Современное представление о теории химического строения кратко

Обновлено: 13.05.2024

Свидетельство и скидка на обучение каждому участнику

Зарегистрироваться 15–17 марта 2022 г.

Современные представления о теории химического строения

Описание презентации по отдельным слайдам:

Современные представления о теории химического строения

Современные представления о теории химического строения

назад

Теория А.М. Бутлерова Главные положения этой теории следующие: 1.Атомы в моле.

На основе этой теории химики-органики создают вещества, которые не только зам.

На основе этой теории химики-органики создают вещества, которые не только заменяют природные, но по своим свойствам значительно их превосходят. Так, синтетические красители гораздо лучше и дешевле многих природных, например известных в древности ализарина и индиго. В больших количествах производят синтетические каучуки с самыми разнообразными свойствами. Широкое применение находят пластмассы и волокна, изделия из которых используют в технике, быту, медицине, сельском хозяйстве.

Значение теории химического строения А. М. Бутлерова для органической химии.

Значение теории химического строения А. М. Бутлерова для органической химии можно сравнить со значением Периодического закона и Периодической системы химических элементов Д. И. Менделеева для неорганической химии. Недаром в обеих теориях так много общего в путях их становления, направлениях развития и общенаучном значении. Теория химического строения создала возможность научной систематизации фактического материала органической химии, объяснила ее важнейшие закономерности и дала ключ к предсказанию новых фактов. Она явилась научной основой для создания современной органической химии. Значение теории


Основные положения
теории химического строения

Ключевые слова конспекта: Теория химического строения органических соединений. Валентность. Структурная формула. Простые (одинарные) связи. Кратные (двойные и тройные) связи. Изомеры. Изомерия. Взаимное влияние атомов в молекуле.

Предпосылки создания теории химического строения

По мере накопления химических знаний учёные овладели умением не только выделять органические вещества из природных объектов, но и проводить реакции с участием таких соединений. Так накапливались знания о свойствах органических веществ, расширялись области их практического применения.

К середине XIX в. возникла необходимость осмысления, объяснения и обобщения накопившихся данных в области органической химии, т. е. создания научной теории, которая позволила бы систематизировать и объяснять строение и свойства органических веществ.

В первой половине XIX в. учёными разных стран были предприняты попытки создания подобной теории. Одни основывались на сходстве качественного и количественного состава родственных органических веществ, другие — на общности химических свойств. Однако подобно тому, как первые попытки классификации химических элементов не превратились в научную теорию, а стали лишь предтечей открытия Д. И. Менделеевым периодического закона, так и ранние попытки систематизации знаний об органических веществах явились предпосылками создания теории химического строения органических соединений.

Первое положение теории химического строения.
Структурные формулы

Основой теории Бутлерова является положение о химическом строении как определённой последовательности химических связей между атомами в молекулах в строгом соответствии с их валентностью. Рассмотрим основные положения теории химического строения.

Напомним, что валентность — это способность атомов химических элементов образовывать определённое число связей с другими атомами. Для соединений с ковалентными связями валентность равна числу общих электронных пар данного атома с соседними атомами.

Наглядно продемонстрировать валентность атомов в молекуле можно с помощью структурных формул. Структурная формула — это такое изображение молекулы, в котором каждая ковалентная химическая связь показана чёрточкой — валентным штрихом.


В органических соединениях углерод проявляет постоянную валентность, равную четырём. Например, структурная формула простейшего углеводорода метана СН4 имеет вид


Атомы углерода обладают уникальной способностью образовывать связи не только с атомами других элементов, но и друг с другом; при этом возникают различные цепи — линейные, разветвлённые, замкнутые:

Атомы углерода во всех приведённых примерах четырёхвалентны и образуют между собой и с атомами водорода простые, или одинарные, связи.


Но этим уникальные особенности атомов углерода как химического элемента не исчерпываются. Два атома могут быть связаны между собой и с другими атомами не только простыми, но и кратными, т. е. двойными или даже тройными, связями, например:

Теперь вам становится понятна одна из причин многообразия органических соединений. Она заключается в том, что атомы углерода способны образовывать между собой ковалентные химические связи (простые и кратные), соединяясь в цепи (неразветвлённые, разветвлённые, циклические).

Второе положение теории
химического строения. Изомерия

Первое вещество — этиловый спирт и второе — диметиловый эфир имеют одинаковый состав, но их физические и химические свойства различны. Вы впервые встретились с очень распространённым в органической химии явлением — изомерией.

Вещества, имеющие одинаковый качественный и количественный элементный состав, но различное химическое строение, а следовательно, и различные свойства, называют изомерами. Явление существования изомеров называют изомерией.

А. М. Бутлеров не только впервые объяснил существование изомеров различием в химическом строении молекул, но и сумел предсказать существование изомеров для уже известных веществ, а затем и синтезировать их. В этом заключается выдающаяся предсказательная роль теории строения.

Таким образом, молекулярная формула отражает только качественный и количественный состав вещества. Информацию о химическом строении соединения несёт структурная формула, указывающая на порядок связи атомов в молекулах. Помимо полной структурной формулы наподобие тех, которые изображены выше, на практике чаще используют сокращённые структурные формулы, сворачивая близлежащие группы атомов, не записывая ненужные при этом валентные штрихи. Например, особенности строения этилового спирта и диметилового эфира вполне однозначно передают формулы:


Более детальную информацию о химическом строении вещества, в частности о взаимном расположении атомов в пространстве, дают объёмные модели молекул — модели Стюарта—Бриглеба.

Явление изомерии — ещё одна причина многообразия органических соединений.

Третье положение теории химического строения

В молекуле диметилового эфира все атомы водорода связаны только с атомами углерода. Становится понятно, почему, в отличие от этилового спирта, диметиловый эфир не способен реагировать с металлическим натрием.

Теория химического строения, предложенная А. М. Бутлеровым, сыграла в органической химии такую же огромную роль, как периодический закон и периодическая система элементов Д. И. Менделеева в неорганической химии. Она позволила систематизировать все накопленные сведения об органических веществах и объяснить причины их многообразия. Но самое главное — теория строения сделала осмысленным и целенаправленным синтез новых органических веществ и изучение их химических свойств. Она настолько многогранна и динамична, что и сегодня является основополагающим учением не только органической, но и всей современной химии.

Основные выводы по теме конспекта:

  1. Научной основой органической химии является современная теория химического строения органических соединений. Некоторые положения этой теории:
  • атомы в молекулах соединены друг с другом согласно их валентности, причём углерод в органических веществах всегда четырёхвалентен;
  • свойства веществ зависят не только от их качественного и количественного состава, но и от их строения (химического, электронного и пространственного);
  • атомы в молекулах влияют друг на друга.
  1. Химическим строением называют порядок расположения атомов в молекуле согласно их валентности.
  2. Химическое строение отображают с помощью химических формул: молекулярных и структурных (полных или сокращённых).
  3. Материальные модели, отражающие состав и пространственное строение молекул органических соединений, бывают двух видов: шаростержневые и объёмные.
  4. Причины многообразия органических веществ — это: способность атомов углерода соединяться друг с другом, образуя различные цепи (линейные, разветвлённые, циклические); способность атомов углерода образовывать связи различной кратности (одинарные, двойные, тройные); явление изомерии.

Подобно тому, как для неорганической химии основой развития являются Периодический закон и Периодическая система химических элементов Д. И. Менделеева, для органической химии основополагающей стала теория строения органических соединений А. М. Бутлерова.

Основным постулатом теории Бутлерова является положение о химическом строении вещества, под которым понимается порядок, последовательность взаимного соединения атомов в молекулы, т.е. химическая связь.

Под химическим строением понимают порядок соединения атомов химических элементов в молекуле согласно их валентности.

Этот порядок может быть отображен при помощи структурных формул, в которых валентности атомов обозначаются черточками: одна черточка соответствует единице валентности атома химического элемента. Например, для органического вещества метана, имеющего молекулярную формулу $СН_4$, структурная формула выглядит так:


Основные положения теории А. М. Бутлерова

  1. Атомы в молекулах органических веществ связаны друг с другом согласно их валентности. Углерод в органических соединениях всегда четырехвалентен, а его атомы способны соединяться друг с другом, образуя различные цепи.
  2. Свойства веществ определяются не только их качественным и количественным составом, но и порядком соединения атомов в молекуле, т. е. химическим строением вещества.
  3. Свойства органических соединений зависят не только от состава вещества и порядка соединения атомов в его молекуле, но и от взаимного влияния атомов и групп атомов друг на друга.

Теория строения органических соединений является динамичным и развивающимся учением. По мере развития знаний о природе химической связи, о влиянии электронного строения молекул органических веществ стали пользоваться, кроме эмпирических и структурных, электронными формулами. В таких формулах указывают направление смещения электронных пар в молекуле.

Квантовая химия и химия строения органических соединений подтвердили учение о пространственном направлении химических связей (цис- и трансизомерия), изучили энергетические характеристики взаимных переходов у изомеров, позволили судить о взаимном влиянии атомов в молекулах различных веществ, создали предпосылки для прогнозирования видов изомерии и направления и механизма протекания химических реакций.

Органические вещества имеют ряд особенностей:

  1. В состав всех органических веществ входят углерод и водород, поэтому при горении они образуют углекислый газ и воду.
  2. Органические вещества построены сложно и могут иметь огромную молекулярную массу (белки, жиры, углеводы).
  3. Органические вещества можно расположить в ряды сходных по составу, строению и свойствам гомологов.
  4. Для органических веществ характерной является изомерия.

Изомерия и гомология органических веществ

Свойства органических веществ зависят не только от их состава, но и от порядка соединения атомов в молекуле.


Изомерия — это явление существования разных веществ — изомеров с одинаковым качественным и количественным составом, т.е. с одинаковой молекулярной формулой.

Различают два вида изомерии: структурную и пространственную (стереоизомерию). Структурные изомеры отличаются друг от друга порядком связи атомов в молекуле; стереоизомеры — расположением атомов в пространстве при одинаковом порядке связей между ними.

Выделяют следующие разновидности структурной изомерии: изомерию углеродного скелета, изомерию положения, изомерию различных классов органических соединений (межклассовую изомерию).

Структурная изомерия

Изомерия углеродного скелета обусловлена различным порядком связи между атомами углерода, образующими скелет молекулы. Как уже было показано, молекулярной формуле $С_4Н_$ соответствуют два углеводорода: н-бутан и изобутан. Для углеводорода $С_5Н_$ возможны три изомера: пентан, изопентан и неопентан:


С увеличением числа атомов углерода в молекуле число изомеров быстро растет. Для углеводорода $С_Н_$ их уже $75$, а для углеводорода $С_Н_$ — $366 319$.

Изомерия положения обусловлена различным положением кратной связи, заместителя, функциональной группы при одинаковом углеродном скелете молекулы:


Изомерия различных классов органических соединений (межклассовая изомерия) обусловлена различным положением и сочетанием атомов в молекулах веществ, имеющих одинаковую молекулярную формулу, но принадлежащих к разным классам. Так, молекулярной формуле $С_6Н_$ соответствует ненасыщенный углеводород гексен-1 и циклический углеводород циклогексан:


Изомерами являются углеводород, относящийся к алкинам, — бутин-1 и углеводород с двумя двойными связями в цепи бутадиен-1,3:

Диэтиловый эфир и бутиловый спирт имеют одинаковую молекулярную формулу $С_4Н_О$:

Структурными изомерами являются аминоуксусная кислота и нитроэтан, отвечающие молекулярной формуле $С_2Н_5NO_2$:


Изомеры этого типа содержат различные функциональные группы и относятся к разным классам веществ. Поэтому они отличаются по физическим и химическим свойствам значительно больше, чем изомеры углеродного скелета или изомеры положения.

Пространственная изомерия

Пространственная изомерия подразделяется на два вида: геометрическую и оптическую. Геометрическая изомерия характерна для соединений, содержащих двойные связи, и циклических соединений. Так как свободное вращение атомов вокруг двойной связи или в цикле невозможно, заместители могут располагаться либо по одну сторону плоскости двойной связи или цикла (цис-положение), либо по разные стороны (транс-положение). Обозначения цис- и транс- обычно относят к паре одинаковых заместителей:


Геометрические изомеры различаются по физическим и химическим свойствам.

Оптическая изомерия возникает, если молекула несовместима со своим изображением в зеркале. Это возможно, когда у атома углерода в молекуле четыре различных заместителя. Этот атом называют асимметрическим. Примером такой молекулы является молекула $α$-аминопропионовой кислоты ($α$-аланина) $СН_3СН(NH_2)COOH$.

Молекула $α$-аланина ни при каком перемещении не может совпасть со своим зеркальным отражением. Такие пространственные изомеры называются зеркальными, оптическими антиподами, или энантиомерами. Все физические и практически все химические свойства таких изомеров идентичны.

Изучение оптической изомерии необходимо при рассмотрении многих реакций, протекающих в организме. Большинство этих реакций идет под действием ферментов — биологических катализаторов. Молекулы этих веществ должны подходить к молекулам соединений, на которые они действуют, как ключ к замку, следовательно, пространственное строение, взаимное расположение участков молекул и другие пространственные факторы имеют для течения этих реакций большое значение. Такие реакции называются стереоселективными.

Большинство природных соединений являются индивидуальными энантиомерами, и их биологическое действие резко отличается от свойств их оптических антиподов, полученных в лаборатории. Подобное различие в биологической активности имеет огромное значение, так как лежит в основе важнейшего свойства всех живых организмов — обмена веществ.

Гомологическим рядом называется ряд веществ, расположенных в порядке возрастания их относительных молекулярных масс, сходных по строению и химическим свойствам, где каждый член отличается от предыдущего на гомологическую разность $CH_2$. Например: $CH_4$ — метан, $C_2H_6$ — этан, $C_3H_8$ — пропан, $C_4H_$ — бутан и т. д.

Типы связей в молекулах органических веществ. Гибридизация атомных орбиталей углерода. Радикал. Функциональная группа.

Типы связей в молекулах органических веществ.

В органических соединениях углерод всегда четырехвалентен. В возбужденном состоянии в его атоме происходит разрыв пары $2s^3$-электронов и переход одного из них на р-орбиталь:


Такой атом имеет четыре неспаренных электрона и может принимать участие в образовании четырех ковалентных связей.

На основании приведенной электронной формулы валентного уровня атома углерода можно было бы ожидать, что на нем находится один $s$-электрон (сферическая симметричная орбиталь) и три $р$-электрона, имеющих взаимно перпендикулярные орбитали ($2р_х, 2р_у, 2p_z$-орбиталь). В действительности же все четыре валентных электрона атома углерода полностью эквивалентны и углы между их орбиталями равны $109°28'$. Кроме того, расчеты показывают, что каждая из четырех химических связей углерода в молекуле метана ($СН_4$) на $25%$ является $s-$ и на $75%$ — $p$-связью, т.е. происходит смешивание $s-$ и $р-$состояний электронов. Это явление называют гибридизацией, а смешанные орбитали — гибридными.

Атом углерода в $sp^3$-валентном состоянии имеет четыре орбитали, на каждой из которых находится по одному электрону. В соответствии с теорией ковалентной связи он имеет возможность образовывать четыре ковалентные связи с атомами любых одновалентных элементов ($СН_4, CHCl_3, CCl_4$) или с другими атомами углерода. Такие связи называются $σ$-связями. Если атом углерода имеет одну $С—С$ связь, то он называется первичным ($Н_3С—СН_3$), если две — вторичным ($Н_3С—СН_2—СН_3$), если три — третичным (), а если четыре — четвертичным ().

Одной из характерных особенностей атомов углерода является их способность образовывать химические связи за счет обобщения только $р$-электронов. Такие связи называются $π$-связями. $π$-связи в молекулах органических соединений образуются только в присутствии $σ$-связей между атомами. Так, в молекуле этилена $Н_2С=СН_2$ атомы углерода связаны $σ-$ и одной $π$-связью, в молекуле ацетилена $НС=СН$ — одной $σ-$ и двумя $π$-связями. Химические связи, образовавшиеся с участием $π$-связей, называются кратными (в молекуле этилена — двойная, в молекуле ацетилена — тройная), а соединения с кратными связями — ненасыщенными.

Явление $sp^3$-, $sp^2$- и $sp$ - гибридизации атома углерода.

При образовании $π$-связей изменяется гибридное состояние атомных орбиталей атома углерода. Так как образование $π$-связей происходит за счет р-электронов, то в молекулах с двойной связью электроны будут иметь $sp^2$-гибридизацию (была $sp^3$, но один р-электрон отходит на $π$-орбиталь), а с тройной — $sp$-гибридизацию (два р-электрона отошли на $π$-орбиталь). Характер гибридизации изменяет направленность $σ$-связей. Если при $sp^3$-гибридизации они образовывают пространственно разветвленные структуры ($а$), то при $sp^2$-гибридизации все атомы лежат в одной плоскости и углы между $σ$-связями равны $120°$(б), а при $sp$-гибридизации молекула линейна (в):


При этом оси $π$-орбиталей перпендикулярны оси $σ$-связи.


Как $σ$-, так и $π$-связи являются ковалентными, значит, должны характеризоваться длиной, энергией, пространственной направленностью и полярностью.

Характеристики одинарных и кратных связей между атомами С.

Молекула Тип гибридизации Валентный угол Длина связи, нм Энергия связи, кДж/моль
$CH_3-CH_3$ $sp^3$ $109°5'$ $0.154$ $369$
$CH_2=CH_2$ $sp^2$ $120°$ $0.134$ $712$
$CH≡CH$ $sp^3$ $180°$ $0.120$ $962$

Радикал. Функциональная группа.


Одной из особенностей органических соединений является то, что в химических реакциях их молекулы обмениваются не отдельными атомами, а группами атомов. Если эта группа атомов состоит только из атомов углерода и водорода, то она называется углеводородным радикалом, если же она имеет атомы других элементов, то она называется функциональной группой. Так, например, метил ($СН_3$—) и этил ($С_2Н_5$—) являются углеводородными радикалами, а оксигруппа (—$ОН$), альдегидная группа (), нитрогруппа (—$NO_2$) и т. д. являются функциональными группами спиртов, альдегидов и азотсодержащих соединений соответственно.

Как правило, функциональная группа определяет химические свойства органического соединения и поэтому является основой их классификации.


Поведение частиц в соединениях зависит от множества факторов. Теория строений органических соединений как раз изучает поведение молекулы в соединениях, природу атомов, валентность, порядок и характер химических связей. В данной статье сформулированы кратко основные положения этой теории.

Строение органических соединений

Многообразие органических соединений объясняются особенностью их химического строения. Атомы в молекуле расположены в определенном порядке в соответствии с их валентностью. Эта последовательность и является химическим строением.

Вещества, имеющие один и тот же качественный и количественный состав (молекулярную формулу), но разное строение, называются изомерами, а само их существование – изомерией. Известный русский химик А. М. Бутлеров доказал, что с помощью управляемых реакций можно получить новые вещества.

Изомерия определение

Рис. 1. Изомерия определение.

Также важным является положение о том, что атомы и группы атомов в молекуле взаимно влияют друг на друга.

Теория строений органических веществ

Теория строения органических соединений была сформулирована русским химиком А. М. Бутлеровым в 1861 году. Главным выводом этой научной работы стало утверждение, что каждом веществу соответствует только одна формула. Этот труд показывает поведение атомов внутри молекул.


Рис. 2. А. М. Бутлеров.

Основные положения и следствия теории строения Бутлерова могут быть сформулированы следующим образом:

  • В молекулах атомы расположены не хаотично, а имеют определенную структуру.

Схематическое изображение строения молекулы называется структурной формулой


Рис. 3. Структурная формула молекулы.

Основываясь на положении о валентности атома углерода, равной четырем, и его способности образовывать цепи и циклы, строят структурные формулы органических веществ.

  • Химические свойства вещества зависят от состава и порядка расположения атомов и молекул.
  • Различное строение при одном и том же составе и молекулярной массе вещества обуславливает явление изомерии. Абсолютные разные химические элементы могут иметь одинаковый состав и молекулярную массу, все зависит от расположения мельчайших частиц и связей между ними.
  • По свойствам вещества можно определить строение молекулы, а по ее строению можно предсказать свойства
  • Так как при отдельных реакциях изменяются не все, а только некоторые части молекул, то, изучая продукты химических превращений соединения, можно установить его строение.
  • Реакционная способность атомов, входящих в молекулу, меняется в зависимости от того, с какими атомами они связаны в данной молекуле. Связанные между собой атомы влияют друг на друга с большей силой, чем несвязанные.

Что мы узнали?

Значение теории химических строений органических соединений Бутлерова велико. Его теория не только объясняет строение молекул всех известных органических веществ и их свойства, но и дает возможность теоретически предвидеть существование неизвестных и новых веществ, а также найти способ их получения и синтеза.

бутлеров_фото

Химическая структура молекулы представляет собой наиболее характерную и уникальную ее сторону, поскольку она определяет ее общие свойства (механические, физические, химические и биохимические). Любое изменение в химической структуре молекулы влечет за собой изменение ее свойств. В случае незначительных структурных изменений, внесенных в одну молекулу, следуют небольшие изменения ее свойств (обычно затрагивает физические свойства), если же молекула испытала глубокие структурные изменения, то и ее свойства (особенно химические) будут глубоко изменены.

Например, Альфа-аминопропионовая кислота (Альфа-аланин) имеет следующую структуру:

Альфа-аланин

  1. Наличие определенных атомов (С, Н, О, N),
  2. определенное количество атомов, принадлежащих каждому классу, которые связаны в определенном порядке;

Все эти конструктивные особенности определяют целый ряд свойств Альфа-аланина, таких как: твердое агрегатное состояние, температура кипения 295° С, растворимость в воде, оптическая активность, химические свойства аминокислот и т. д.

При наличии связи аминогруппы с другим атомом углерода (т.е. произошло незначительное структурное изменение), что соответствует бета-аланину:

Бета-аланин

Общие химические свойства по-прежнему остаются характерными для аминокислот, но температура кипения составляет уже 200° C и отсутствует оптическая активность.

Если же, например, два атомы в этой молекуле соединены атомом N в следующем порядке (глубокое структурное изменение):

1- нитропропан

тогда образованное вещество — 1-нитропропан по своим физическим и химическим свойствам совершенно не похож на аминокислоты: 1-нитро-пропан — это желтая жидкость, с температурой кипения 131°С, нерастворим в воде.

Общие принципы теории строения органических соединений

В сущности определения структуры органического соединения, лежат следующие принципы, которые вытекают из связи между их структурой и свойствами:

а) органические вещества, в аналитически чистом состоянии, имеют один и тот же состав, независимо от способа их получения;

б) органические вещества, в аналитически чистом состоянии, обладает постоянными физико-химическими свойствами;

в) органические вещества с постоянным составом и свойствами, имеет только одну уникальную структуру.

Основные положения теории А. М. Бутлерова

кратко могут быть изложены следующим образом:

  1. В молекуле органического соединения атомы связаны в определенной последовательности, что и определяет его строение.
  2. Атом углерода в составе органических соединений имеет валентность равную четырем.
  3. При одинаковом составе молекулы возможно несколько вариантов соединения атомов этой молекулы между собой. Такие соединения, имеющие один состав, но различное строение были названы изомерами, а подобное явление – изомерией.
  4. Зная строение органического соединения можно предсказать его свойства; зная свойства органического соединения можно предсказать его строение.
  5. Атомы, образующие молекулу подвержены взаимному влиянию, что определяет их реакционную способность. Непосредственно связанные атомы оказывают большее влияние друг на друга, влияние не связанных непосредственно атомов значительно слабее.

Заслуга А.М. Бутлерова и значение теории химического строения исключительно велико ля химического синтеза. Открылась возможность предсказать основные свойства органических соединений, предвидеть пути их синтеза. Благодаря теории химического строения химики впервые оценили молекулу как упорядоченную систему со строгим порядком связи между атомами. И в настоящее время основные положения теории Бутлерова, несмотря на изменения и уточнения, лежат в основе современных теоретических представлений органической химии.

Читайте также: