Приведите примеры преобразования одного вида энергии в другой ответ кратко

Обновлено: 02.07.2024

Энергия играет важную роль не только для жизни на Земле, но и в любом изменении во Вселенной. Преобразование энергии происходит постоянно изменяя свою форму.

Формы её различны и могут быть:

  • химическая
  • электромагнитная
  • световая
  • ядерная
  • гравитационная
  • механическая
  • внутренняя или связи частиц.

преобразование энергии

Химическая

Например, при горении компонентов бензиновой смеси в автомобиле незначительная часть физической величины покоя превращается в тепло, то есть в движение частиц. С помощью поршней тепло превращается в кинетическую форму движения автомобиля.

Подобным образом горение (окисление) угля, бензина, дерева и других видов топлива представляет собой главный способ преобразования энергии из вещества в тепло и свет. Однако, это весьма неэффективный способ, потому что при этом освобождается менее одной миллиардной доли физической величины мощности покоя вещества.

Например, из одного килограмма угля освобождается около 5 000 ккал тепла, что составляет приблизительно 5 кВт/ч энергии.

Мы знаем, что один кг материи (включая и уголь) содержит энергию 25 миллиардов кВт/ч.

Таким образом, при горении используется меньше чем одна миллиардная доля, а всё остальное остается в пепле и дыме. Итак, мы видим, что горение, которое является в настоящее время главным источником энергии для человечества, — невероятно неэффективный способ получения ее из вещества.

Основной химической реакцией во всех живых организмах является окисление. Организм человека в процессе дыхания получает из воздуха кислород, в процессе питания получает углерод и водород, связанные в органических молекулах (в сахаре, белках и т.д.). При окислении углерода и водорода происходит преобразование энергии необходимое для всех жизненно важных процессов в организме.

преобразование из одной формы в другую

Каждая химическая реакция означает перегруппировку атомов в молекулах. Она осуществляется при участии электромагнитного взаимодействия между атомами.

Электромагнитная

Имеется две составляющие электрическая и магнитная которые взаимодействуют и порождают друг друга. В генераторе переменного тока или динамо-машине движение превращается в электрическое движущееся поле.

Электрическая составляющая с помощью различных приборов может преобразовывать энергию в тепловую, световую, механическую, электромагнитной волны распространяющийся по пространству и т.д.

Световая

В лампах рефлекторов электричество трансформируется в движение фотонов, в свет, а тот, в свою очередь, поглощается поверхностью дороги и превращается в тепло, то есть в кинетическую форму молекул.

Вселенная состоит из частиц и фотонов представляющих собой кванты световой волны или электромагнитного излучения. Это основные элементарные частицы . Между ними беспрестанно происходит обмен энергией. Например, вещество постоянно излучает фотоны и одновременно поглощает их. Другие процессы где происходит преобразование энергии между этими составными Вселенной являются аннигиляция и материализация.

Несмотря на различные изменения в космическом пространстве, энергия не может исчезнуть или возникнуть из ничего. Она лишь меняет свою форму, а ее количество остается неизменным.

Это важное свойство называется законом сохранения энергии.

Ядерное взаимодействие

Ядерное взаимодействие гораздо сильнее электромагнитного. Оно способно освобождать из материи энергию в несколько миллионов раз большую, чем электромагнитное взаимодействие. В атомной электростанции с помощью ядерных сил получают примерно тысячную долю энергии покоя урана.

Звезды способны сделать это еще лучше человека. При превращении водорода в железо, которое происходит в недрах тяжелых звезд, освобождается почти один процент от энергетической возможности водорода.

Солнце освобождает энергию подобным образом, что и водородная бомба за счет синтеза легких элементов в тяжелые. Различие состоит в том, что Солнце это делает гораздо более совершенно, чисто, исключительно ради сохранения жизни, а не для ее уничтожения. Поэтому светимость Солнца и обеспечивает жизнь на Земле.

Электромагнитные силы (соединение электрона с ядром или соединение молекул в кристаллы) всегда очень неэффективны.

Гравитационная

И гравитационная сила способна эффективно преобразовывать энергию, но лишь в космических телах, имеющих гигантскую массу, например, в массивных звездах, компактных ядрах галактик и пр. Там гравитация способна выжать из материи почти половину из возможного.

Земля — сравнительно малое тело, поэтому на ней невозможно получить большую величину с помощью гравитации.

Механическая

Самая объяснимая, состоящая из кинетической и потенциальной мера способности совершать работу.

Само механическое движение того или иного объекта может способствовать преобразованию энергии из одного вида в другой. В природе явление этого преобразования встречается везде.

Эту цепочку в которой происходит преобразование энергии из одной формы в другую можно было бы продолжать бесконечно.


1. Явления природы обычно сопровождаются превращением одного вида энергии в другой.

В природе, технике и быту можно часто наблюдать превращение одного вида механической энергии в другой:
потенциальной в кинетическую и кинетической в потенциальную.

При падении воды с плотины ее потенциальная энергия превращается в кинетическую.

В качающемся маятнике периодически потенциальная энергия переходит в кинетическую энергию и обратно.


2. Энергия может передаваться от одного тела к другому.

При стрельбе из лука потенциальная энергия натянутой тетивы переходит в кинетическую энергию летящей стрелы.

3. Примеры превращения механической энергии.

а). Превращение механической энергии в маятнике Максвелла.


Накручивая на ось нить, поднимают диск маятника.
Диск, поднятый вверх, обладает потенциальной энергией.
Если его отпустить, то нити раскручиваются, и он, вращаясь, начинает падать.

По мере падения потенциальная энергия диска уменьшается, но возрастает его кинетическая энергия.
В конце падения диск обладает таким запасом кинетической энергии, что может опять подняться почти до прежней высоты.
Поднявшись вверх, диск снова падает, а затем снова поднимается.

При движении диска вниз его потенциальная энергия превращается в кинетическую.
При движении диска вверх его кинетическая энергия превращается в потенциальную.


б). Превращение механической энергии при падении стального шарика на стальную плиту.


Поднимем над стальной плитой стальной шарик и затем выпустим его из рук.
По мере падения шарика его потенциальная энергия убывает, т.к. высота будет уменьшаться.
Кинетическая энергия шарика будет расти, т.к. увеличивается скорость движения шарика.

При ударе шарика о плиту произойдет сжатие и шарика, и плиты.
При ударе кинетическая энергия шарика превратится в потенциальную энергию сжатой плиты и потенциальную энергию сжатого шарика.
Затем благодаря действию упругих сил плита и шарик примут почти первоначальную форму.

Шарик отскочит от плиты - это потенциальная энергия сжатых тел (шарика и плиты) вновь превратится в кинетическую энергию шарика.
При подъеме вверх скорость шарика и его кинетическая энергия уменьшаются, а потенциальная энергия по мере подъема растет.
В верхней точке подъема вся кинетическая энергия шарика вновь превратится в потенциальную.

Один из важнейших постулатов в физике является закон сохранения энергии. Согласно ему, она существует в определённом количестве, при этом её значение неизменное. При выполнении работы происходит превращение энергии из одного вида в другой. При этом она может также передаваться между телами, например, пружина с грузом. Это явление используется во множестве современных технологий. Причём правила преобразования справедливы как для микро, так и макромира.

Превращение энергии - виды, основные законы и примеры

Фундаментальные принципы

Человека — покормить, простейший механизм —завести, какой-то предмет — поднять и опустить.

Превращение энергии - виды, основные законы и примеры

Таким образом, о телах или их системах говорят, что если они способны совершить работу, то имеют энергию. Другими словами, характеризуются физической величиной, описывающей способность совершать действие. Обозначать энергию принято латинской буквой E, а измерять в джоулях [Дж]. В системе же СГС (сантиметр-грамм-секунда) за количественную единицу принимают [эрг] или [г * см 2 / с 2 ].

В учёном мире долго велись споры, что же, по сути, представляет собой параметр — субстанцию или только величину. В результате большая часть физиков склонилась к тому, что это просто физическое значение, характеризующее движение или его изменение. Сегодня считается, что энергия — скалярная величина, используемая в качестве меры различных форм работы и взаимодействия материй, а также преобразования субстанции из одной формы в другую.

Превращение энергии - виды, основные законы и примеры

Пожалуй, важным принципом в природе является закон сохранения энергии. Установлен он был опытным путём. Его смысл заключается в том, что при любой работе в замкнутой системе, происходит взаимопревращение энергии из одной формы в другую. То есть она ниоткуда не берётся и никуда не исчезает, а лишь может преобразовываться.

Ричард Фейнман в 1961 году заявил, что исключений из этого закона не существует, и он абсолютно точен. По существу, это математический принцип, согласно которому есть некоторая численная величина, которая постоянна при любых обстоятельствах.

Это — не описание механизма, а сущность природного явления.

Виды энергии

В природе взаимные превращения энергии определяются способностью тел выполнять тот или иной вид работы. Так как это просто количественная мера, её можно измерить лишь при каком-либо изменении. Вызвать же последнее могут любые процессы, относящиеся к различным отраслям науки. В отличие от материи, о которой можно утверждать, что она существует, энергия — плод человеческого предположения.

В зависимости от природы превращения, различают следующие её виды:

Превращение энергии - виды, основные законы и примеры

Превращение энергии - виды, основные законы и примеры

Учёные не исключают возможность существования и других типов. При этом переход энергии из одного вида в другой может происходить как последовательно, так и параллельно.

Например, превращение световой в химическую, механической — в электрическую и тепловую.

Потенциальный и кинетический тип

Чаще всего в физике превращение энергии рассматривают как зависимость между запасённым её значением для работы и набираемой при движении. Так как величина — это способность совершать телом действие, классифицировать её можно не только по форме, но и учитывая изменение положения. В зависимости от этого она может быть двух видов:

Превращение энергии - виды, основные законы и примеры

Для понимания отличия одного вида от другого лучше всего рассмотреть пример. Пусть есть часы с маятником и гирей. Когда последняя опускается, за счёт работы силы тяжести приводится в действие механизм часов. Значит, поднятая гиря обладает энергией. Если эти часы разместить в космосе, идти они не будут. Всё дело в том, что там груз не имеет веса, так как отсутствует сила, с которой Земля действует на гирю. Следовательно, запасённой энергии у тела не будет. Значит, для примера характерно взаимодействие.

Похожие действия происходят при скручивании пружины, возникновение силы упругости при деформации. Энергия, обусловленная взаимодействием тел или частей одного вещества, носит название потенциальной. Её вычисление зависит от выбранной системы. Значение для тела, поднятого над Землёй, можно определить, как Ep = m*g*h, где:

  • m — масса;
  • g — ускорение свободного падения;
  • h — высота.

Превращение энергии - виды, основные законы и примеры

Например, когда тело поднимают по наклонной плоскости, ему сообщают потенциал. Фактически это полезная работа. Следует отметить, что Ep зависит, от какого уровня ведётся отсчёт высоты. Но при этом следует учитывать, что работа равна изменению.

Другая ситуация. Пусть нужно забить гвоздь в стену. Чтобы это сделать, нужно отвести инструмент в сторону, а после нанести удар. Другими словами, разогнать молоток. Перед тем как коснуться шляпки гвоздя, инструмент наберёт скорость, которая и позволяет совершить работу по забиванию. Получается, что любое движущееся тело обладает энергией. Называется она кинетической. Её значение зависит от массы тела и скорости. Находится она по формуле: Ek = m * v 2 / 2, где:

Эти 2 вида тесно связаны между собой. При этом очень часто при различных действиях происходит преобразование одного типа в другой. В окружающем мире можно самостоятельно наблюдать, как преобразовывается энергия. Например, при движении любого тела вниз.

Примеры превращения

Поднятая гиря над Землёй обладает каким-то потенциальным значением. Если тело отпустить, она будет уменьшаться. При этом скорость гири по мере движения вниз начнёт увеличиваться. Значит, можно утверждать, что кинетическая энергия будет возрастать. Получается, что уменьшение значения первой сопровождается приростом величины второй.

Превращение энергии - виды, основные законы и примеры

Правда, для этого должны выполняться некоторые условия. Например, эту гирю можно спустить с наклонной плоскости. В этом случае будет присутствовать трение. В результате движение может быть равномерным. Так как тело опускается, его потенциальная величина снижается, но из-за того, что нет разгона, кинетическое значение не изменяется, поэтому в этом случае энергия преобразовываться не будет.

Если тело захотеть подбросить, ему нужно сообщить Ek за счёт работы бросающего. Но в какой-то момент кинетическое значение, которым обладает тело, станет равным нулю, и оно остановится.

Зато в этот момент потенциальная работа достигнет наибольшей величины.

Таким образом, можно утверждать, что если в системе отсутствует трение, превращаться энергия из одного вида в другой будет симметрично: насколько уменьшается одна, на столько же произойдёт приращение другой. Значит, их сумма будет постоянной величиной. Называется она внутренней энергией.

Превращение энергии - виды, основные законы и примеры

Высота становится меньше, и потенциал уменьшается. В самой нижней точке он будет равняться нулю. Зато Ek наберёт своё максимальное значение. Но тела обладают свойством инерции, и шар начнёт снова подниматься. Сопротивление воздуха — ничтожно малая величина, поэтому тело займёт ту же самую высоту, но с противоположной стороны. Его потенциал опять вырастет, поэтому можно сказать, что какие превращения энергии бы не проходили, мерой преобразования будет работа.

В качестве яркого примера перехода можно описать работу бытового нагревателя. Электрическая энергия поступает на спираль, которая оказывает сопротивление току. В результате происходит превращение электричества в свет и тепло.


Оказывается, один вид механической энергии может превращаться в другой. Мы убедимся в этом на ряде примеров из жизни. Также мы познакомимся с важнейшим законом природы – законом сохранения энергии. Мы обсудим те ситуации когда этот закон применим.


В данный момент вы не можете посмотреть или раздать видеоурок ученикам

Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет, приобретя в каталоге.

Получите невероятные возможности




Конспект урока "Превращение одного вида механической энергии в другой. Закон сохранения энергии"

Превращение одного вида механической энергии в другой. Закон сохранения энергии

Энергия может превращаться из одного вида в другой и переходить в другие формы. Об этом будет разговор в данной теме.

В прошлой теме речь шла об энергии. Энергией обладает то тело, которое способно совершить работу. Механическая энергия делится на два вида: потенциальная энергия и кинетическая энергия. Потенциальная энергия определяется взаимным расположением взаимодействующих тел (или частей одного и того же тела). Кинетическая энергия – это энергия, которой обладает всякое движущееся тело. Потенциальная энергия тела, поднятого над землей пропорциональна массе этого тела и высоте, на которую это тело поднято.

Кинетическая энергия пропорциональна массе тела и квадрату скорости, с которой это тело двигается.

Что будет происходить с энергией при падении тела?

Рассмотрим этот процесс поэтапно на примере падения яблока с яблони.


Изначально, яблоко покоится, то есть, его скорость равна нулю. Значит и кинетическая энергия – тоже равна нулю. Но яблоко находится на определенной высоте, поэтому, оно обладает потенциальной энергией. Итак, яблоко начинает падать, и его высота постепенно уменьшается. Но, вместе с тем, увеличивается скорость. В момент, когда яблоко коснется земли, его высота будет равна нулю, а скорость будет максимальной. Таким образом, вся потенциальная энергия яблока превратилась в кинетическую энергию. Возникает вопрос: какую энергию переходит кинетическая энергия после удара яблока об землю? Она переходит в иной вид энергии, который будет изучаться в 8 классе.

Рассмотрим другой пример: бросим футбольный мяч с определенной высоты. Точно также, как и в предыдущем примере, мяч будет набирать скорость и терять высоту, то есть его потенциальная энергия будет превращаться в кинетическую. При ударе о землю, мяч деформируется: таким образом, кинетическая энергия мяча перейдет в энергию упруго деформированного тела. Стремясь вернуть исходную форму, силы упругости, действующие в мяче, совершат работу, в результате чего мяч снова подпрыгнет, почти на ту же высоту, что и раньше. В этом случае, его скорость, наоборот, будет уменьшаться, а высота увеличиваться. То есть, теперь, кинетическая энергия будет превращаться в потенциальную. Мяч достигнет максимальной высоты и на мгновение зависнет в воздухе, а потом, снова начнет падать, и процесс превращения энергии повторится. В конце концов мяч прекратит прыгать и упадет на землю. Дело в том, что в этом случае, энергия расходуется на преодоление сопротивления воздуха, а также теряется при ударах мяча о землю.

Рассмотрим пружинный маятник. В момент, когда пружина расслаблена, и потенциальная, и кинетическая энергия равна нулю.


Стоит растянуть пружину, как она начнет обладать потенциальной энергией.


Пружина, стремясь вернуть свою исходную форму, будет терять потенциальную энергию, но приобретать скорость, то есть её кинетическая энергия будет увеличиваться. Оказавшись в исходном положении, маятник будет обладать максимальной кинетической энергией, а его потенциальная энергия будет равна нулю.


Из-за явления инерции, маятник продолжит движение. Теперь уже его скорость будет уменьшаться, а пружина все больше деформироваться. Таким образом, кинетическая энергия перейдет в потенциальную. Так будет повторяться снова и снова. То же самое можно сказать и о движении обычного маятника.

Многие природные явления сопровождаются превращением одного вида энергии в другой. Классическим примером является течение воды в реках: ведь реки текут с гор в моря. То есть, изначально, вода находится на определенной высоте, и обладает потенциальной энергией, которая впоследствии превращается в кинетическую энергию – энергию течения реки.


Другой пример – это ветер, гнущий деревья. Ветер – это движение воздушных масс, то есть, воздух, в данном случае обладает кинетической энергией. Эта кинетическая энергия расходуется на то, чтобы согнуть дерево (то есть, деформировать его). В результате, дерево начинает обладать потенциальной энергией.


На графике показаны кинетическая энергия, потенциальная энергия и полная механическая энергия. Потенциальная энергия уменьшается ровно на столько, насколько увеличивается кинетическая энергия. Таким образом, полная механическая энергия остается величиной постоянной (именно поэтому, она обозначена на графике горизонтальной прямой). Итак, закон сохранения механической энергии звучит следующим образом: если в замкнутой системе не действуют силы трения и силы сопротивления, то сумма кинетической и потенциальной энергии всех тел системы остается величиной постоянной. Под замкнутой системой понимают систему, которая не взаимодействует с телами вне системы.

Закон сохранения энергии нередко упрощает решение довольно сложных задач, а некоторые задачи и вовсе можно решить только с помощью закона сохранения энергии.

Задача 1. Из ружья вертикально вверх вылетела пуля со скоростью 1300 км/ч. Пренебрегая сопротивлением воздуха, найдите максимальную высоту, на которую взлетит пуля.


Задача 2. Мальчик, находясь на балконе, подбрасывает мяч вертикально вверх с начальной скоростью 3 м/с. После этого мяч падает на землю. Пренебрегая сопротивлением воздуха, найдите скорость мяча в момент удара о землю, если расстояние между землей и балконом равно 5 м.


Задача 3. Барон Мюнхгаузен утверждал, что он может летать на ядре. Как-то раз, он сказал, что спустившись с высоты 80 м, на высоту 60 м, его скорость увеличилась на 20 м/с. Могло ли высказывание барона быть правдивым?


Основные выводы:

– Энергия не исчезает и не появляется, а просто переходит из одной формы в другую.

– Законом сохранения механической энергии: при отсутствии сил трения и сил сопротивления в замкнутой системе, сумма кинетической и потенциальной энергии всех тел системы остается величиной постоянной.

Читайте также: