Принцип эквивалентности эйнштейна кратко

Обновлено: 05.07.2024

Самой важной особенностью поля тяготения является то, что тяготение совершенно одинаково действует на разные тела, сообщая им одинаковые ускорения независимо от массы, химического состава и других свойств тел. Так, на поверхности Земли все тела падают под влиянием ее поля тяготения с одинаковым ускорением – ускорением свободного падения. Этот факт был установлен опытным путем итальянским ученым Галилео Галилеем и может быть сформулирован как принцип строгой пропорциональности гравитационной массы тг, определяющей взаимодействие тела тяготения и входящей в закон тяготения Ньютона, и инертной массы m, определяющей сопротивление тела действующей на него силе и входящей во второй закон механики Ньютона. Уравнение движение тела в поле тяготения записывается в виде:

M1 ? m2 = F ? m ? g.

А. Эйнштейн предположил, что не только механическое движение, но и вообще все физические процессы в истинном поле тяготения и в ускоренной системе в отсутствии тяготения протекают по одинаковым законам.

Знаменитый принцип эквивалентности позволил Эйнштейну перейти от специальной теории относительности, описывающей движение с точки зрения различных систем отсчета, к общей теории относительности, описывающей гравитацию. С первого взгляда гравитация не имеет никакого отношения к движению. Мы чувствуем гравитационное поле Земли даже находясь неподвижно на ее поверхности.

Мы ощущаем воздействие гравитационного поля через величину, называемую весом. Вставая на весы мы измеряем именно свой вес относительно гравитационного поля Земли. На других планетах вы бы увидели другие показания своего веса. В интернете полно таких калькуляторов. Сила, давящая на весы, обусловлена притяжением к Земле и вычисляется согласно закону всемирного тяготения Ньютона:

\( \displaystyle F=G\frac\)
где m — масса тела на весах; М — масса Земли; r — расстояние от весов до центра Земли; G — гравитационная постоянная Ньютона.

Но эту силу можно имитировать, используя другой закон Ньютона:

То есть можно подобрать ускорение, чтобы получилась такая же величина силы. Приравняв друг другу эти силы получим:

Принцип эквивалентности гласит, что масса в левой части формулы (инерционная масса) является той же самой физической величиной m, стоящей в правой части (гравитационная масса). И, таким образом, их можно сократить, получив:

Оказывается движение с ускорением (левая часть) эквивалентно гравитации (правая часть). Для земной гравитации величина этого ускорения широко известна:

\( \displaystyle a\approx 9.8 м/с^\)

Его обычно обозначают буквой \( \displaystyle g\). При вертикальном взлете ракеты к этому \( \displaystyle g\) добавляется ускорение ракеты при наборе скорости. Космонавт испытывает перегрузки. При ускорении ракеты \( \displaystyle 9.8 м/с^\) космонавт ощущает, что его вес увеличился в два раза (\( \displaystyle 2g\)).


Человека запертого в шумонепронецаемом и непрозрачном лифте сбрасывают с самолета. Гравитационное поле заставляет его падать по направлению к земле с ускорением \( \displaystyle g\). Человек при этом ощущает состояние невесомости и не имея возможности посмотреть наружу не сможет сказать находится ли он в свободном падении в гравитационном поле или просто покоится в каком-нибудь месте в отсутствии гравитационного поля, где-нибудь в космосе вдали от звезд и планет.

Если же поместить этот лифт в ракету, движущуюся в космосе вдалеке от гравитирующих звезд с ускорением \( \displaystyle 9.8 м/с^\), он не сможет отличить ситуацию от той, если бы лифт находился на поверхности земли.


Сейчас состояния невесомости и перегрузки получают на коммерческой основе в самолете, который то набирает высоту с ускорением, то свободно падает вниз.

По той же причине космонавты на орбите испытывают невесомость. Она обусловлена не тем, что гравитационное поле вдруг стало равно нулю (оно практически такое же, что и на поверхности земли). Просто они постоянно падают на землю, но не достигают ее поверхности из-за огромной линейной скорости — первой космической скорости, компенсирующей приближение к поверхности земли. Траектория движения, обусловленная центростремительной силой притяжения и этой скоростью, как раз и будет окружностью или эллипсом.


Если бы спутник или МКС не двигались вокруг Земли с громадной скоростью, они бы сразу же упали на поверхность. Эта скорость не ощущается космонавтами из-за принципа относительности.

Гравитационное поле можно компенсировать ускоренным движением лишь в малой области пространства. Если размеры объекта сопоставимы с радиусом Земли, будут заметны эффекты, связанные с неоднородностью гравитационного поля.


Все о чем мы говорили есть следствия классической Ньютоновской механики. Но Эйнштейн своей специальной теорией относительности (СТО) показал, что она не верна при движении со скоростями близкими к скорости света. СТО позволяет исследовать не только движения с постоянной скоростью, но и ускоренные движения. При этом также возникают релятивистские эффекты в виде замедления времени и возникновения горизонта событий. Принцип эквивалентности позволил Эйнштейну применить СТО для анализа гравитационных явлений и выявить аналогичные эффекты для гравитации.

Даже геометрическая интерпретация СТО оказалась полезной и была расширена в итоге в общую теорию относительности (ОТО). Пространство Минковского локально (в окрестности точки) хорошо аппроксимирует искривленное пространство-время общей теории относительности. Можно провести аналогию с тем как геометрия на плоскости хорошо аппроксимирует геометрию на сфере в небольшой окрестности, малой по сравнению с радиусом сферы.

Общая теория относительности, разработанная Эйнштейном более века назад, явилась революционной теорией, изменившей мировоззрение не только физиков того времени, но и многих людей, не связанных с наукой.

«Закон равенства инертной и тяжелой масс можно сформулировать очень наглядно следующим образом: в однородном гравитационном поле все движения происходят точно так же, как в равномерно ускоренной системе координат в отсутствии поля тяготения.

«Для иллюстрации этого принципа Эйнштейн предложил следующий мысленный эксперимент. Пусть тела находятся в лифте небольших размеров, который бесконечно удалён от гравитирующих тел и двигается с ускорением. Тогда на все тела, находящиеся в лифте, действует сила инерции, а тела под действием этих сил будут давить на опору или подвес. То есть тела будут обладать весом.

Однако эта аналогия вызывает много вопросов.

Прежде всего, эти силы отличить можно. Это вопрос на уровне олимпиады по физике для старших школьников. Дело в том, что на тела в движущемся с ускорением лифте действуют силы, вектора которых строго параллельны друг другу. На тела в лифте, который находится в гравитационном поле, действуют силы, вектора которых пересекаются в центре масс гравитирующего тела.

Уточнения, что лифт находится бесконечно далеко от гравитирующего тела, или что размер рассматриваемой области бесконечно мал, не меняют суть происходящего. Вектора сил либо пересекаются, либо нет. Все эти уточнения аналогичны утверждению:

Прямые, пересекающиеся под очень маленьким углом, почти параллельны.

Для математики это абсурд. Почему же это может быть применимо для физики?

Понимал ли Эйнштейн ошибочность его формулировки принципа эквивалентности и предложенных им аналогий? Уверен, что да, понимал. Но его теория относительности была настолько революционной для того времени, что бесспорно нуждалась хоть в какой-то наглядной аналогии. Но возможно ли найти наглядное пояснение такому явлению, как гравитация, у которого просто нет аналогий? Думаю, что это неразрешимая задача. Поэтому Эйнштейн был вынужден пойти на эту сомнительную аналогию.

Справедливости ради, говоря о принципе эквивалентности необходимо отметить следующее:

Поэтому в наше время, спустя более века после разработки ОТО, уже давно пора перестать ссылаться на какие-то надуманные аналогии при обосновании или объяснении этой теории. Свою роль в своё время они сыграли. Тащить в будущее этот сомнительный багаж бессмысленно.

Положения данного принципа относятся к области исследования сил гравитации и инерции. Рассматриваемый нами принцип эквивалентности — это эвристический принцип, который применялся великим Альбертом Эйнштейном, когда он занимался разработкой своего величайшего научного открытия – общей теории относительности.

В самом общем виде, принцип эквивалентности Эйнштейна гласит, что силы гравитационного взаимодействия между объектами прямо пропорциональны гравитационной массе тела, а силы инерции этого же тела, в данном случае, пропорциональны инертной массе тела. И в том случае, когда и та и другая массы тела оказываются равными, то определить, какая из сил действует на это тело, не представляется возможным.

Чтобы доказать данные выводы, Эйнштейн использовал такой эксперимент. Необходимо мысленно представить, что два тела находятся в лифте. Этот лифт находится бесконечно далеко от воздействующих на него гравитирующих тел и движется с ускорением. В этом случае на все тела, которые находятся в лифте, будет действовать сила инерции, и они будут обладать определенным весом.

Если лифт неподвижен, то тела внутри него также будут обладать весом, а это и значит, что все механические преобразования в обоих лифтах будут происходить одинаково. Этот эффект Эйнштейн распространил на все явления механики, и даже всей физики, затем выводы ученого пополнили фундаментальные принципы эквивалентности.

Сегодня некоторые исследователи считают, что принцип эквивалентности можно рассматривать в качестве основного во всей теории относительности, а потому, и гравитационное поле является неинерциальной системой отсчета. Однако такое утверждение можно считать достоверным лишь только отчасти. Дело в том, что каждая неинерциальная система в специальной теории относительности А. Эйнштейна имеет в своей основе обычное линейное пространство-время. В общей теории, которая включает в себя метрическую концепцию гравитации, пространство-время искривлено. Объясняется такое несоответствие тем, что метрические концепции вообще не содержат в себе глобальных инерциальных систем. Здесь принцип эквивалентности может проявить себя только в том случае, если пренебречь самим искривлением.

Целесообразно также дифференцировать слабый и сильный варианты проявления принципа эквивалентности, различие которых состоит в том, что при малых расстояниях между объектами особых расхождений в действиях законов природы не будет, независимо от того, в какой из систем отсчета эти объекты находятся.

Фундаментальные основы этой теории А. Эйнштейн сформулировал в 1907 году. При рассмотрении значения данного принципа в масштабе всей физики следует сказать, что открытие Эйнштейна продолжает и развивает утверждение Галилея о приобретении всеми телами, независимо от их массы, ускорений в гравитационном поле. Это положение позволило сделать вывод об эквивалентности инертной массы. Позднее эта эквивалентность была измерена и метрически, с точностью вплоть до 12-го знака.

Важно заметить, что использование открытия Эйнштейна эффективно только при малых пространственных объемах, потому что только при таких условиях можно считать силу тяжести постоянной величиной.

Читайте также: