Работа нагруженного трансформатора кратко

Обновлено: 05.07.2024

Достигается это посредством несложного устройства — трансформатора, созданного в \(1876\) году русским учёным Павлом Николаевичем Яблочковым.

Трансформатор — устройство, осуществляющее повышение и понижение напряжения переменного тока при неизменной частоте и незначительных потерях мощности.

Простейший трансформатор состоит из двух катушек изолированного провода и замкнутого стального сердечника, проходящего сквозь обе катушки. Катушки изолированы друг от друга и от сердечника. Одна из катушек, называемая первичной, включается в сеть переменного тока. Действие трансформатора основано на явлении электромагнитной индукции. Магнитное поле первичной катушки — переменное и меняется с той же частотой, что и ток в первичной катушке. Переменный ток в первой катушке создаёт в стальном сердечнике переменное магнитное поле. Это переменное магнитное поле пронизывает другую катушку, называемую вторичной, и создаёт в ней переменный индукционный ток.

Допустим, что первичная катушка имеет w 1 витков, и по ней проходит переменный ток при напряжении U 1 . Вторичная обмотка имеет w 2 витков, и в ней индуцируется переменный ток при напряжении U 2 .

Опыт показывает, что во сколько раз число витков вторичной катушки больше (или меньше) числа витков на первичной катушке, во столько же раз напряжение на вторичной катушке больше (или меньше) напряжения на первичной катушке:

Величина \(k\) называется коэффициентом трансформации . Коэффициент равен отношению числа витков первичной обмотки к числу витков во вторичной обмотке. Если \(k > 1\), трансформатор является понижающим , при \(k повышающим .

Во сколько раз увеличивается напряжение на вторичной обмотке трансформатора, примерно во столько же раз уменьшается в ней сила тока при работе нагруженного трансформатора.

В результате мощность тока в первичной и вторичной обмотках трансформатора почти одинакова, поэтому коэффициент полезного действия (КПД) трансформатора близок к единице. КПД у мощных трансформаторов достигает \(99,5\) %.

измерительный трансформатор

Вопрос-ответ

Знаете ли вы, что существуют нагруженные и ненагруженные трансформаторы, работа которых значительно отличается? Имея понятие о том, в чем их разница, можно научиться контролировать мощность и напряжение электричества.

Во время работы с оборудованием происходят незначительные потери мощности. Поэтому, потребители получают не все 100% электроэнергии. Нагревается трансформатор, а также магнитопровод с обмотками. Разные конструкции имеют неодинаковые показатели.

Трансформатор работает только благодаря току. Меняется поступающее напряжение, чтобы не допустить взрыва электроприборов. Есть четыре вида подобных устройств:

  1. Силовой.
  2. Разделительный.
  3. Согласующий.
  4. Измерительный.

Силовой зачастую применяется для подключения к энергетической цепи. В таком случае может иметься больше двух мотков. Прибор бывает, как для бытовой сети, так и промышленной.

Особенность установки

Отличительными являются автотрансформаторы, которые имеют всего лишь один совмещенный моток.

Однофазовое и многофазовое оборудование имеет разную номинальную мощность. Диапазон составляет от 10 до 1000 кВА. Средние типы обладают мощностью 20-630 кВА. Параметрам свыше 1000 кВА понадобится установка высоких мощностей.

Основные режимы работы

Зависимо от силы сопротивления и нагрузки, у трансформаторов существует несколько режимов работы:

Обладая информацией о схеме замещения, можно исследовать нужные режимы работы трансформатора.

Холостой ход

Когда переменный ток проходит по первичному мотку, во внутреннем стержне возникает магнитный поток с переменами, накаляющий электродвижущую силу индукции каждой обмотки. Сердечник контролирует магнитное поле, из-за чего поток присутствует только в сердечнике и равномерен во всех сечениях.

Режим холостого хода или разомкнутая цепь второй обмотки уменьшает ток из-за сопротивления мотка. В таком состоянии потребляется небольшая мощность.

Под нагрузкой

Состояние короткого замыкания – это режим, во время которого провода вторичного мотка замкнуты токопроводом, а сопротивление равно нулю. В эксплуатационном состоянии короткое замыкание активирует аварийный режим, потому что при таких обстоятельствах вторичный и первичный токи увеличиваются в 10-20 раз.

Поэтому, цепи с трансформаторами защищены автоматическим отключением.

Метод проведения опыта

Утраты холостого хода вычисляются во время настройки режима. Для подготовки к операции отключается подача тока в обмотку. Они остаются разомкнутыми. Далее цепи снабжаются электроэнергией, но только на первом контуре. Приспособление должно работать под установленным напряжением.

Сквозь первичный контур сварочной или силовой установки проходит ток под названием ХХ. Величина равна 3-9% от заданных показателей. При этом на мотке второстепенного контура нет подачи электроэнергии. На исходном контуре производится поток вектора магнитной индукции, который обеспечивает ток, пересекающий оборот двух обмоток. Также появляется электродвижущая мощность самоиндукции на первичном, а взаимоиндукция – на вторичных контурах.

Отличительные особенности работы нагруженного трансформатора

Кратко о том, какие качества выделяют нагруженные трансформаторные устройства.

При нагрузке, в отличии от холостого хода, к трансформаторному вторичному мотку присоединяется пользователь электроэнергии. Это замыкает начальную и второстепенную обмотку, после чего в них начинает проходить переменный ток, который увеличивает силу магнита в первичной и вторичной обмотке. Колебания магнитодвижущих сил обмоток практически не отличаются, максимум на 2-3 процента.

Магнитная сила вторичной обмотки устроена так, что практически полностью возмещает первичную. Колебание суммарной силы, действующая в магнитопроводе, равна двум-трем процентам от магнитной силы одной из обмоток. Поток накаляется под влиянием суммарной силы, из-за чего амплитуда потока не зависит от основного, вторичного мотка и примерно равна колебанию в холостом обороте.

Нагруженный трансформатор кроме главного магнитного потока обладает еще и рассеянным, который частично замыкается по воздуху. Потоки индуцируются в первом, а также втором мотке рассеяния электродвижущей силы.

Мощность первичной цепи во время нагрузки трансформатора примерно равняется мощности во вторичной. Увеличивая в несколько раз напряжение через трансформатор, во столько же понижается сила тока.

Что такое трансформатор: устройство, принцип работы, схема и назначение

Может быть, кто-то думает, что трансформатор – это что-то среднее между трансформером и терминатором. Данная статья призвана разрушить подобные представления.

Ежедневная рассылка с полезной информацией для студентов всех направлений – на нашем телеграм-канале.

Трансформатор – статическое электромагнитное устройство, предназначенное для преобразования переменного электрического тока одного напряжения и определенной частоты в электрический ток другого напряжения и той же частоты.

Работа любого трансформатора основана на явлении электромагнитной индукции, открытой Фарадеем.

Назначение трансформаторов

Разные виды трансформаторов используются практически во всех схемах питания электрических приборов и при передаче электроэнергии на большие расстояния.

Электростанции вырабатывают ток относительно небольшого напряжения – 220, 380, 660В. Трансформаторы, повышая напряжение до значений порядка тысяч киловольт, позволяют существенно снизить потери при передаче электроэнергии на большие расстояния, а заодно и уменьшить площадь сечения проводов ЛЭП.


Непосредственно перед тем как попасть к потребителю (например, в обычную домашнюю розетку), ток проходит через понижающий трансформатор. Именно так мы получаем привычные нам 220 Вольт.

Самый распространенный вид трансформаторов – силовые трансформаторы. Они предназначены для преобразования напряжения в электрических цепях. Помимо силовых трансформаторов в различных электронных приборах применяются:

  • импульсные трансформаторы;
  • силовые трансформаторы;
  • трансформаторы тока.

Принцип работы трансформатора

Трансформаторы бывают однофазные и многофазные, с одной, двумя или большим количеством обмоток. Рассмотрим схему и принцип работы трансформатора на примере простейшего однофазного трансформатора.

Кстати, в других статьях можно почитать, что такое фаза и ноль в электричестве.

Из чего состоит трансформатор? Во простейшем случае из одного металлического сердечника и двух обмоток. Обмотки электрически не связаны одна с другой и представляют собой изолированные провода.

Одна обмотка (ее называют первичной) подключается к источнику переменного тока. Вторая обмотка, называемая вторичной, подключается к конечному потребителю тока.


Когда трансформатор подключен к источнику переменного тока, в витках его первичной обмотки течет переменный ток величиной I1. При этом образуется магнитный поток Ф, который пронизывает обе обмотки и индуцирует в них ЭДС.

Бывает, что вторичная обмотка не находится под нагрузкой. Такой режимы работы трансформатора называется режимом холостого хода. Соответственно, если вторичная обмотка подключена к какому-либо потребителю, по ней течет ток I2, возникающий под действием ЭДС.

Величина ЭДС, возникающей в обмотках, напрямую зависит от числа витков каждой обмотки. Отношение ЭДС, индуцированных в первичной и вторичной обмотках, называется коэффициентом трансформации и равно отношению количества витков соответствующих обмоток.


Путем подбора числа витков на обмотках можно увеличивать или уменьшать напряжение на потребителе тока с вторичной обмотки.

Идеальный трансформатор

Идеальный трансформатор – трансформатор, в котором отсутствуют потери энергии. В таком трансформаторе энергия тока в первичной обмотке полностью преобразуется сначала в энергию магнитного поля, а далее – в энергию вторичной обмотки.

Конечно, такого трансформатора не существует в природе. Тем не менее, в случае, когда теплопотерями можно пренебречь, в расчетах удобно пользоваться формулой для идеального трансформатора, согласно которой мощности тока в первичной и вторичной обмотках равны.


Кстати! Для наших читателей сейчас действует скидка 10% на любой вид работы

Потери энергии в трансформаторе

Коэффициент полезного действия трансформаторов достаточно высок. Тем не менее, в обмотке и сердечнике происходят потери энергии, приводящие к тому, что температура при работе трансформатора повышается. Для трансформаторов небольшой мощности это не представляет проблемы, и все тепло уходит в окружающую среду – используется естественное воздушное охлаждение. Такие трансформаторы называют сухими.

В более мощных трансформаторах воздушного охлаждения оказывается недостаточно, и применяется охлаждение маслом. В этом случае трансформатор помещается в бак с минеральным маслом, через которое тепло передается стенкам бака и рассеивается в окружающую среду. В трансформаторах высоких мощностей дополнительно применяются выхлопные трубы – если масло закипает, образовавшимся газам нужен выход.


Конечно, трансформаторы не так просты, как может показаться на первый взгляд - ведь мы рассмотрели принцип действия трансформатора кратко. Контрольная по электротехнике с задачами на расчет трансформатора внезапно может стать настоящей проблемой. Специальный студенческий сервис всегда готов оказать помощь в решении любых проблем с учебой! Обращайтесь в Zaochnik и учитесь легко!

Устройство трансформатора

Трансформатор состоит из замкнутого стального сердечника-магнитопровода, на котором располагаются две или несколько обмоток, не имеюпа,их между собой электрического контакта (рис. 3.2).


Для уменьшения потерь от вихревых токов магнитопровод собирается из листов электротехнической стали толщиной 0,35 или 0,5 мм. Листы изолируются друг от друга тонкой бумагой или лаком. Графическое обозначение трансформатора в электрических схемах показано на рисунке 3.3.


Холостой ход трансформатора

Действие трансформатора основано на явлении электромагнитной индукции. Рассмотрим вначале процессы в трансформаторе с незамкнутой вторичной обмоткой (режим холостого хода).

Пусть к первичной обмотке трансформатора приложено гармонически изменяющееся напряжение:


Под действием этого напряжения в первичной обмотке возникает переменный ток i1. У реальных трансформаторов активное сопротивление первичной обмотки невелико по сравнению с ее индуктивным сопротивлением. Поэтому можно считать, что колебания силы тока i1 отстают по фазе от колебаний напряжения u1 на четверть периода, т. е. на π/2 (см. § 2.8):


Переменный магнитный поток, возбуждаемый током в первичной обмотке, совпадает по фазе с током и пронизывает витки обеих обмоток трансформатора:


где Фm — амплитуда магнитного потока. Сердечник из трансформаторной стали концентрирует магнитное поле, так что магнитный поток существует практически только внутри сердечника и одинаков во всех его сечениях.

Переменный магнитный поток наводит в первичной и вторичной обмотках ЭДС. Мгновенное значение ЭДС индукции е в любом витке первичной или вторичной обмотки одинаково и согласно закону Фарадея равно


где Ф' — производная потока магнитной индукции по времени. Из выражения (3.3.3) следует, что


поэтому е = -ωФmcosωt, или


Здесь Em = ωФm — амплитуда ЭДС в одном витке.

В первичной обмотке, имеющей N1 витков, полная ЭДС индукции е1 = N1e, а во вторичной обмотке с числом витков N2 полная ЭДС e2 = N2e. Отсюда следует, что


Напряжение u1 и ЭДС е1, как вытекает из выражений (3.3.1) и (3.3.6), колеблются в противофазе:


При разомкнутой вторичной обмотке трансформатора тока в ней нет, поэтому имеет место соотношение


Мгновенные значения ЭДС е1 и e2 изменяются синфазно, т. е. в любой момент времени фазы их одинаковы. Поэтому отношение мгновенных ЭДС в формуле (3.3.7) можно заменить отношением амплитуд или действующих значений E1 и E2 этих ЭДС, а учитывая равенства (3.3.8) и (3.3.9), отношением действующих значений напрянсений:


Величина К называется коэффициентом трансформации. При К > I трансформатор является понижающим, а при К P2. Разность между потребляемой трансформатором мощностью Р1 и мощностью P2, потребляемой нагрузкой, представляет собой мощность, теряемую в трансформаторе. Потери мощности в трансформаторе (P1 - P2) состоят из двух частей: во-первых, это потери в обмотках трансформатора Р0 и, во-вторых, это потери в сердечнике Pс.

Мощность потерь в обмотках


где R1 и R2 — активные сопротивления первичной и вторичной обмоток. Мощность Р0 зависит от активного сопротивления обмоток и нагрузки трансформатора.

Потери в сердечнике состоят из потерь энергии при перемагничивании сердечника (потери на гистерезис) и потерь на нагревание сердечника вихревыми токами. Эти потери при постоянной частоте переменного тока зависят от максимального значения магнитного потока. Так как при данном напряжении U1 максимальное значение магнитного потока трансформатора остается неизменным, то потери в сердечнике можно считать не зависящими от нагрузки.

В трансформаторе отсутствуют вращающиеся части, и, следовательно, нет потерь на трение. Поэтому общая мощность потерь относительно мала.

Отношение мощности Р2, потребляемой нагрузкой, к мощности P1, потребляемой первичной обмоткой трансформатора, называется коэффициентом полезного действия трансформатора:


Так как Р1 = Р2 + Рo+ Рc, то коэффициент полезного действия трансформатора можно записать и так:

Из выражения (3.3.16) видно, что при недогрузке трансформатора P2 и Рo малы, а Рc, как было установлено, не зависит от нагрузки. Поэтому в этом случае КПД трансформатора низкий. При перегрузке Рo значительно возрастает (так как возрастают силы токов I1 и I2), и КПД снова мал. Лишь при номинальной нагрузке (т. е. при нагрузке, на которую трансформатор рассчитан) или близкой к ней КПД наибольший. У трансформаторов большой мощности КПД достигает 98— 99%.

При нагрузках, близких к номинальной, потери мощности в трансформаторе малы, и приближенно можно считать, что

При таких нагрузках сдвиги фаз близки к нулю и приближенно равны между собой (cos φ1 = cos φ2). Поэтому

Отсюда следует, что

т. е. силы токов в обмотках трансформатора приближенно обратно пропорциональны числу витков в обмотках.

Следует иметь в виду, что если соотношение оправдывается в широком диапазоне нагрузок, то соотношение удовлетворительно выполняется лишь при номинальных нагрузках.

Читайте также: