается по известным формулам.


Для измерения на самотечных трубопроводах потребуется оснастить узел учета небольшим измерительным лотком, установленным в разрыв трубопровода. Типоразмеры лотков приведены в руководстве по эксплуатации. Материал лотка – на усмотрение Заказчика (полиэтилен, обычная либо нержавеющая сталь, бетон и т.д.)


Уровнемеры серии SLL-440, ультразвуковые,
для емкостей с жидким или сыпучим содержимым

Среда: Любые жидкости или твердые вещества с фракцией не крупнее 100 мм.

Условия измерения: емкости любой формы, высотой до 60 метров.

Датчик устанавливается в верхней части ёмкости. Ультразвуковой сигнал, отражаясь от верхней границы объёма сыпучего вещества или поверхности жидкости, возвращается обратно и прибор вычисляет уровень заполнения ёмкости. Чем быстрее сигнал вернется обратно – тем больше заполнена емкость. Имеется ряд ограничений на способы монтажа датчика:

Ультразвуковые расходомеры. Устройство, принцип действия, типы и виды ультразвуковых расходомеров.

Принцип действия ультразвуковых расходомеров основан на измерении зависящего от расхода того или иного акустического эффекта, возникающего при прохождении ультразвуковых колебаний через контролируемый поток жидкости или газа.

В последнее время используются две разновидности ультразвуковых расходомеров : расходомеры, основанные на перемещении ультразвуковых колебаний движущейся средой и доплеровский. Наибольшее распространение получила первая группа приборов. В таких расходомерах ультразвуковые колебания, создаваемые пьезоэлементами, направляются по потоку жидкости и против него. Разность времен прохождения ультразвуковыми импульсами расстояния между излучателем и приемником по потоку и против потока пропорциональна скорости потока, т.е. скорость ультразвука относительно стенок трубы зависит от скорости потока.

Основные трудности использования ультразвукового метода связаны с тем, что скорость ультразвука в среде зависит от физико-химических свойств последней: температуры, давления, и она значительно больше скорости среды, так что действительная скорость ультразвука в движущейся среде мало отличается от скорости в неподвижной среде. Разность времен прохождения равна 10 -6 . 10 -7 с даже при скоростях потока 10. 15 м/с, причем измерять нужно с погрешностью 10 -8 . 10 -9 с. Эти обстоятельства обусловливают необходимость применения сложных электронных схем в сочетании с микропроцессорной техникой, обеспечивающих компенсацию влияния перечисленных факторов.

Ультразвуковые расходомеры в последние годы получают все более широкое распространение благодаря следующим положительным чертам:

• значительному динамическому диапазону, достигающему 25—30;

• высокой точности измерения, составляющей ±(1;2) %;

• возможности измерения расхода неэлектропроводных сред (нефтепродукты), загрязненных сред, суспензий;

• широкому диапазону диаметров трубопроводов от 10 мм и выше без ограничений;

• отсутствию потери давления;

• широкому диапазону температур (от -220 до 600 °С) и давлений.

К недостаткам этого метода измерения расхода следует отнести:

• необходимость значительных длин линейных участков до и после преобразователя;

• влияние на показания пузырьков воздуха в потоке;

• необходимость контроля отложений в трубопроводе на его рабочем участке;

• сложность и высокая стоимость приборов, которая при прочих равных условиях в 3—4 раза превышает стоимость тахометрических и электромагнитных расходомеров;

• ограничения по минимальной скорости потока.

Все ультразвуковые расходомеры являются микропроцессорными, на выходе они имеют токовый и импульсный выходные сигналы, цифровой дисплей, интерфейсы RS-232, RS-485, цепь сигнализации, значение суммарного расхода архивируется вместе с указанием нештатных ситуаций. Многие приборы могут измерять расход реверсивного потока.

Схемы ультразвуковых преобразователей расходомеров

Рис. 1. Схемы ультразвуковых преобразователей расходомеров:

а — одноканального; б — с отражателями; в — двухканального

Расходомеры по конструктивному исполнению подразделяются на одно- и двухканальные. В одноканальной схеме (рис. 1, а) каждый пьезоэлемент работает попеременно в режиме излучателя и приемника, что обеспечивается системой переключателей. Для увеличения чувствительности ход луча в среде может быть увеличен применением рефлекторов (рис. 1, б). Чувствительность ультразвуковых преобразователей также растет с уменьшением угла между векторами скорости потока и ультразвука. В двухканальной схеме (рис. 1, в) каждый пьезоэлемент работает только в одном режиме — излучателя или приемника. Двухканальные схемы проще одноканальных (нет сложных схем переключения), но точность их меньше, вследствие возможной акустической асимметрии обоих каналов.

Показания ультразвуковых расходомеров зависят от скорости потока, усредненной по ходу луча, а не по диаметру трубы, что является характерной особенностью расходомеров с излучением по потоку. В то же время для определения объемного расхода требуется измерение скорости усредненной по диаметру трубы. Для трубопроводов круглого сечения даже для осесимметричных потоков скорость потока усредненная по ходу луча не равна усредненной по диаметру трубы и соотношение между ними зависит от эпюры скоростей потока. Это обстоятельство является недостатком ультразвуковых расходомеров, определяющим наиболее существенную составляющую методической погрешности.

В ультразвуковых расходомерах SITRANS F фирмы Siemens, благодаря наличию отражателей, ход луча состоит из пяти отрезков, три из которых направлены по хордам, что обеспечивает сканирование профиля потока и измерение средней скорости потока в широком диапазоне измерения его скоростей. При максимальной скорости потока 10 м/с обеспечивается погрешность измерения расхода ±0,5 % в динамическом диапазоне 25 и ±1 % в диапазоне 100. В зависимости от типа местного сопротивления длина линейного участка трубопровода составляет (10. 40)D до преобразователя и 5D после него.

По методу определения времени прохождения импульса между излучателем и приемником ультразвуковые расходомеры подразделяются на времяимпульсные, частотные и фазовые.

В частотных расходомерах каждый последующий импульс посылается излучателем только после достижения предыдущим импульсом приемного пьезоэлемента.

Разность частот следования импульсов, определяемая дифференциальной схемой, связана со скоростью и объемным расходом.

Показания частотных расходомеров не зависят от скорости распространения ультразвука в неподвижной среде, а следовательно, и от физико-химических свойств и параметров среды. Это является достоинством частотных расходомеров.

В фазовых расходомерах измеряется разность фаз ультразвуковых колебаний частотой, распространяющихся по потоку и против него. Недостаток этих расходомеров — зависимость показаний от изменения скорости звука.

В доплеровских ультразвуковых расходомерах используется отражение ультразвуковых колебаний движущимися частицами потока. Доплеровские расходомеры измеряют местную скорость звука. В трубах малого и среднего диаметров эти расходомеры могут измерять среднюю скорость по диаметру или части площади трубы. В трубах больших диаметров при наличии прямых участков достаточной длины отражатель должен находиться на расстоянии 0,12 D от стенки трубы, где скорость соответствует средней скорости потока. В противном случае необходима индивидуальная градуировка расходомера.

Схема доплеровского преобразователя

Рис. 2. Схема доплеровского преобразователя


Структурная схема корреляционного доплеровского расходомера

Рис. 3. Структурная схема корреляционного доплеровского расходомера

Сигналы ультразвуковой частоты поступают от генераторов ГУЧ1, ГУЧ2 на акустические преобразователи АП1— АП4, сигналы которых вызывают, благодаря доплеровскому эффекту, вторичные колебания, которые накладываются на основные. Фазовые детекторы ФД1, ФД2 и корреляционный дискриминатор КД, управляемый микропроцессором, обеспечивают получение импульсного сигнала, пропорционального расходу. Эти сигналы могут суммироваться и выводиться на цифровой индикатор, подаваться на оконечный преобразователь ДРК-30П или тепловычислитель. Такие расходомеры могут устанавливаться в трубопроводах диаметром от 50 до 4000 мм при скорости среды от 0,1 до 10 м/с, предел относительной погрешности составляет ±1,5; 2%.

enotek

Ультразвуковыми расходомерами называют расходомеры, принцип работы которых основан в прохождении ультразвуковой волны через поток жидкости или газа. Ультразвуковые расходомеры работают в диапазоне частот от 20кГц до 1000 МГц.

Диапазон частот от 20кГц до 1000 МГц.

Ультразвуковой спектр излучения

Для прохождения волны и её интерпретации необходимы приемник и передатчик, которые обладают пьезоэлектрическим эффектом. Таким эффектом обладают следующие материалы кварц, турмалин, тартрата калия, сульфата лития, титанат бария, цирконат титаната свинца. Помещая пьезоэлектрический кристалл в электрическое поле упругая деформация вызывает уменьшение или увеличение его длины в соответствии с величиной и направлением полярности поля.

Датчики на основе пьезоэлементов

Прикладывая напряжение, размеры пьезокерамических элементов изменяются. При механических воздействиях пьезокерамический элемент генерирует электрический ток.
Поэтому пьезокерамические элементы используются в качестве излучателей и приемников сигнала, т.е. как приемопередатчики.

1. Конструкция ультразвуковых расходомеров

Преобразователь ультразвукового расходомера состоит из отрезка трубы, на котором установлены пьезоэлемента.
Диаметр пьезоэлемента находится в пределах 5-20 милиметров, а его толщина выбирается в зависимости от частоты. В частотных и время-импульсных расходомерах для повешения точности измерений используют частоты 5-20 Мгц.. Обычно в жидкостях применяются частоты ( 50 кГц - 2 МГц. В газовых средах необходимо уменьшать частоты до сотен и десятков Кгц, это вызвано сложностью создания в газах интенсивных акустических колебаний, особенно высокой частоты.

Преобразователи сферического излучения

Ультразвуковые преобразователи сферического излучения

Данные конструкции применяются в трубах малого диаметра. В качестве преобразователей используются кольцевые пьезопреобразователи, которые создают сферическое излучение. В схеме А , каждый из двух пьезоэлементов по очереди излучает и принимает акустические колебани

Преобразователи с отражателями

Ультразвуковые преобразователи с отражателями

Преобразователи с отражателями. Одна из лучших схем для защиты пьезопрезобрателей от условий агрессивной среды и механических примесей в жидкости. В данном случае волна подается от передатчиков-излучателей и, отражаясь от стенок отражателя, попадает на приемник Конструкция 2 А применяется в расходомерах фирмы Kamstrup диаметром до 40 мм.

Схемы с угловым вводом направленных акустических колебаний.

Ультразвуковые преобразователи с отражателями

На рисунках А,В,С показаны однолучевые конструкции расходомеров. На рисунке А,D, E трубопровод снабжается особыми впадинами - карманами, в глубине которых находятся пьезоэлементы. Данные конструкции применяются для чистых и неагрессивных сред, так как возможно засорение данных полостей. Также вследствие свободных полостей возможно появление вихрей, влияющих на показание расходомера. Конструкция В лишена данных недостатков, за счет заполнения данных полостей металлом или органическим стеклом. В конструкции С , пьезоэлементы находятся снаружи трубопровода. Они передают акустические колебания через металлические стенки трубы и измеряемому веществу. Чувствительность сигнала гораздо хуже, из-за паразитных сигналов и помех, вызванных прохождением колебаний по стенке трубы. Для увеличения точности используется схемы с двумя, черемя, восьми парами преобразователей-излучателей рисунок D, E .

2. Принцип действия ультразвуковых расходомеров

2.1. Принципы определения расхода основанные на зависимости от времени

Метод основан на факте, что ультразвуковому сигналу, направленному против движения потока, для прохождения расстояния от излучателя до приемника требуется больше времени, чем сигналу, направленному по ходу движения потока.

Анимация для объяснения принципа определения расхода, основанного на зависимости от времени.
Понимая, что определить время с помощью секундомеров невозможно для данного метода, так как временная разность находится в пределах нано или пикосекунд были реализованы следующие принципы интерпретации сигнала:
- Фазные
- Частотные
- Время импульсные

2.1.1. Фазный принцип определения расхода

Фазовыми называют ультразвуковые расходомеры, основанные на зависимости фазовых сдвигов уз - колебаний, появляющихся на приемных пьезоэлементах. Данный принцип, также основан на разности времен прохождения этими колебаниями одного и того же расстояния по потоку движущейся жидкости или газа и против него. Частота и амплитуда импульсов совпадают в данных расходомерах. Но иногда в конструкциях применяются близкие частоты 6 МГц и 6.01 МГц. В фазовых расходомерах частота выбирается так, чтобы при максимальном расходе получить наибольшую разность фаз, которая может быть измерена фазометром

Ультразвуковой Фазный принцип определения расхода

Сравнивания два сигнала, одинаковых по частоте и амплитуде получаем график, как на рисунке ниже. Из данного графика можно определить фазовый сдвиг одного сигнала относительно другого (Т), после чего определить время и соответственно поток.

Ультразвуковой Фазный принцип определения расхода

2.1.2 Частотный принцип определения расхода

Суть их работы в следующем: синтезатор частоты подбирает такое значение частоты ультразвукового сигнала, чтобы по направлению потока укладывалось целое число волн ультразвуковых колебаний. Затем направление излучения реверсируется, и подбирается значение частоты, которое обеспечивает целое число волн против потока. Величина расхода в этом случае пропорциональна разности частот сигналов по потоку и против него. Частотные расходомеры в сравнении с импульсными и фазовыми более устойчивы к загрязнению измеряемой среды, так как прекращают измерение только тогда, когда достигнут результат, а не когда закончилось время импульса.

Ультразвуковой частотный принцип определения расхода

2.1.3 Время - импульсный принцип определения расхода

Для определения времени прохождения импульса по потоку, генератор подает импульс на пьезоэлемент П1, который посылает в жидкость затухающие колебания. В момент передачи звуковых колебаний включается зарядное устройство, которое начинает вырабатывать напряжение. В момент прихода сигнала на пьезоэлемент П2 зарядное устрйтсво отключается. Максимальное значение напряжение пропорционально времени прохождения ультразвуковой волны по потоку жидкости. Таким же образом за время прохода ультразвукового импульса против потока от П2 к П1 вырабатывается напряжение, пропорциональное времени. Разность напряжений измеряется устройством.

Ультразвуковой Время - импульсный принцип определения расхода

2.2 Ультразвуковые расходомеры с колебаниями, перпендикулярными движению.

Данные расходомеры отличаются от ранее рассмотренных тем, что в них не используются акустические колебания, направленные по потоку и против него. В данных расходомерах звуковые колебания направлены перпендикулярно потоку. При этом происходит измерение степени отклонения луча, зависящего от скорости и химического состава измеряемого вещества, направленного перпендикулярно потоку. При этом лишь один пьезоэлемент (И) излучает акустические колебания. Регистрируются эти колебания одним или двумя пьезоэлементами (П1, П2).

Ультразвуковые расходомеры с колебаниями, перпендикулярными движению.

При скорости = 0 здесь выходной сигнал равен нулю, благодаря равенству акустической энергии, поступающей на пьезоэлементы П1 и П2, включенных навстречу друг другу. При движении жидкости правый приемный пьезоэлемент (П2) по сравнению с левым (П2) получает большее излучение . Рассматриваемые расходомеры просты по устройству. В данном методе точность измерения расхода ограничена малой чувствительностью самого метода.

2.3. Ультразвуковые расходомеры, основанные на эффекте Доплера

Метод Допплера использует эффект изменения частоты звука, отражающегося от движущихся частиц. Датчик расходомера излучает сигнал, направленный в поток жидкости. Этот сигнал отражается присутствующими в жидкости твёрдыми частицами или газовыми пузырьками. Частота отраженного сигнала отличается от исходной из-за движения жидкости (эффект Доплера). Контроллер расходомера измеряет сдвиг частоты и определяет значение скорости жидкости, которое используется для расчета расхода.

Ультразвуковые расходомеры, основанные на эффекте Доплера

Отраженный от движущихся частиц УЗ сигнал, с помощью быстрого преобразования Фурье – БПФ (Fast Fourier Transform – FFT) трансформируется из временной области в частотную.

Поскольку спектр отраженного сигнала достаточно широк, то находится усредненная частота. Далее вычисляется разница частоты исходного сигнала (сигнала передатчика) и полученной усредненной частоты отраженных сигналов. Эта разница частот в дальнейшем используется для определения скорости движения потока и, затем, для вычисления расхода.
По сравнению с другими ультразвуковыми расходомерами допплеровские имеют наименьшую точность ввиду того, что выходной сигнал представляет целый спектр частот, возникающих вследствие сдвига исходной частоты не одной частицей — отражателем, а рядом частиц, имеющих различные скорости. Поэтому относительная погрешность измерения расхода обычно не менее 2-3 %.
Допплеровские ультразвуковые расходомеры находят все более широкое распространение. Они применяются главным образом для измерения расхода различных гидросмесей, в том числе пульп, суспензий и эмульсий, содержащих частицы, отличающиеся по плотности от окружающего вещества. Но и естественных неоднородностей (в том числе газовых пузырей), имеющихся в различных жидкостях, бывает достаточно для проявления эффекта Допплера. При их отсутствии рекомендуется вдувать в поток воздух или газ через трубку с отверстиями 0,25-0,5 мм на расстоянии перед преобразователем расхода. Расход вдуваемого газа составляет 0,005 0,1 % от расхода измеряемого вещества.

3. Применение

Ультразвуковой расходомер жидкости находит применение во многих отраслях промышленности, а также в научных исследованиях:
- Нефтедобыча и переработка
-Тепло и электрогенерация
-Водоочистка
-Коммунальное хозяйство
-Противопожарные системы
-Измерение скорости потоков подземных вод
Экономичность и простота монтажа способствуют росту популярности ультразвуковых расходомеров. Они постепенно вытесняют механические счетчики за счет более высокой точности измерений и простоты обслуживания.
Расходомеры с накладными датчиками используются для экспресс анализа потока без остановки технологического процесса.
В настоящее время начинает прослеживаться тенденция к переходу от механических индивидуальных теплосчетчиков к ультразвуковым.

4. Преимущества и недостатки ультразвуковых расходомеров

Преимущества:
+ высочайшая точность
+ отсутствие вращающихся частей
+ широкий диапазон рабочих температур
+ Низкие потери давления
+ возможность измерения как жидких, так и газообразных продуктов
+ наличие врезных и накладных моделей
+ стабильность показаний
+ высокая надежность
+ Низкое потребление электричества, в результате чего производятся модели питаемые от батареек, повышенной емкости.
Недостатки:
- Высокие требования к однородности среды (чувствительность к наличию пузырьков воздуха в воде)
- Зависимость измерения от температуры воды
- подверженность электромагнитным помехам
- Грамотная настройка расходомера для конкретной цели
Решение проблемы :
Для устранения Зависимость измерения от температуры воды в тело расходомера погружается термосопротивление, после обработки сигналов микропроцессором происходит коррекция потока по температуре. Для снижения зависимости от однородности среды используется поправка по методу Доплера. Для защиты от электромагнитных помех достаточно сделать выравнивание потенциалов между трубопроводами и расходомером. Данные принципы используется в расходомерах компании KAMSTRUP серии ULTRAFLOW® 54 (H), что делает данные расходомеры лидерами среди всех типов расходомеров для измерения тепла и холода.

5. Какого производителя выбрать

Из выше изложенного становится понятно, что ультразвуковые расходомеры достаточно сложное изделие, требующее высокоточных расчетов и грамотного производственного процесса. Основная сложность изготовления данных расходомеров - это правильная интерпретация сигнала и точное расстояние между пьезоэлементами.
Наша компания не рекомендует сомнительные ультразвуковые расходомеры Китайского производства. При выборе лучше остановиться на зарубежных расходомерах фирм:
kamstup (только для жидкостей)
krone (газ и жидкость)
panametrics(газ и жидкость)
endress+hauser
siemens
или на отечественных расходомерах научно-произведственных предприятий.

Мы очень долго писали данный материал, будем рады если Вы поставите лайк

1. Электронный блок ультразвукового расходомера выполнен в влагозащищенном пластмассовом корпусе настенного исполнения. Электронная схема ультразвукового расходомера выполнена по принципу многоступенчатой гальванической развязки (>1000 В) всех функциональных элементов между собой. Такой принцип обеспечивает максимальную помехозащищенность и надежность прибора в реальных и жестких условиях эксплуатации. В электронной схеме прибора применены надежные источники питания со временем наработки не менее 500 000 часов.

Структурная схема ультразвукового расходомера.

структурная схема ультразвукового расходомера


2. ПЭП 1 и 2, работающие попеременно в режиме приемник-излучатель, связаны высокочастотным кабелем РК-50 с ЭБ, обеспечивающим посылку возбуждающих импульсов (рисунок) на пьезопреобразователь, работающий в режиме излучателя, и прием (усиление и детектирование) слабых сигналов от пьезопреобразователя, работающего в режиме приемника. (см.рисунок).

временная диаграмма ультразвуковых сигналов расходомера

временная диаграмма ультразвуковых сигналов расходомера


При движении жидкости в трубопроводе происходит снос ультразвуковой волны, который приводит к изменению времени распространения ультразвукового сигнала (далее – УЗС): по потоку жидкости (от ПЭП 1 к ПЭП 2) время прохождения уменьшается, а против потока (от ПЭП 2 к ПЭП 1) – возрастает. Разность времен прохождения УЗС через жидкость по и против потока пропорциональна скорости потока V и, следовательно, объемному расходу F. По полученным сигналам с пьезопреобразователей рассчитываются: времена прохождения сигнала от ПЭП 1 до ПЭП 2, расход, накопленный объем жидкости, и значение частоты выходного сигнала, пропорционального расходу. Вычисленные таким образом параметры, пропорциональные расходу, объему и времени подаются на текстовый дисплей для отображения.


3. Принцип действия ультразвукового расходомера поясняется рисунком:

принцип действия ультразвукового расходомера

Принцип действия ультразвукового расходомера

Скорость распространения ультразвукового сигнала от излучателя до приемника в жидкости, заполняющей трубопровод, представляет собой сумму скоростей ультразвука в неподвижной воде и скорости потока воды V в проекции на рассматриваемое направление. Время распространения ультразвукового импульса от ПЭП 1 к 2, t1, и от ПЭП 2 к 1, t2, зависит от скорости движения воды в соответствии с формулами:

формула времён ультразвукового расходомера:

формула времён ультразвукового расходомера

где t1, t2 – время распространения ультразвукового импульса по потоку и против потока, с;
Lд – расстояние между мембранами пьезопреобразователей, мм;
Lа – длина активной части акустического канала, мм;
С0 – скорость ультразвука в неподвижной воде, м/с;
V – скорость движения жидкости в УПР, м/с;
а – угол между осями трубопровода и датчиков ПЭП, градусы.
В ультразвуковом расходомере используется метод прямого, высокоточного измерения времени распространения каждого УЗС от одного ПЭП к другому. Из формул (1) и (2) получаем:

формула скорости ультразвукового расходомера:

формула скорости ультразвукового расходомера

где dt – разность времен распространения УЗС по потоку и против потока.
Из формулы (3), умножая среднюю скорость потока V на сечение трубопровода D, получаем значение расхода воды F, протекающего в месте установки пьезопреобразователей:

формула расхода ультразвукового расходомера:

формула расхода ультразвукового расходомера

где D – диаметр трубопровода на месте установки пьезопреобразователей, мм;
К – коэффициент коррекции.
Коэффициент коррекции К рассчитывается по "Методике поверки", является программируемым параметром. Гидродинамический коэффициент представляет собой отношение средней скорости потока жидкости в трубопроводе к скорости потока жидкости v, усредненной вдоль ультразвукового луча. Он вычисляется на основе введенных значений шероховатости стенок трубопровода, вязкости контролируемой жидкости, внутреннего диаметра трубопровода, измеренного значения скорости потока.
Изменение скорости распространения УЗС в рабочей жидкости, связанное с изменением температуры, давления и/или состава жидкости, ввиду неизменной длины акустического тракта, учитывается в приборе путем определения фактической скорости ультразвука, рассчитанной по формуле:

формула скорости ультразвука ультразвукового расходомера

формула скорости ультразвука ультразвукового расходомера

Объем жидкости V за интервал времени Т определяется в соответствии с формулой:

формула накопленного объема ультразвукового расходомера:

формула накопленного обьема ультразвукового расходомера

4.Современный метод расчета расхода с использованием весовых коэффицентов:
В ультразвуковом расходомере двухлучевого исполнения, построенного на базе двухканального измерителя, на один трубопровод (УПР) устанавливаются две пары ПЭП. При этом измерение расхода по каждому лучу ведется независимо, а измеренное значение расхода в трубопроводе вычисляется по формуле:

формула расхода двухлучевого ультразвукового расходомера:

формула расхода двухлучевого ультразвукового расходомера

где W1,W2 – весовые коэффициенты для каждой пары ПЭП (каждого луча); F1, F2 – расход, измеренный по лучу 1 и лучу 2 соответственно.
В ультразвуковом расходомере трехлучевого исполнения, построенного на базе трехканального измерителя, на один трубопровод устанавливаются три пары датчиков. При этом измерение расхода по каждому лучу ведется независимо, а измеренное значение расхода в трубопроводе вычисляется по формуле:

формула расхода трехлучевого ультразвукового расходомера:

формула расхода трехлучевого ультразвукового расходомера

где W1,W2,W3 – весовые коэффициенты для каждой пары ПЭП (при размещении двух пар ПЭП по хордам и одной пары по центру в соответствии с инструкцией по монтажу).
В ультразвуковом расходомере четырехлучевого исполнения, построенного на базе четырехканального измерителя, на один трубопровод устанавливаются четыре пары датчиков. При этом измерение расхода по каждому лучу ведется независимо, а измеренное значение расхода в трубопроводе вычисляется по формуле:

формула расхода четырехлучевого ультразвукового расходомера:

формула четырехлучевого ультразвукового расходомера

где W1,W4,W2,W3 – весовые коэффициенты для каждой пары ПЭП (при размещении ПЭА по хордам в соответствии с инструкцией по монтажу).
Значение расхода определяется при выполнении условия: Fотс Fmax измерение расхода продолжается, но значение расхода становится равным верхнему значению диапазона Fmax.

Читайте также: