Примеры софизмов в математике начальная школа

Обновлено: 05.07.2024

Софизмы – это умышленные ложные умозаключения, которые имеют вид правильных. Они обязательно содержат одну или несколько замаскированных логических ошибок.

Часто понимание людьми ошибок в софизме ведет к пониманию математики в целом, развивает логику и навыки правильного мышления. Поиск ошибки в софизме ведет к ее пониманию и осознанию, а осознавая ошибку, человек имеет больше шансов ее не допустить. Математические софизмы приучают внимательно и настороженно продвигаться вперед, тщательно следить за точностью формулировок, правильностью записи чертежей, за законностью математических операций. Софизмы не приносят пользы, если их не понимать.

Многие культуры во время своего раннего математического развития открыли равенство 2+2=5. Было принято решение применить на практике доказательство и продемонстрировать его ученикам 5 и 6 классов.

Автором был показан практический математический опыт. Для этого, сначала было показано две веревки с двумя узлами, где акцентировалось внимание на то, что это две отдельные веревки. После этого, автор связал эти две веревки одним узлом. В итоге получилась одна веревка с пятью узлами. Отсюда следует доказательство, что 2+2=5.

ВложениеРазмер
mat.sofizmy_119.doc 187 КБ

Предварительный просмотр:

Городская научно-практическая конференция

Мустафина Эльвира Маликовна

Казань – 2016г. ОГЛАВЛЕНИЕ

«– На что мне безумцы? - сказала Алиса.

В любой области математики – от простой арифметики до современных, более сложных областей, есть свои софизмы. В лучших из них рассуждение с тщательно замаскированной ошибкой позволяют приходить к самым невероятным заключениям.

Разбор софизмов, прежде всего, развивает логическое мышление, т.е. прививает навыки правильного мышления. Обнаружить ошибку в софизме – это значит осознать ее, а осознание ошибки предупреждает от повторения ее в других математических рассуждениях.

Развитие критического мышления позволит не только успешно освоить точные науки, но и не оказаться жертвой мошенников в жизни. Например, при оформлении кредита в банке не оказаться пожизненным его должником.

Цель исследования: изучить математические софизмы и использовать с целью развития логического мышления. Предметом исследования является математические софизмы.

1)Изучить основные понятия математических софизмов.

2)Проанализировать существующие задачи на математические софизмы.

3)Проанализировать практическое доказательство математического софизма 2+2=5.

В исследовании использованы логические и математические методы анализа. В процессе проведения исследования применялись также такие приемы, как наблюдение, сравнение и другие, которые в целом позволили обеспечить достоверность и обоснованность выводов.

1. ОСНОВНЫЕ ПОНЯТИЯ МАТЕМАТИЧЕСКИХ СОФИЗМОВ

Софизм (от греч. sophisma – уловка, выдумка, головоломка), формально кажущееся правильным, но по существу ложное умозаключение, основанное на преднамеренно неправильном подборе исходных положений.

Часто понимание людьми ошибок в софизме ведет к пониманию математики в целом, развивает логику и навыки правильного мышления. Поиск ошибки в софизме ведет к ее пониманию и осознанию, а осознавая ошибку, человек имеет больше шансов ее не допустить. Также, в истории развития математики софизмы способствовали повышению точности формулировок и более глубокому пониманию понятий математики. В любой области математики – от простой арифметики до современной теоретико-множественной топологии – есть свои псевдодоказательства, свои софизмы. В лучших из них рассуждения с тщательно замаскированной ошибкой позволяют приходить к самым невероятным заключениям. Разбор софизмов развивает логическое мышление, помогает сознательному усвоению изучаемого материала, воспитывать вдумчивость, наблюдательность, критическое отношение к тому, что изучается. Кроме того, разбор софизмов увлекателен. Математические софизмы приучают внимательно и настороженно продвигаться вперед, тщательно следить за точностью формулировок, правильностью записи чертежей, за законностью математических операций. Софизмы не приносят пользы, если их не понимать. Эта тема сейчас актуальна, потому что софизм- это обман, а так как не каждый может его распознать, то с помощью софизмов люди обманывают друг друга в наше время, как и тысячелетия назад.

  1. деление на 0;
  2. нарушения правил действия с именованными величинами;
  3. неравносильный переход от одного равенства (неравенства) к другому;
  4. неправильные выводы из равенства дробей;
  5. неправильное извлечение квадратного корня из квадрата выражения;
  6. проведение преобразований над математическими объектами, не имеющими смысла;
  7. выводы и вычисления по неверно построенным чертежам.

Математические софизмы делятся на арифметические, алгебраические и геометрические.

2. ЗАДАЧИ НА МАТЕМАТИЧЕСКИЕ СОФИЗМЫ

Рассмотрим некоторые примеры математических софизмов. Например:

Дважды два равно пять.

Пусть исходное соотношение - очевидное равенство:

Вынесем за скобки общий множитель каждой чести (1) равенства, и мы получим:

Разложим число 4 на произведение 2 *2

Наконец, зная, что 1:1=1 , мы из соотношения (2) устанавливаем: 2*2=5.

Ошибка заключается в том, что нельзя было выносить множитель за скобки в уравнение №2. Такая ошибка разрешается достаточно легко – нужно лишь произвести вычитание одного из другого, что выявит неравенство двух этих числовых значений. Также опровержение возможно записью через дробь.

Также можно рассмотреть следующее доказательство софизма

Дважды два равно пять.

А именно, имеем равенство:

16 - 36 = 25 – 45 (1)

Прибавим к левой и правой части 81/4:

16 - 36 + 81/4 = 25 - 45 + 81/4 (2)

4*4 - 2*4*9/2 + (9/2)*(9/2) = 5*5 - 2*5*9/2 + (9/2)*(9/2) (3)

Теперь можно заметить, что в левой и правой части выражения (3) записаны произведения вида:

a 2 -2ab+b 2 , то есть, квадрат разности: (a-b) 2 . В нашем случае слева a=4, b=9/2, а справа a=5, b=9/2. Поэтому перепишем выражение (3) в виде квадратов разности:

(4 - 9/2) 2 = (5 - 9/2) 2 (4)

И наконец, получаем долгожданное равенство:

или, если угодно,

В преобразования, разумеется, закралась ошибка. А именно, при переходе из (4) в (5) совсем забыли, что равенство квадратов вовсе не означает равенство значений, возведенных в квадрат: они могут быть противоположны друг другу, как в нашем случае: 4-9/2 равно -1/2, а 5-9/2 равно 1/2. А квадраты этих значений одинаковы.

Следующий пример математического софизма:

Два плюс два равно пять

Распишем 1, как частное равных чисел:

Умножим левую и правую части на (5-5), тогда:

Большинство математиков знакомы с тождеством 2+2=4, или, по крайней мере, видели на него ссылки в литературе. Однако менее известное равенство 2+2=5 также имеет богатую, сложную историю. Как и любые другие комплексные, сложные количества, эта история имеет реальную и мнимую части. Здесь мы будем иметь дело исключительно с последней.

Последние данные показывают, что в Братстве пифагорейцев доказали, что 2+2=5 , но доказательство это никогда не было написано. Вопреки тому, что можно было бы ожидать, отсутствие письменного доказательства не было вызвано умышленным сокрытием (таким же, как в случае доказательства иррациональности квадратного корня из двух). Скорее всего, они просто не имели возможности заплатить писцу за его услуги. Они потеряли спонсорскую поддержку в связи с протестами правозащитника, защищавшего права быков, возражавшего против способа, которым пифагорейцы отмечали доказательство теорем. Таким образом, только равенство 2+2=4 было использовано в “Началах” Евклида, и ничего больше не было слышно о равенстве 2+2=5 в течение нескольких столетий.

Около 1200 лет н.э. Леонардо из Пизы (Фибоначчи) обнаружил, что через несколько недель после помещения 2 кроликов-самцов и 2 кроликов-самок в одну клетку он получил значительно больше 4 кроликов. Опасаясь, что слишком сильное отличие от значения 4, приведенного у Евклида встретит возражения, Леонардо осторожно заявил: “2 + 2 больше похоже на 5, чем 4”. Даже это сдержанное замечание было резко осуждено, и Леонардо получил прозвище “Blockhead” (“дубина”). Кстати, преуменьшение им числа кроликов сохранялось и дальше, в его знаменитой модели роста числа кроликов каждый помет состоит всего из двух малышей, эта самая низкая оценка из всех существующих.

Примерно 400 лет спустя идея возникла снова, на этот раз благодаря французским математикам. Декарт заявил: “Я думаю, что 2+2=5, поэтому это так и есть”. Однако другие возражали, указывая на то, что его аргументация была не абсолютно строгой. По-видимому, у Ферма было более строгое доказательство, которое должно было появиться в его книге, однако его и другие материалы вырезал редактор для того, чтобы напечатанная книга имела более широкие поля.

Поскольку не было доступного доказательства того, что 2+2=5 и в связи с шумихой, связанной с развитием дифференциального исчисления, к 1700 году математики снова потеряли интерес к данному тождеству. В самом деле, известна только ссылка 18 века на него, связанная с именем философа епископа Беркли, который, обнаружив его в старой рукописи, сухо прокомментировал: “Ну, теперь я знаю, куда уходят все умершие – в правую часть этого уравнения”. Это острота настолько впечатлила интеллектуалов Калифорнии, что они назвали в честь Беркли университетский город.

Примерно в середине 19 века 2+2 начало иметь большое значение. Риман разработал арифметику, в которой 2+2=5 параллельно с евклидовой арифметикой, в которой 2+2=4. Кроме того, в это же время Гаусс занимается арифметикой, в которой 2+2=3. Естественно, последовали десятилетия большой путаницы относительно фактического значения 2+2. Поскольку мнения на эту тему менялись, доказательство Кемпе (1880 год) теоремы о четырех цветах было признано через 11 лет, дав вместо этого теорему о пяти цветах. Дедекинд принял участие в споре со статьей под названием “Was ist und was soll 2 + 2?”.

Фреге думал, что он решил вопрос при подготовке сокращенной версии своего “Begriffsschrift”. Эта выжимка, озаглавленная “Die Kleine Begriffsschrift (Краткое сочинение)”, содержало, по его мнению, окончательное доказательство того, что 2+2=5. Но затем Фреге получил письмо от Бертрана Рассела, в котором ему напоминали, что в “Grundbeefen der Mathematik” Фреге доказал, что 2+2=4. Это противоречие так обескуражило Фреге, что он вообще отказался от математики и ушел в администрацию университета.

Еще один пример математического софизма. Это исчезающий квадрат.

Большой квадрат составлен из четырёх одинаковых четырёхугольников и маленького квадрата. Если четырёхугольники развернуть, то они заполнят площадь, занимаемую маленьким квадратом, хотя площадь большого квадрата визуально не изменится. При следующем развороте маленький квадрат появится снова.

Этот парадокс объясняется тем, что сторона нового большого квадрата немного отличается от стороны того, который был в начале. Если в качестве первой фигуры принять тот квадрат, в середине которого нет маленького ромба, дальнейший анализ заметно упростится.

Сторона начального квадрата пусть будет α, и стороны составляющих его 4-угольников делят эту сторону в отношении κ. Сведущий в геометрии легко сможет доказать, что построенные таким образом 4-угольники равны друг другу, имеют прямые углы в противолежащих вершинах и равные стороны, смежные в центре квадрата). Становится также понятно, что ромб в центре второй фигуры является квадратом. Сторона маленького квадрата на второй фигуре будет равна α . Угол между парой противоположных сторон любого из составляющих 4-угольников пусть будет обозначен θ. Его точное значение можно рассчитать методом координат, или методами классической геометрии. Если каждый из 4-угольников, составляющих первый квадрат, повернуть на угол π вокруг центра описанной около него окружности, то получится вторая фигура, с незакрашенной квадратной областью в центре. При следующем повороте опять составится первый квадрат. Площадь второго квадрата оказывается в + 2) раза больше площади первого. При κ ≈ 1/2 это отличие практически незаметно. Например, на поясняющих рисунках использован угол θ = 10 / 2 ≈ 0,5882). При этом разность между площадями больших квадратов составляет ≈ 3,11 %. Уже такое отличие сложно заметить, хотя значение κ здесь используется отнюдь не маленькое.

Таким образом, можно заключить, что ошибка, замаскированная в условии, состоит в том, что центры вращения составляющих 4-угольников находятся не там, где это представляется при визуальном осмотре картинки. Они находятся в вершинах квадрата, повёрнутого на угол -θ относительно первого квадрата, хотя его стороны параллельны сторонам второго.

3. ПРАКТИЧЕСКОЕ ДОКАЗАТЕЛЬСТВО МАТЕМАТИЧЕСКОГО СОФИЗМА 2+2=5

Многие культуры во время своего раннего математического развития открыли равенство 2+2=5 . Например, племя болб, произошедшее от инков Южной Америки. Люди этого племени считали, завязывая узлы на веревке. Они быстро поняли, что если связать веревку с двумя узлами с другой веревкой с двумя узлами, то в результате получится веревка с пятью узлами.

Было принято решение применить на практике данное доказательство и продемонстрировать его ученикам 5-6-х классов.

Прежде чем показать математический опыт, автором бы задан вопрос: Верите ли вы в равенство 2+2=5?

Всего было опрошено 42 обучающихся. Опрос показал следующее: верили в равенство – 7 (17%), не верили 27 (64%), затруднились ответить – 8 (19%) (Рисунок 1).

Рис.1. Верите ли вы в равенство 2+2=5?

После проведенного опроса, автором был показан практический математический опыт. Для этого, сначала было показано две веревки с двумя узлами, где акцентировалось внимание на то, что это две отдельные веревки. После этого, автор связал эти две веревки одним узлом. В итоге получилась одна веревка с пятью узлами. Отсюда следует доказательство, что 2+2=5.

После показанного математического опыта, автором повторно был задан вопрос: Верите ли вы в равенство 2+2=5? Результаты опроса приведены на рисунке 2.

Рис.2. Верите ли вы в равенство 2+2=5?

Опрос показал, что в равенство поверили 23 ученика (54%), не верили 12 (29%), затруднились ответить 7 (17%). Следует отметить, наглядное доказательство заставило поверить в данное равенство 54% обучающихся из общего количества.

По итогам практического математического опыта, мы можем сделать вывод, что на 37% увеличилось число учеников, которые поверили в равенство 2+2=5.

Софизмы – это умышленные ложные умозаключения, которые имеют вид правильных. Они обязательно содержат одну или несколько замаскированных логических ошибок.

Часто понимание людьми ошибок в софизме ведет к пониманию математики в целом, развивает логику и навыки правильного мышления. Поиск ошибки в софизме ведет к ее пониманию и осознанию, а осознавая ошибку, человек имеет больше шансов ее не допустить. Математические софизмы приучают внимательно и настороженно продвигаться вперед, тщательно следить за точностью формулировок, правильностью записи чертежей, за законностью математических операций. Софизмы не приносят пользы, если их не понимать.

Многие культуры во время своего раннего математического развития открыли равенство 2+2=5 . Было принято решение применить на практике доказательство и продемонстрировать его ученикам 5а и 5б класса.

Автором был показан практический математический опыт. Для этого, сначала было показано две веревки с двумя узлами, где акцентировалось внимание на то, что это две отдельные веревки. После этого, автор связал эти две веревки одним узлом. В итоге получилась одна веревка с пятью узлами. Отсюда следует доказательство, что 2+2=5.


СОВРЕМЕННЫЕ ПРОБЛЕМЫ ШКОЛЬНОГО ОБРАЗОВАНИЯ




Математические софизмы


Автор работы награжден дипломом победителя III степени

Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке "Файлы работы" в формате PDF

Математика - один из наших любимых школьных предметов. Он нам нравится не только потому, что это основной школьный предмет, но и потому, что без математических знаний в жизни не обойтись. Занятие математикой развивает логическое мышление, сосредоточенность, находчивость, устойчивое внимание, хорошую память, смекалку.

Вот как это было: 6=7.

Запишем верное равенство: 42 +12 - 54 = 49 +14 – 63.

Вынесем общий множитель за скобки: 6(7 + 2 – 9) = 7(7 + 2 – 9)

Разделим обе части на общий множитель (7 + 2 – 9).

Получим, что 6 = 7 , что и требовалось доказать. Где ошибка? Ведь этого быть не может. Папа сказал, что есть такое понятия, как софизм. Так я определился с темой проекта. Катя сама выбрала тему из списка, который был предложен учителем математики. Для нее понятие софизм тоже было неизвестно, поэтому она решила узнать, что означает это незнакомое и интересное слово.

В процессе работы мы выяснили, что существует великое множество софизмов, и с их помощью можно доказать практически что угодно: как равенство всех чисел между собой (например, 34 =7), так и то, что прямой угол равен тупому.
Эта тема сейчас актуальна, потому что софизм - это обман, а так как не каждый может его распознать, то с помощью софизмов люди обманывают друг друга в наше время, как и тысячелетия назад.

Цель: узнать, что такое софизмы и научиться находить ошибку в софизмах.

1. Познакомиться с историей софизмов.

2. Узнать, какие бывают софизмы. Классификация софизмов.

3. Понять, как найти ошибку в софизмах?

4. Разбор софизмов.

5. Составить анкету для обучающихся, познакомить одноклассников с результатами работы.

6. Составить рекомендации для нахождения ошибок в софизмах.

Гипотеза: софизмы - тренировка для ума.

Объект и предмет исследования: софизмы

Методы исследования:

1. Анализ литературы и информации, полученной из Интернет источников

3. Анкетирование одноклассников

4. Анализ и обобщение полученных данных.

2. Теоретическая часть

Что такое софизмы?

Софизм (от греч. - мастерство, умение, хитрая выдумка, уловка, мудрость) - ложное умозаключение, которое, тем не менее, при поверхностном рассмотрении кажется правильным. Софизм основан на преднамеренном, сознательном нарушении правил логики.

Что же такое математический софизм? Математический софизм - удивительное утверждение, в доказательстве которого кроются незаметные, а подчас и довольно тонкие ошибки. История математики полна неожиданных и интересных софизмов, разрешение которых порой служило толчком к новым открытиям. Очень часто понимание ошибок в софизме ведет к пониманию математики в целом, помогает развивать логику и навыки правильного мышления. Если нашел ошибку в софизме, значит, ты ее осознал, а осознание ошибки предупреждает от ее повторения в дальнейших математических рассуждениях. Софизмы не приносят пользы, если их не понимать. Что касается типичных ошибок в софизмах, то они таковы: запрещенные действия, пренебрежение условиями теорем, формул и правил, ошибочный чертеж, опора на ошибочные умозаключения. Нередко, ошибки, допущенные в софизме, настолько умело скрыты, что даже опытный математик не сразу их выявит. Именно в этом и проявляется связь математики и философии в софизмах. На самом деле, софизм - гибрид не только математики и философии, но и логики с риторикой. Основные создатели софизмов – древнегреческие ученые-философы, но тем не менее, они создавали математические софизмы, основываясь на элементарных аксиомах, что еще раз подтверждает связь математики и философии в софизмах. Кроме того, очень важно правильно преподнести софизм, так, чтобы докладчику поверили, а значит, необходимо владеть даром красноречия и убеждения. Группа древнегреческих ученых, начавшая заниматься софизмами как отдельным математическим явлением, назвала себя софистами.

2.2. История возникновения софизмов

Мы изучили историю возникновения софизмов. Софистика – это искусство ведения спора. Она вошла в моду в Греции в V веке до нашей эры. Имея в этом выгоду или просто интерес, многие умные и хитрые люди строго логически доказывали, что черное – это белое, истина – это ложь, добро – это зло и т.д. Так появились софизмы – формально кажущиеся правильными, но по существу ложными умозаключениями. Эти рассуждения могут быть истинны в каждой отдельной части, но неверные в целом.

Софизм – слово греческого происхождения, в переводе означающее хитроумную выдумку, ухищрение или головоломку. Речь идет о "доказательстве", направленном на формально – логическое установление абсурдного положения. В основном математические софизмы строятся на неверном словоупотреблении, на неточности формулировок, на скрытом выполнении невозможных действий, на незаконных обобщениях.

Систематический анализ софизмов был дан впервые Аристотелем (384-322 до н. э.) в особом трактате, в котором все ошибки разделяются на два класса: "неправильности речи" и ошибки "вне речи", т.е. в мышлении. Каков бы ни был софизм, он обязательно содержит замаскированные ошибки. Часто в математических софизмах скрыто выполняются запрещенные действия или не учитываются условия применения теорем, формул и правил.

Одна из основных задач софистов заключалась в том, чтобы научить человека доказывать (подтверждать или опровергать) все, что угодно, выходить победителем из любого интеллектуального состязания. Для этого они разрабатывали разнообразные логические, риторические и психологические приемы. К логическим приемам нечестного, но удачного ведения дискуссии и относятся софизмы. Однако, одних только софизмов для победы в любом споре недостаточно. Ведь если объективная истина окажется не на стороне спорящего, то он, в любом случае, проиграет полемику, несмотря на все свое софистическое искусство. Это хорошо понимали и сами софисты. Поэтому помимо различных логических, риторических и психологических уловок в их арсенале была важная философская идея (особенно дорогая для них), состоявшая в том, что никакой объективной истины не существует: сколько людей, столько и истин. Софисты утверждали, что все в мире субъективно и относительно. Если признать эту идею справедливой, то тогда софистического искусства будет вполне достаточно для победы в любой дискуссии: побеждает не тот, кто находится на стороне истины, а тот, кто лучше владеет приемами полемики.

1. Человек, прибегающий к софизмам для доказательства заведомо неверных мыслей, положений.

2. В древней Греции первоначальный мудрец, знаток, потом платный учитель философии, красноречия, искусства спора, а также - философ, расходившийся с общепринятыми взглядами в вопросах религии и морали и обвинявшийся противниками в пользовании софизмами.

В истории развития математики софизмы способствовали повышению строгости в рассуждениях и более глубокому пониманию понятий и методов математики.

2.3. Классификация ошибок в софизмах

Софисты в своих рассуждениях использовали разные ошибки, такие как:

Практическая часть

3.1. Разбор математических софизмов

Арифметические софизмы– это числовые выражения, имеющие неточность или ошибку, не заметную с первого взгляда.
Дважды два – пять (2 * 2 = 5)
Доказательство:
Пусть исходное соотношение - очевидное равенство:
4:4= 5:5 (1) .
Вынесем за скобки общий множитель каждой части (1) равенства, и мы получим:
4*(1:1)=5*(1:1) (2)
Разложим число 4 на произведение 2 *2
(2*2)* (1:1)=5*(1:1) (3)
Наконец, зная, что 1:1=1, мы из соотношения (2) устанавливаем: 2*2=5.
Ошибка заключается в том, что нельзя было выносить множитель за скобки в в частном, множитель можно выносить либо из суммы, либо из разности.

Один рубль не равен ста копейкам
Доказательство:
Известно, что любые два неравенства можно перемножать почленно, не нарушая при этом равенства, т.е. Если a=b, c=d, то ac=bd.
Применим это положение к двум очевидным равенствам
1 р.=100 коп, (1)
10р.=10*100коп.(2)
Перемножая эти равенства почленно, получим 10 р.=100000 коп.
Наконец, разделив последнее равенство на 10 получим, что 1 р.=10 000 коп., таким образом, один рубль не равен ста копейкам.
Ошибка, допущенная в этом софизме, состоит в нарушении правил действия с именованными величинами: необходимо переходить к единым единицам измерения.

Докажем, что 5 =6. С этой целью возьмем числовое равенство 35 + 10- 45 = 42 + 12 — 54. Вынесем общий множитель левой и правой части за скобки. Получим 5(7 + 2 — 9) = 6 (7 + 2 — 9). Разделим обе части этого равенства на общий множитель (7 + 2 — 9). Получаем 5=6. В чем ошибка?

Ошибка: нельзя делить на равенство (7 + 2 — 9), т. к. (7 + 2 — 9)= 0. Ма знаем еще из начальной школы, что на 0 делить нельзя.

Таки образом, можно доказать равенство любых разных двух чисел.

Три подруги зашли в кафе выпить по чашке кофе7 Выпили. Официант принес им счет на 30 рублей. Подруги заплатили по 10 рублей и вышли. Однако хозяин кафе решил сделать скидку посетительницам, сказав что кофе стоит 25 рублей. Официант взял деньги и побежал доганять подруг, но пока он бежал, подумал, что им будет трудно делить 5 рублей, ведь их трое, поэтому решил отдать им по 1 рублю, а 2 рубля оставить себе. Так и сделал.

Что же получилось? Подруги заплатили по 9 рублей. 9 . 3 = 27 рублей, да 2 рубля осталось у официанта. А где же еще 1 рубль?

Ошибка. Задача сформулирована так, чтобы запутать читателя. Подруги заплатили 27 рублей, из этой суммы 25 рублей осталось у хозяина кафе, а 2 рубля у официанта. И никакого пропавшего рубля!

Логические софизмы

Софизмы выглядят как лишенная смысла и цели игра с языком; игра, опирающаяся на многозначность языковых выражений, их неполноту, недосказанность, зависимость их значений от контекста и т.д. Эти софизмы кажутся особенно наивными и несерьезными. Приведем некоторые примеры:

Полный стакан равен пустому

Рассмотрим стакан, наполненный водой до половины. Тогда можно сказать, что стакан, наполовину полный равен стакану наполовину пустому.

Увеличивая обе части равенства вдвое, получим, что стакан полный равен

стакану пустому. Где ошибка?

Ясно, что приведенное рассуждение неверно, так как в нем применяется неправомерное действие: увеличение вдвое. В данной ситуации его применение бессмысленно, т.к. пустое увеличить вдвое не возможно.

Софизм учебы

Данным софизмом является песенка, сочиненная английскими студентами:

The more you study, the more you know

The more you know, the more you forget

The more you forget, the less you know

The less you know, the less you forget

The less you forget, the more you know

Чем больше учишься, тем больше знаешь.

Чем больше знаешь, тем больше забываешь.

Чем больше забываешь, тем меньше знаешь.

Чем меньше знаешь, тем меньше забываешь.

Но чем меньше забываешь, тем больше знаешь.

Так для чего учиться?

Это стихотворение можно смело назвать логическим софизмом!

Геометрические софизмы

Геометрические софизмы – это умозаключения или рассуждения, обосновывающие какую-нибудь заведомую нелепость, абсурд или парадоксальное утверждение, связанное с геометрическими фигурами и действиями над ними.

Разбор софизма. 13-я линия удлинила каждую из оставшихся на 1/12 своей длины.

Примеры софизмов приведены в Приложении 2.

Работая над проектом, мы составили рекомендации по нахождению ошибок в софизмах (Приложение 3).

3.2. Анкетирование

Мы провели анкетирование среди обучающихся 7 классов на знание софизмов. В анкетировании приняло участие 40 человек. Были заданы следующие вопросы:

3. Хотелось ли вам познакомиться с софизмами?

Из года в год появляются новые софизмы, некоторые из них могут остаться в истории, о многих быстро забудут. Ведь софизмы - это смесь математики и логики, поэтому они помогают не только развивать логику, но и лучше понимать математику в целом. В современном мире есть много людей, так или иначе употребляющих софизмы в обычной жизни, даже не зная, что это такое. Есть же и такие люди, которые целенаправленно изучают софизмы, например политики или СМИ, чтобы вводить людей в заблуждение, или просто развить свои навыки логики и правильности рассуждений.
Поначалу может показаться, что существует мало софизмов, или что они не используются в жизни, то есть бесполезны. Но это не так. За свою жизнь человек слышит десятки софизмов, не умея отличить их от правдивых утверждений, и даже не зная, что вообще означает слово софизм.
Понять софизм, то есть решить его, получается не сразу. Поначалу, чтобы решить некоторые софизмы, приходилось по многу раз их внимательно перечитывать, вдумываться. К концу работы над проектом ошибки стали находиться быстрее. Благодаря софизмам можно научиться искать ошибки в рассуждениях других, научится грамотно строить свою речь.

Вообще, решение софизмов – интересное и познавательное занятие. Поиск заключенных в софизме ошибок, ясное понимание их причин ведут к осмысленному постижению математики. Работая над проектом, мы составили рекомендации по разбору софизмов (Приложение 3). Наш проект будет полезен людям, которые начинают работать с софизмами с целью развития свих интеллектуальных способностей.

Мы считаем, наш проект актуален и имеет практическое применение. Задачи выполнены, цель достигнута.
Решение софизмов тренируют наш мозг, то есть наша гипотеза верна.

Действительно, софизмы являются тренировкой для ума.

Информационные источники

Т.Н. Михеева. Софизмы

Приложение 1

Приложение 2

Девушка — не человек

Доказательство от противного. Допустим, девушка – человек. Девушка – молодая, значит девушка – молодой человек. Молодой человек – это парень. Противоречие. Значит девушка — не человек.

Вор
Вор не желает приобрести ничего дурного. Приобретение хорошего есть дело хорошее. Следовательно, вор желает хорошего.

Разговор софиста и любителя спорить

Софист: “Может ли мёд быть сладким и несладким одновременно?”

Софист: “ А мёд сладкий?”

Софист: “А мёд желтый?”

Софист: “А жёлтый - значит сладкий?”

Софист: “Значит мёд сладкий и несладкий одновременно!”

Не знаешь то, что знаешь

— Знаешь ли ты то, о чём я хочу тебя спросить?
— Нет.
— Знаешь ли ты, что добродетель есть добро?
— Знаю.
— Об этом я и хотел тебя спросить. А ты, выходит, не знаешь то, что знаешь.

Примеры геометрических софизмов, которые можно услышать на уроке геометрии:

- Смежные углы равны 180 градусам;

- Накрест лежащие углы равны.

Приложение 3

Рекомендации по нахождению ошибок в софизмах

Внимательно прочитать условие предложенной вам задачи.
Начинать поиск ошибки лучше с условия предложенного софизма. В некоторых софизмах абсурдный результат получается из-за противоречивых или неполных данных в условии, неправильного чертежа, ложного первоначального предположения, а далее все рассуждения проводятся верно. Это и вызывает затруднения при поиске ошибки.

Установить темы, которые отражены в софизме. Обучающиеся, учителя привыкли, что задания, предлагаемые в учебнике, не содержат ошибок в условии, поэтому, если получается неверный результат, то ошибку они ищут непременно по ходу решения.

Выяснить, соблюдены ли все условия применимости теорем, правил, формул, логичности. Воспроизвести вслух точные формулировки утверждений, используемых в софизме. Например: 2 * 2 =5. Если произнести эту фразу вслух, то мы можем услышать ошибку, услышав самого себя, или более подробно разобраться в смысле софизма.

Свидетельство и скидка на обучение каждому участнику

Зарегистрироваться 15–17 марта 2022 г.

Методика работы над математическими софизмами.

Софизм (от греч. sophisma — уловка, выдумка, головоломка) — «мнимое доказательство, в котором обоснованность заключения кажущаяся, порождается чисто субъективными впечатлениями, вызванными недостаточностью логического или семантического анализа.

Проанализировав методическую литературу, мы пришли к выводу, что эффективное стимулирование познавательной деятельности учащихся в значительной мере обеспечивается за счет расширения сферы использования поискового, частично-поискового, проблемного методов изучения нового учебного материала.

Для развития познавательной деятельности математические софизмы можно применять при изучении математики в школе:

1. на уроках, чтобы сделать их более интересными, для создания проблемных ситуаций;

2. в домашних задачах, для более осмысленного понимания материала, пройденного на уроках (найти ошибку в МС, придумать свои МС);

3. при проведении различных математических соревнований, для разнообразия;

4. на занятиях факультативов, для более глубокого изучения тем математики;

После детального анализа математической и методической литературы, мы смогли выделить следующие этапы работы с софизмами на уроках математики:

Этап 2.Введение законов логики

Важно отметить, что существуют специальные правила математической логики, которые являются основными при построении логических выводов.

Этап3. Работа по выявлению ошибок в софизмах.

На этом этапе строятся цепочки рассуждений, устраняются неточности высказываний, формулируются правильные выводы. Деятельность на данном этапе идет от простейших софизмов к сложным.

Этап 4. Работа по составлению учащимися собственных софизмов.

Для полноценной работы с софизмами на уроках математики мало знать этапы работы с ними, нужно еще и уметь методически верно преподнести их детям. Мы можем предложить следующую методику работы по раскрытию софизмов:

1. Для того чтобы решить софизм, необходимо найти ошибку, она в свою очередь и будет являться решением.

Начинать поиск ошибки стоит с условия предложенного софизма. В некоторых софизмах ложный результат, получается, из-за неполных или противоречивых данных в условии, не верного первоначального предположения, а далее все рассуждения проводятся верно.

Например, такая задача:

ученики решают её так:

пусть х – лет искомый срок, тогда отцу будет (32 + х) лет, сыну (5+х) лет. Составляем уравнение и решаем его:

2. Установить темы, которые отражены в софизме, предложенных преобразованиях.

3. Воспроизвести точные формулировки утверждений, используемых в софизме.

4. Выяснить, соблюдены ли все условия применимости теорем, правил, формул.

Следующая рекомендация сформулирована в виде правила.

Вручную обычно иглой шов делается так: стежок вперёд и назад, ещё вперёд и снова назад и т.д.

Работа блоками. Невозможно отлаживать программу в целом. Следует разбить работу на небольшие блоки и проконтролировать правильность каждого такого блока.

Предложенные рекомендации с одной стороны помогут ученикам при разборе софизмов, с другой стороны будут способствовать обогащению набора приёмов самопроверки и самоконтроля.

Несмотря на то, что подготовка учителя к такому занятию затратна во времени, в результате он получает учеников мыслящих грамотно, имеющих креативное, творческое мышление, что является необходимым условием обучения на современном этапе развития образования.

1. Новый энциклопедический словарь. М.,Наука, 2002.

2. Кудакова Н.С. Математические софизмы в начальном курсе математики\\ Начальная школа, №12, 2012

3. Мадера А.Г., Мадера Д.А. Математические софизмы. M., 2003.

4. Обреимов В.И. Математические софизмы.СПб., 1989.

7. .Григорович, Л.А. Педагогика и психология/ Л. А. Григорович, Т.Д. Марцинковская. – М.: Гардарики, 2009. – 408 с.

Трудно, изучая математику, не заинтересоваться математическими софизмами. В 2003 году в издательстве “Просвещение” вышла книга А.Г. Мадеры и Д.А.Мадеры “Математические софизмы”, в которой более восьмидесяти математических софизмов, по крупицам собранным из различных источников. Цитата из книги: “Математический софизм представляет собой, по существу, правдоподобное рассуждение, приводящее к неправдоподобному результату. Причем полученный результат может противоречить всем нашим представлениям, но найти ошибку в рассуждении зачастую не так-то просто; иной раз она может быть и довольно тонкой и глубокой. Поиск заключенных в софизме ошибок, ясное понимание их причин ведут к осмысленному постижению математики. Обнаружение и анализ ошибки, заключенной в софизме, зачастую оказываются более поучительными, чем просто разбор решений “безошибочных” задач. Эффектная демонстрация “доказательства” явно неверного результата, в чем и состоит смысл софизма, демонстрация того, к какой нелепице приводит пренебрежение тем или иным математическим правилом, и последующий поиск и разбор ошибки, приведшей к нелепице, позволяют на эмоциональном уровне понять и “закрепить” то или иное математическое правило или утверждение. Такой подход при обучении математике способствует более глубокому ее пониманию и осмыслению.”

  1. на уроках, чтобы сделать их более интересными, для создания проблемных ситуаций;
  2. в домашних задачах, для более осмысленного понимания материала, пройденного на уроках (найти ошибку в МС, придумать свои МС);
  3. при проведении различных математических соревнований, для разнообразия;
  4. на занятиях факультативов, для более глубокого изучения тем математики;
  5. при написании реферативных и исследовательских работ.

Математические софизмы в зависимости от содержания и “прячущейся” в них ошибке можно применять с различными целями на уроках математики при изучении различных тем.

  1. деление на 0;
  2. неправильные выводы из равенства дробей;
  3. неправильное извлечение квадратного корня из квадрата выражения;
  4. нарушения правил действия с именованными величинами;
  5. путаница с понятиями “равенства” и “эквивалентность” в отношении множеств;
  6. проведение преобразований над математическими объектами, не имеющими смысла;
  7. неравносильный переход от одного неравенства к другому;
  8. выводы и вычисления по неверно построенным чертежам;
  9. ошибки, возникающие при операциях с бесконечными рядами и предельным переходом.

Самыми популярными являются 1-3.

  • изучение исторического аспекта темы;
  • создание проблемной ситуации при объяснении нового материала;
  • проверка уровня усвоения изученного материала;
  • для занимательного повторения и закрепления изученного материала.

В книге[1] представлена большая группа софизмов, которые можно применять при изучении темы “Свойства арифметического квадратного корня”, повторяя при этом темы “Преобразование многочленов”, “Формулы сокращённого умножения”.

Все числа равны между собой”

Возьмем два произвольных неравных между собой числа а и b и запишем для них очевидное тождество:

Слева и справа стоят полные квадраты, т. е. можем записать

Извлекая из обеих частей последнего равенства квадратный корень, получим:

или 2а = 2b, или окончательно

Единица равна двум”

Простым вычитанием легко убедиться в справедливости равенства

Добавив к обеим частям этого равенства число , получим новое равенство

в котором, как нетрудно заметить, правая и левая части представляют собой полные квадраты, т. е.

Извлекая из правой и левой частей предыдущего равенства квадратный корень, получаем равенство:

откуда следует, что

По определению представляет собой некоторое неотрицательное число, которое, будучи возведено в квадрат, даст х 2 . Ясно, что этому определению удовлетворяют два числа, а именно х и -х. Итак, если число х неотрицательно (х>0), то =х; если же число х отрицательно, т. е. число положительно, то = - x. Отсюда заключаем, что (свойство арифметического квадратного корня), что не учитывается в содержании этих софизмов и приводит к ложным выводам.

Но все же самой популярной ошибкой в софизмах является “Деление на 0”. “Деление на нуль является одним из наиболее распространенных источников ошибок при проведении преобразований различных выражений и при решении уравнений. “Сокращение” уравнений на общий множитель зачастую приводит либо к потере корней уравнения, либо к приобретению посторонних корней, либо вообще к бессмыслице.” [1]

Предупредить ошибки подобного рода поможет рассмотрение софизмов. Например при изучении темы “Преобразования многочленов” в 7кл.

Неравные числа равны.”

Возьмем два неравных между собой произвольных числа а и b. Пусть их разность равна с, т. е. а-b = с. Умножив обе части этого равенства на а-b, получим

a раскрыв скобки, придем к равенству

из которого следует равенство

Вынося общий множитель а слева, и общий множитель b справа за скобки, получим

Разделив последнее равенство на (а-b-с), получаем, что

другими словами, два неравных между собой произвольных числа а и b равны.

Разбор софизма: Здесь ошибка совершена при переходе от равенства (1) к равенству а = b. Действительно, согласно условию разность двух произвольных чисел а и b равна с, т. е. а-b = с, откуда а-b-с = 0. Можно записать равенство (1) в виде а-0= b-0. Переход от равенства (1) к равенству а = b осуществляется путем деления обеих частей (1) на равное нулю число а-b-с = 0. Следовательно, здесь мы имеем деление нуля на нуль, которое не имеет смысла, поскольку равенство а0 = b0 выполняется при любых а и b. Поэтому вывод, сделанный в софизме, что числа а и b равны, неверен.

Неоценимую помощь оказывают МС для более глубокого осмысления материала на уроках геометрии. Например, софизм, который можно использовать на уроке по теме “Окружность”, повторяя при этом тему “Признаки равенства треугольников”:

“В любой окружности хорда, не проходящая через её центр, равна её диаметру”

В произвольной окружности проводим диаметр АВ и хорду АС. Через середину D этой хорды и точку В проводим хорду BE. Соединив точки С и Е, получаем два треугольника ABD и CDE. Углы ВАС и СЕВ равны как вписанные в одну и ту же окружность, опирающиеся на одну и ту же дугу; углы ADB и CDE равны как вертикальные; стороны AD и CD равны по построению.


Отсюда заключаем, что треугольники ABD и CDE равны (по стороне и двум углам). Но стороны равных треугольников, лежащие против равных углов, сами равны, а потому

т. е. диаметр окружности оказывается равным некоторой (не проходящей через центр окружности) хорде, что противоречит утверждению о том, что диаметр больше всякой не проходящей через центр окружности хорды.

В софизме доказывается, что два треугольника ABD и CDE равны, ссылаясь при этом на признак равенства треугольников по стороне и двум углам. Однако такого признака нет. Правильно сформулированный признак равенства треугольников гласит:

Если сторона и прилежащие к ней углы одного треугольника равны соответственно стороне и прилежащим к ней углам другого треугольника, то такие треугольники равны.

Рассматривая МС на уроках геометрии можно в ненавязчивой форме подчеркнуть важность соответствия условия задачи и правильно построенного к ней чертежа или схемы.

Например, один из самых интересных софизмов:

“Окружность имеет два центра”


Построим произвольный угол ABC и, взяв на его сторонах две произвольные точки D и Е, восстановим из них перпендикуляры к сторонам угла . Перпендикуляры эти должны пересечься (если бы они были параллельны, параллельны были бы и стороны АВ и СВ). Обозначим их точку пересечения буквой F.

Через три точки D, E, F проводим окружность, что всегда возможно, так как эти три точки не лежат на одной прямой. Соединив точки Н и G (точки пересечения сторон угла ABC с окружностью) с точкой F, получим два вписанных в окружность прямых угла GDF и HEF.

Итак, мы получили две хорды GF и HF, на которые опираются вписанные в окружность прямые углы GDF и HEF. Но в окружности вписанный прямой угол всегда опирается на ее диаметр, следовательно, хорды GF и HF представляют собой два диаметра, имеющие общую точку F, лежащую на окружности.

Поскольку эти две хорды, являющиеся, как мы установили, диаметрами, не совпадают, то, следовательно, точки О и О19 делящие отрезки GF и HF пополам, представляют собой не что иное, как два центра одной окружности.

Ошибка здесь кроется в неправильно построенном чертеже. На самом деле окружность, проведенная через точки Е, F и, обязательно пройдет через вершину В угла ABC, т. е. точки В, Е, F и D обязательно должны лежать на одной окружности. Тогда, конечно, никакого софизма не возникает.

Действительно, восстановив перпендикуляры в точках Е и D к прямым ВС и ВА соответственно и продолжив их до взаимного пересечения в точке F, получаем четырехугольник BEFD. У этого четырехугольника сумма двух его противоположных углов BEF и BDF равна 180°. Но согласно известному в геометрии утверждению вокруг четырехугольника можно описать окружность тогда и только тогда, когда сумма двух его противоположных углов равна 180°.

Отсюда следует, что все вершины четырехугольника BEFD должны принадлежать одной окружности. Поэтому точки G и Н совпадут с точкой В и у окружности окажется, как и должно быть, один центр.

Очевидна и важность геометрических фактов, повторяемых во время разбора этого МС.

С большим интересом воспринимают МС ребята 5-6-х классов. Например МС, где нарушены правила действий с именованными величинами.

Один рубль не равен 100 копеек.

1 р=100 коп

10 р=1000 коп

Умножим обе части этих верных равенств, получим:

10 р=100000 коп, откуда следует:

1 р=10000 коп.

Применение этого софизма является также пропедевтикой использования именованных величин при решении физических задач.

И, конечно, я всегда начинаю знакомить ребят с математическими софизмами, утверждая, что:

“Два умножить на два будет пять”

вынесем за скобки слева 4, справа5

разделим левую и правую часть на (11), получим

4=5, откуда следует

Начиная с этого урока, ребята с нетерпением ждут новых МС.

Очень интересны МС древнегреческих философов-математиков Зенона, Прокла, Перрона. Они открывают обширное поле деятельности для исследовательских работ учащихся. В книге [1] представлены следующие “авторские” МС: парадокс Зенона “Ахиллес никогда не догонит черепаху”, софизм Прокла “Две непараллельные на плоскости прямые не пересекаются”, софизм Перрона “Единица есть наибольшее натуральное число”.

Хотелось бы рекомендовать коллегам использовать математические софизмы более разнообразно в своей практике. Это сделает изучение математики более увлекательным. Огромную помощь окажет им замечательная книга А.Г. Мадеры и Д.А.Мадеры “Математические софизмы”.

(В Приложении 2 содержаться тексты математических софизмов из таблицы Приложение1.)

Читайте также: