Правило взаимодействия факторов кратко

Обновлено: 05.07.2024

Несмотря на большое разнообразие экологических факторов, в характере их воздействия на организмы и в ответных реакциях живых существ можно выявить ряд общих закономерностей.

1. Закон оптимума.

Каждый фактор имеет определенные пределы положительного влияния на организмы (рис. 1). Результат действия переменного фактора зависит прежде всего от силы его проявления. Как недостаточное, так и избыточное действие фактора отрицательно сказывается на жизнедеятельности особей. Благоприятная сила воздействия называется зоной оптимума экологического фактора или просто оптимумом для организмов данного вида. Чем сильнее отклонения от оптимума, тем больше выражено угнетающее действие данного фактора на организмы (зона пессимума). Максимально и минимально переносимые значения фактора – это критические точки, за пределами которых существование уже невозможно, наступает смерть. Пределы выносливости между критическими точками называют экологической валентностью живых существ по отношению к конкретному фактору среды.


Рис. 1. Схема действия факторов среды на живые организмы

Представители разных видов сильно отличаются друг от друга как по положению оптимума, так и по экологической валентности. Так, например, песцы в тундре могут переносить колебания температуры воздуха в диапазоне более 80 °C (от +30 до -55 °C), тогда как тепловодные рачки Copilia mirabilis выдерживают изменения температуры воды в интервале не более 6 °C (от +23 до +29 °C). Одна и та же сила проявления фактора может быть оптимальной для одного вида, пессимальной – для другого и выходить за пределы выносливости для третьего (рис. 2).


Рис. 2. Положение кривых оптимума на температурной шкале для разных видов:

1, 2 — стенотермные виды, криофилы;

3–7– эвритермные виды;

8, 9 — стенотермные виды, термофилы

Условия, приближающиеся по одному или сразу нескольким факторам к критическим точкам, называют экстремальными.

Положение оптимума и критических точек на градиенте фактора может быть в определенных пределах сдвинуто действием условий среды. Это регулярно происходит у многих видов при смене сезонов года. Зимой, например, воробьи выдерживают сильные морозы, а летом гибнут от охлаждения при температуре чуть ниже нуля. Явление сдвига оптимума по отношению к какому-либо фактору носит название акклимации. В отношении температуры это хорошо известный процесс тепловой закалки организма. Для температурной акклимации необходим значительный период времени. Механизмом является смена в клетках ферментов, катализирующих одни и те же реакции, но при разных температурах (так называемые изоферменты). Каждый фермент кодируется своим геном, следовательно, необходимо выключение одних генов и активация других, транскрипция, трансляция, сборка достаточного количества нового белка и т. п. Общий процесс занимает в среднем около двух недель и стимулируется переменами в окружающей среде. Акклимация, или закалка, – важная адаптация организмов, происходит при постепенно надвигающихся неблагоприятных условиях или при попадании на территории с иным климатом. Она является в этих случаях составной частью общего процесса акклиматизации.

2. Неоднозначность действия фактора на разные функции.

Каждый фактор неодинаково влияет на разные функции организма (рис. 3). Оптимум для одних процессов может являться пессимумом для других. Так, температура воздуха от +40 до +45 °C у холоднокровных животных сильно увеличивает скорость обменных процессов в организме, но тормозит двигательную активность, и животные впадают в тепловое оцепенение. Для многих рыб температура воды, оптимальная для созревания половых продуктов, неблагоприятна для икрометания, которое происходит при другом температурном интервале.


Рис. 3. Схема зависимости фотосинтеза и дыхания растения от температуры (по В. Лархеру, 1978): tмин, tопт, tмакс– температурный минимум, оптимум и максимум для прироста растений (заштрихованная область)

Жизненный цикл, в котором в определенные периоды организм осуществляет преимущественно те или иные функции (питание, рост, размножение, расселение и т. п.), всегда согласован с сезонными изменениями комплекса факторов среды. Подвижные организмы могут также менять места обитания для успешного осуществления всех своих жизненных функций.

3. Разнообразие индивидуальных реакций на факторы среды. Степень выносливости, критические точки, оптимальная и пессимальные зоны отдельных индивидуумов не совпадают. Эта изменчивость определяется как наследственными качествами особей, так и половыми, возрастными и физиологическими различиями. Например, у бабочки мельничной огневки – одного из вредителей муки и зерновых продуктов – критическая минимальная температура для гусениц -7 °C, для взрослых форм -22 °C, а для яиц -27 °C. Мороз в -10 °C губит гусениц, но не опасен для имаго и яиц этого вредителя. Следовательно, экологическая валентность вида всегда шире экологической валентности каждой отдельной особи.

4. Относительная независимость приспособления организмов к разным факторам. Степень выносливости к какому-нибудь фактору не означает соответствующей экологической валентности вида по отношению к остальным факторам. Например, виды, переносящие широкие изменения температуры, совсем не обязательно должны также быть приспособленными к широким колебаниям влажности или солевого режима. Эвритермные виды могут быть стеногалинными, стенобатными или наоборот. Экологические валентности вида по отношению к разным факторам могут быть очень разнообразными. Это создает чрезвычайное многообразие адаптации в природе. Набор экологических валентностей по отношению к разным факторам среды составляет экологический спектр вида.

5. Несовпадение экологических спектров отдельных видов. Каждый вид специфичен по своим экологическим возможностям. Даже у близких по способам адаптации к среде видов существуют различия в отношении к каким-либо отдельным факторам.


Рис. 4. Изменение участия в луговых травостоях отдельных видов растений в зависимости от увлажнения (по Л. Г. Раменскому и др., 1956): 1– клевер луговой; 2– тысячелистник обыкновенный; 3– келерия Делявина; 4– мятлик луговой; 5– типчак; 6– подмаренник настоящий; 7– осока ранняя; 8– таволга обыкновенная; 9– герань холмовая; 10 – короставник полевой; 11– козлобородник коротконосиковый

Правило экологической индивидуальности видов сформулировал русский ботаник Л. Г. Раменский (1924) применительно к растениям (рис. 4), затем оно широко было подтверждено и зоологическими исследованиями.

6. Взаимодействие факторов. Оптимальная зона и пределы выносливости организмов по отношению к какому-либо фактору среды могут смещаться в зависимости от того, с какой силой и в каком сочетании действуют одновременно другие факторы (рис. 5). Эта закономерность получила название взаимодействия факторов. Например, жару легче переносить в сухом, а не во влажном воздухе. Угроза замерзания значительно выше при морозе с сильным ветром, чем в безветренную погоду. Таким образом, один и тот же фактор в сочетании с другими оказывает неодинаковое экологическое воздействие. Наоборот, один и тот же экологический результат может быть получен разными путями. Например, увядание растений можно приостановить путем как увеличения количества влаги в почве, так и снижения температуры воздуха, уменьшающего испарение. Создается эффект частичного взаимозамещения факторов.


Рис. 5. Смертность яиц соснового шелкопряда Dendrolimus pini при разных сочетаниях температуры и влажности

Вместе с тем взаимная компенсация действия факторов среды имеет определенные пределы, и полностью заменить один из них другим нельзя. Полное отсутствие воды или хотя бы одного из основных элементов минерального питания делает жизнь растения невозможной, несмотря на самые благоприятные сочетания других условий. Крайний дефицит тепла в полярных пустынях нельзя восполнить ни обилием влаги, ни круглосуточной освещенностью.

Учитывая в сельскохозяйственной практике закономерности взаимодействия экологических факторов, можно умело поддерживать оптимальные условия жизнедеятельности культурных растений и домашних животных.

7. Правило ограничивающих факторов. Возможности существования организмов в первую очередь ограничивают те факторы среды, которые наиболее удаляются от оптимума. Если хотя бы один из экологических факторов приближается или выходит за пределы критических величин, то, несмотря на оптимальное сочетание остальных условий, особям грозит гибель. Любые сильно уклоняющиеся от оптимума факторы приобретают первостепенное значение в жизни вида или отдельных его представителей в конкретные отрезки времени.

Ограничивающие факторы среды определяют географический ареал вида. Природа этих факторов может быть различной (рис. 6). Так, продвижение вида на север может лимитироваться недостатком тепла, в аридные районы – недостатком влаги или слишком высокими температурами. Ограничивающим распространение фактором могут служить и биотические отношения, например занятость территории более сильным конкурентом или недостаток опылителей для растений. Так, опыление инжира всецело зависит от единственного вида насекомых – осы Blastophaga psenes. Родина этого дерева – Средиземноморье. Завезенный в Калифорнию инжир не плодоносил до тех пор, пока туда не завезли ос-опылителей. Распространение бобовых в Арктике ограничивается распределением опыляющих их шмелей. На острове Диксон, где нет шмелей, не встречаются и бобовые, хотя по температурным условиям существование там этих растений еще допустимо.


Рис. 6. Глубокий снежный покров – лимитирующий фактор в распространении оленей (по Г. А. Новикову, 1981)

Чтобы определить, сможет ли вид существовать в данном географическом районе, нужно в первую очередь выяснить, не выходят ли какие-либо факторы среды за пределы его экологической валентности, особенно в наиболее уязвимый период развития.

Выявление ограничивающих факторов очень важно в практике сельского хозяйства, так как, направив основные усилия на их устранение, можно быстро и эффективно повысить урожайность растений или производительность животных. Так, на сильно кислых почвах урожай пшеницы можно несколько увеличить, применяя разные агрономические воздействия, но наилучший эффект будет получен только в результате известкования, которое снимет ограничивающие действия кислотности. Знание ограничивающих факторов, таким образом, ключ к управлению жизнедеятельностью организмов. В разные периоды жизни особей в качестве ограничивающих выступают различные факторы среды, поэтому требуется умелое и постоянное регулирование условий жизни выращиваемых растений и животных.

Данный текст является ознакомительным фрагментом.

Продолжение на ЛитРес

Генетически модифицированные организмы и оценка их безопасности

Генетически модифицированные организмы и оценка их безопасности Общие правила проверки безопасности ГМО В США безопасность всех ГМО проверяют три федеральных органа: Министерство сельского хозяйства, ответственное за то, чтобы выращивание любого сорта

2.3. Обобщающая концепция лимитирующих факторов

2.3. Обобщающая концепция лимитирующих факторов Наиболее важными факторами на суше являются свет, температура и вода (осадки), а в море – свет, температура и соленость. Эти физические условия существования могут быть лимитирующими и влияющими благоприятно. Все факторы

Организмы унитарные и модулярные

Развитие иксодовых клещей определяется гармонией многих факторов

Развитие иксодовых клещей определяется гармонией многих факторов Индивидуальное развитие иксодовых клещей проходит по простой схеме: из яичек выходят личинки, в принципе похожие на своих родителей, но только очень маленькие, даже микроскопические, и у них всего три

6.4. Многоклеточные организмы

Виды экологических факторов

Виды экологических факторов Хотя среди специалистов нет единства в четком определении, под экологическими факторами можно понимать любые нерасчленимые на составляющие внешние воздействия на организм (Нинбург Н. А., 2005).В экологии выделяют абиотические и биотические

Диапазон действия экологических факторов

Диапазон действия экологических факторов Все живые организмы способны воспринимать только определенный диапазон интенсивности воздействий любого экологического фактора, что определяется нормой реакции генотипа. Этот диапазон выработался в процессе

4.4. Живые организмы как среда обитания

4.4. Живые организмы как среда обитания Многие виды гетеротрофных организмов в течение всей жизни или части жизненного цикла обитают в других живых существах, тела которых служат для них средой, существенно отличающейся по свойствам от внешней.Использование одними

Глава шестая РЕАКЦИИ НЕРВНОЙ СИСТЕМЫ СОБАК В УСЛОВИЯХ ЭКСТРЕМАЛЬНЫХ ФАКТОРОВ

Глава шестая РЕАКЦИИ НЕРВНОЙ СИСТЕМЫ СОБАК В УСЛОВИЯХ ЭКСТРЕМАЛЬНЫХ ФАКТОРОВ Известно, что центральная нервная система играет ведущую роль как высший интегрирующий орган и ее функциональное состояние имеет решающее значение для общего состояния живых организмов.

Ультиматум первичных факторов

Ультиматум первичных факторов Всяк вид приспособлен к своей пище. Если потребление ее увеличивается, ее запасы в природе не успевают возобновляться и происходит сокращение количества пищи. Если какой-то вид растения потребляет из почвы слишком много питательного

Организмы

Организмы Одно время считали, что живое и неживое существуют по несовместимым законам и, следовательно, имеют различное происхождение. Но биосфера — это в первую очередь система биогенного круговорота вещества во внешних оболочках Земли, развивавшаяся на основе

Классификация гуморальных факторов

Классификация гуморальных факторов Основным гуморальным фактором являются гормоны. Гормонами называются биологически активные вещества, которые синтезируются специализированными клетками в организме человека и животных, секретируются во внутреннюю среду и изменяют

ОРГАНИЗМЫ

ОРГАНИЗМЫ В экологии часто приходится уделять внимание отдельным организмам. Но что такое, собственно говоря, отдельный организм, особь или индивид? Среди животных легко выявить отдельные особи. Они четко отличаются от других особей и проходят через конкретные стадии

Феногеография как путь выявления действия эволюционных факторов

Феногеография как путь выявления действия эволюционных факторов Среди других эволюционных факторов, кроме более подробно рассмотренного выше естественного отбора, феногеография в ряде случаев позволяет судить о действии волн численности в их ярком частном проявлении

l. Постепенный переход к преобладанию диплоидного поколения (спорофит - 2n) над гаплоидным (гаметофит - n).

2. Мощное развитие спорофита, переход к внутреннему оплодотворению, возникновение двойного оплодотворения, обеспечение зародыша питательными веществами.

3. В связи с прикрепленным образом жизни на суше расчленение на: корень, стебель, лист. Развитие проводящей системы, опорной, защитной ткани.

1.Прогрессивное развитие многоклеточности.

2.Возникновение твердого скелета: наружного – у чле­нистоногих, внутреннего — у позвоночных.

3.Развитие и совершенствование систем регуляции (нерв­ная и гуморальная).

Несмотря на то, что экологические факторы очень разнообразны по своей природе, существуют определенные закономерности их влияния на организм, а также реакции живых организмов на действие этих факторов. К таким закономер­ностям относятся правило оптимума, правило взаимодейст­вия факторов, правило лимитирующих факторов и некоторые другие.

Правило оптимума.В соответствии с этим правилом для экосистемы, организма или определенной стадии его развития имеется диапазон наиболее благоприятного (оптимального) значения фактора.

Каждый экологический фактор имеет только опреде­ленные пределы положительного влияния на организмы. Пределы интенсивности действия экологического фактора, благоприятной для организмов определенного вида, назы­вают зоной оптимума. Чем больше интенсивность действия экологического фактора отклоняется в ту или иную сторону, тем больше будет выражено его угнетающее влияние на живые организмы (зона угнетения).

Значение интенсивности действия фактора, за которыми существование организмов становится невозможным, назы­вают верхним и нижним пределами выносливости (соответс­твенно точками максимума и минимума).

Пределы выносливости между критическими точками максимума и минимума называются экологической валент­ностью (экологической пластичностью) живых существ по отношению к конкретному фактору среды.

Представители разных видов сильно отличаются как по положению оптимума, так и по экологической пластичности. Экологически непластичные, т. е. маловыносливые виды называются стенобионтными (stenos - узкий), а более вынос­ливые - эврибионтными (eyros - широкий), они характиризуют различные типы приспособления организмов к возз­ванию.

Эврибионтность, как правило, способствует широкому распространению видов. Многие простейшие, грибы (типичные эврибионты) являются космополитами и распространены повсеместно. Стенобионтность обычно ограничивает ареалы.

Правило взаимодействия факторов.Сущность его заклю­чается в том, что одни факторы могут усиливать или смягчать силу действия других факторов.

Пределы выносливости организмов по отношению к какому-либо фактору среды могут смещаться в зависимости от того, с какой силой и в каком сочетании действуют одновременно другие факторы. Эта закономерность получила название взаимодействия факторов. Например, жару легче переносить в сухом, а не влажном воздухе. Угроза замерзания выше значительно при морозе с сильным ветром, чем в безветренную погоду, т. е. один и тот же фактор в сочетании с другими оказывает неодинаковое экологическое воздейст­вие. Учитывая это правило, можно поддерживать оптималь­ные условия жизнедеятельности культурных растений и домашних животных.

Правило лимитирующих факторов.Сущность этого пра­вила в том, что фактор, находящийся в недостатке или избытке (вблизи критических точек) отрицательно влияет на организмы и, кроме того, ограничивает возможность проявле­ния силы действия других факторов, в том числе и находя­щихся в оптимуме.




Ограничивающие факторы среды определяют географи­ческий ареал вида. Продвижение вида на север может лимити­роваться недостатком тепла, в аридные районы - недостатком влаги или слишком высокими температурами. Ограни­чивающим распространение фактором могут служить и биоти­ческие отношения: занятость территории более сильным конкурентом или недостатком опылителей для растений. Чтобы определить, сможет ли вид существовать в данном географическом районе, нужно выяснить, не выходят ли какие-либо факторы среды за пределы его экологической пластичности. Выявление ограничивающего фактора важно в практике сельского хозяйства.

Надогранизменные системы

Главные направления эволюции животного мира

Главные направления эволюции растительного мира

l. Постепенный переход к преобладанию диплоидного поколения (спорофит - 2n) над гаплоидным (гаметофит - n).

2. Мощное развитие спорофита, переход к внутреннему оплодотворению, возникновение двойного оплодотворения, обеспечение зародыша питательными веществами.

3. В связи с прикрепленным образом жизни на суше расчленение на: корень, стебель, лист. Развитие проводящей системы, опорной, защитной ткани.

1.Прогрессивное развитие многоклеточности.

2.Возникновение твердого скелета: наружного – у чле­нистоногих, внутреннего — у позвоночных.

3.Развитие и совершенствование систем регуляции (нерв­ная и гуморальная).

Несмотря на то, что экологические факторы очень разнообразны по своей природе, существуют определенные закономерности их влияния на организм, а также реакции живых организмов на действие этих факторов. К таким закономер­ностям относятся правило оптимума, правило взаимодейст­вия факторов, правило лимитирующих факторов и некоторые другие.

Правило оптимума.В соответствии с этим правилом для экосистемы, организма или определенной стадии его развития имеется диапазон наиболее благоприятного (оптимального) значения фактора.

Каждый экологический фактор имеет только опреде­ленные пределы положительного влияния на организмы. Пределы интенсивности действия экологического фактора, благоприятной для организмов определенного вида, назы­вают зоной оптимума. Чем больше интенсивность действия экологического фактора отклоняется в ту или иную сторону, тем больше будет выражено его угнетающее влияние на живые организмы (зона угнетения).

Значение интенсивности действия фактора, за которыми существование организмов становится невозможным, назы­вают верхним и нижним пределами выносливости (соответс­твенно точками максимума и минимума).

Пределы выносливости между критическими точками максимума и минимума называются экологической валент­ностью (экологической пластичностью) живых существ по отношению к конкретному фактору среды.

Представители разных видов сильно отличаются как по положению оптимума, так и по экологической пластичности. Экологически непластичные, т. е. маловыносливые виды называются стенобионтными (stenos - узкий), а более вынос­ливые - эврибионтными (eyros - широкий), они характиризуют различные типы приспособления организмов к возз­ванию.

Эврибионтность, как правило, способствует широкому распространению видов. Многие простейшие, грибы (типичные эврибионты) являются космополитами и распространены повсеместно. Стенобионтность обычно ограничивает ареалы.

Правило взаимодействия факторов.Сущность его заклю­чается в том, что одни факторы могут усиливать или смягчать силу действия других факторов.

Пределы выносливости организмов по отношению к какому-либо фактору среды могут смещаться в зависимости от того, с какой силой и в каком сочетании действуют одновременно другие факторы. Эта закономерность получила название взаимодействия факторов. Например, жару легче переносить в сухом, а не влажном воздухе. Угроза замерзания выше значительно при морозе с сильным ветром, чем в безветренную погоду, т. е. один и тот же фактор в сочетании с другими оказывает неодинаковое экологическое воздейст­вие. Учитывая это правило, можно поддерживать оптималь­ные условия жизнедеятельности культурных растений и домашних животных.

Правило лимитирующих факторов.Сущность этого пра­вила в том, что фактор, находящийся в недостатке или избытке (вблизи критических точек) отрицательно влияет на организмы и, кроме того, ограничивает возможность проявле­ния силы действия других факторов, в том числе и находя­щихся в оптимуме.

Ограничивающие факторы среды определяют географи­ческий ареал вида. Продвижение вида на север может лимити­роваться недостатком тепла, в аридные районы - недостатком влаги или слишком высокими температурами. Ограни­чивающим распространение фактором могут служить и биоти­ческие отношения: занятость территории более сильным конкурентом или недостатком опылителей для растений. Чтобы определить, сможет ли вид существовать в данном географическом районе, нужно выяснить, не выходят ли какие-либо факторы среды за пределы его экологической пластичности. Выявление ограничивающего фактора важно в практике сельского хозяйства.

2.3. Общие законы действия факторов среды на организмы

Несмотря на большое разнообразие экологических факторов, в характере их воздействия на организмы и в ответных реакциях живых существ можно выявить ряд общих закономерностей.

1. Закон оптимума.

Каждый фактор имеет определенные пределы положительного влияния на организмы (рис. 1). Результат действия переменного фактора зависит прежде всего от силы его проявления. Как недостаточное, так и избыточное действие фактора отрицательно сказывается на жизнедеятельности особей. Благоприятная сила воздействия называется зоной оптимума экологического фактора или просто оптимумом для организмов данного вида. Чем сильнее отклонения от оптимума, тем больше выражено угнетающее действие данного фактора на организмы (зона пессимума). Максимально и минимально переносимые значения фактора – это критические точки, за пределами которых существование уже невозможно, наступает смерть. Пределы выносливости между критическими точками называют экологической валентностью живых существ по отношению к конкретному фактору среды.


Рис. 1. Схема действия факторов среды на живые организмы

Представители разных видов сильно отличаются друг от друга как по положению оптимума, так и по экологической валентности. Так, например, песцы в тундре могут переносить колебания температуры воздуха в диапазоне более 80 °C (от +30 до -55 °C), тогда как тепловодные рачки Copilia mirabilis выдерживают изменения температуры воды в интервале не более 6 °C (от +23 до + 29 °C). Одна и та же сила проявления фактора может быть оптимальной для одного вида, пессимальной – для другого и выходить за пределы выносливости для третьего (рис. 2).


Рис. 2. Положение кривых оптимума на температурной шкале для разных видов:

1, 2 — стенотермные виды, криофилы;

3–7– эвритермные виды;

8, 9 — стенотермные виды, термофилы

Условия, приближающиеся по одному или сразу нескольким факторам к критическим точкам, называют экстремальными.

Положение оптимума и критических точек на градиенте фактора может быть в определенных пределах сдвинуто действием условий среды. Это регулярно происходит у многих видов при смене сезонов года. Зимой, например, воробьи выдерживают сильные морозы, а летом гибнут от охлаждения при температуре чуть ниже нуля. Явление сдвига оптимума по отношению к какому-либо фактору носит название акклимации. В отношении температуры это хорошо известный процесс тепловой закалки организма. Для температурной акклимации необходим значительный период времени. Механизмом является смена в клетках ферментов, катализирующих одни и те же реакции, но при разных температурах (так называемые изоферменты). Каждый фермент кодируется своим геном, следовательно, необходимо выключение одних генов и активация других, транскрипция, трансляция, сборка достаточного количества нового белка и т. п. Общий процесс занимает в среднем около двух недель и стимулируется переменами в окружающей среде. Акклимация, или закалка, – важная адаптация организмов, происходит при постепенно надвигающихся неблагоприятных условиях или при попадании на территории с иным климатом. Она является в этих случаях составной частью общего процесса акклиматизации.

2. Неоднозначность действия фактора на разные функции.

Каждый фактор неодинаково влияет на разные функции организма (рис. 3). Оптимум для одних процессов может являться пессимумом для других. Так, температура воздуха от +40 до +45 °C у холоднокровных животных сильно увеличивает скорость обменных процессов в организме, но тормозит двигательную активность, и животные впадают в тепловое оцепенение. Для многих рыб температура воды, оптимальная для созревания половых продуктов, неблагоприятна для икрометания, которое происходит при другом температурном интервале.


Рис. 3. Схема зависимости фотосинтеза и дыхания растения от температуры (по В. Лархеру, 1978): tмин, tопт, tмакс– температурный минимум, оптимум и максимум для прироста растений (заштрихованная область)

Жизненный цикл, в котором в определенные периоды организм осуществляет преимущественно те или иные функции (питание, рост, размножение, расселение и т. п.), всегда согласован с сезонными изменениями комплекса факторов среды. Подвижные организмы могут также менять места обитания для успешного осуществления всех своих жизненных функций.

3. Разнообразие индивидуальных реакций на факторы среды. Степень выносливости, критические точки, оптимальная и пессимальные зоны отдельных индивидуумов не совпадают. Эта изменчивость определяется как наследственными качествами особей, так и половыми, возрастными и физиологическими различиями. Например, у бабочки мельничной огневки – одного из вредителей муки и зерновых продуктов – критическая минимальная температура для гусениц -7 °C, для взрослых форм -22 °C, а для яиц -27 °C. Мороз в -10 °C губит гусениц, но не опасен для имаго и яиц этого вредителя. Следовательно, экологическая валентность вида всегда шире экологической валентности каждой отдельной особи.

4. Относительная независимость приспособления организмов к разным факторам. Степень выносливости к какому-нибудь фактору не означает соответствующей экологической валентности вида по отношению к остальным факторам. Например, виды, переносящие широкие изменения температуры, совсем не обязательно должны также быть приспособленными к широким колебаниям влажности или солевого режима. Эвритермные виды могут быть стеногалинными, стенобатными или наоборот. Экологические валентности вида по отношению к разным факторам могут быть очень разнообразными. Это создает чрезвычайное многообразие адаптации в природе. Набор экологических валентностей по отношению к разным факторам среды составляет экологический спектр вида.

5. Несовпадение экологических спектров отдельных видов. Каждый вид специфичен по своим экологическим возможностям. Даже у близких по способам адаптации к среде видов существуют различия в отношении к каким-либо отдельным факторам.


Рис. 4. Изменение участия в луговых травостоях отдельных видов растений в зависимости от увлажнения (по Л. Г. Раменскому и др., 1956): 1– клевер луговой; 2– тысячелистник обыкновенный; 3– келерия Делявина; 4– мятлик луговой; 5– типчак; 6– подмаренник настоящий; 7– осока ранняя; 8– таволга обыкновенная; 9– герань холмовая; 10 – короставник полевой; 11– козлобородник коротконосиковый

Правило экологической индивидуальности видов сформулировал русский ботаник Л. Г. Раменский (1924) применительно к растениям (рис. 4), затем оно широко было подтверждено и зоологическими исследованиями.

6. Взаимодействие факторов. Оптимальная зона и пределы выносливости организмов по отношению к какому-либо фактору среды могут смещаться в зависимости от того, с какой силой и в каком сочетании действуют одновременно другие факторы (рис. 5). Эта закономерность получила название взаимодействия факторов. Например, жару легче переносить в сухом, а не во влажном воздухе. Угроза замерзания значительно выше при морозе с сильным ветром, чем в безветренную погоду. Таким образом, один и тот же фактор в сочетании с другими оказывает неодинаковое экологическое воздействие. Наоборот, один и тот же экологический результат может быть получен разными путями. Например, увядание растений можно приостановить путем как увеличения количества влаги в почве, так и снижения температуры воздуха, уменьшающего испарение. Создается эффект частичного взаимозамещения факторов.


Рис. 5. Смертность яиц соснового шелкопряда Dendrolimus pini при разных сочетаниях температуры и влажности

Вместе с тем взаимная компенсация действия факторов среды имеет определенные пределы, и полностью заменить один из них другим нельзя. Полное отсутствие воды или хотя бы одного из основных элементов минерального питания делает жизнь растения невозможной, несмотря на самые благоприятные сочетания других условий. Крайний дефицит тепла в полярных пустынях нельзя восполнить ни обилием влаги, ни круглосуточной освещенностью.

Учитывая в сельскохозяйственной практике закономерности взаимодействия экологических факторов, можно умело поддерживать оптимальные условия жизнедеятельности культурных растений и домашних животных.

7. Правило ограничивающих факторов. Возможности существования организмов в первую очередь ограничивают те факторы среды, которые наиболее удаляются от оптимума. Если хотя бы один из экологических факторов приближается или выходит за пределы критических величин, то, несмотря на оптимальное сочетание остальных условий, особям грозит гибель. Любые сильно уклоняющиеся от оптимума факторы приобретают первостепенное значение в жизни вида или отдельных его представителей в конкретные отрезки времени.

Ограничивающие факторы среды определяют географический ареал вида. Природа этих факторов может быть различной (рис. 6). Так, продвижение вида на север может лимитироваться недостатком тепла, в аридные районы – недостатком влаги или слишком высокими температурами. Ограничивающим распространение фактором могут служить и биотические отношения, например занятость территории более сильным конкурентом или недостаток опылителей для растений. Так, опыление инжира всецело зависит от единственного вида насекомых – осы Blastophaga psenes. Родина этого дерева – Средиземноморье. Завезенный в Калифорнию инжир не плодоносил до тех пор, пока туда не завезли ос-опылителей. Распространение бобовых в Арктике ограничивается распределением опыляющих их шмелей. На острове Диксон, где нет шмелей, не встречаются и бобовые, хотя по температурным условиям существование там этих растений еще допустимо.


Рис. 6. Глубокий снежный покров – лимитирующий фактор в распространении оленей (по Г. А. Новикову, 1981)

Чтобы определить, сможет ли вид существовать в данном географическом районе, нужно в первую очередь выяснить, не выходят ли какие-либо факторы среды за пределы его экологической валентности, особенно в наиболее уязвимый период развития.

Выявление ограничивающих факторов очень важно в практике сельского хозяйства, так как, направив основные усилия на их устранение, можно быстро и эффективно повысить урожайность растений или производительность животных. Так, на сильно кислых почвах урожай пшеницы можно несколько увеличить, применяя разные агрономические воздействия, но наилучший эффект будет получен только в результате известкования, которое снимет ограничивающие действия кислотности. Знание ограничивающих факторов, таким образом, ключ к управлению жизнедеятельностью организмов. В разные периоды жизни особей в качестве ограничивающих выступают различные факторы среды, поэтому требуется умелое и постоянное регулирование условий жизни выращиваемых растений и животных.

Экологический срез: правило оптимума

Тема воздействия человека на экологию и экологии на жизнь на планете сегодня очень актуальна. Всё больше говорится об отрицательном влиянии деятельности человека на природу, глобальном потеплении, угрозе исчезновения некоторых видов животных, загрязнении мирового океана и т.д. Мы же, являясь теми, кому всё это далеко не безразлично, не можем не посвятить одну из наших статей экологической теме.

Ниже мы поговорим о том, как могут воздействовать экологические факторы на живые организмы, что поможет каждому из нас сделать определённые выводы.

Вместо введения

Невзирая на то, что многообразие экологических факторов просто огромно, а природа их происхождения нередко может различаться, есть такие закономерности и правила воздействия этих экологических факторов на живые организмы, которые являются универсальными.

Каким бы ни был экологический фактор, воздействовать на живые организмы он будет так:

  • Происходят изменения в географическом распространении видов
  • Происходят изменения в плодовитости и смертности видов
  • Возникает миграция видов
  • У видов появляются приспособительные качества и адаптации

Однако максимально эффективно действовать фактор будет в том случае, если его значение является для организма оптимальным, а не критическим. Воздействие же фактора будет сказываться абсолютно на всех живых организмах, в том числе и на человеке.

Закономерности воздействия экологических факторов на организмы

Далее нами будут рассмотрены основные закономерности воздействия экологических факторов на организмы:

  • Правило оптимума
  • Закон минимума Либиха
  • Закон толерантности Шелфорда

Правило оптимума

В первую очередь следует сказать о том, что результат действия экологического фактора зависит от того, насколько он интенсивен. Наиболее благоприятный диапазон воздействия называется зоной оптимума, гарантирующей нормальную жизнедеятельность. И если действие фактора отклоняется от зоны оптимума, то оказывается негативное воздействие на жизнедеятельность популяции вида, т.е. фактор переходит в зону угнетения.

Минимальные и максимальные значения фактора называются критическими точками, вне пределов которых организм существовать уже не может. Диапазон воздействия экологического фактора между критическими точками – это зона толерантности организма в отношении конкретного фактора.

Если, например, отобразить действие фактора графически, то точка на оси X, которая будет соответствовать лучшему показателю жизнедеятельности организма, будет являться оптимальной величиной фактора или просто точкой оптимума. Однако определить её очень трудно, поэтому чаще в расчёт берётся зона оптимума или зона комфорта.

Из этого следует, что точки, соответствующие минимальным, максимальным и оптимальным показателям, являются кардинальными точками, определяющими возможные варианты реагирования организма на конкретный фактор. И если среда характеризуется такими условиями, где фактор или несколько факторов выходят заграницы зоны оптимума и действуют на организм угнетающе, то она будет являться экстремальной средой.

Представленные закономерности и являются правилом оптимума.

Закон минимума Либиха

Для поддержания жизнедеятельности живых организмов нужно, чтобы условия среды сочетались определённым образом. Например, когда среда обладает всеми благоприятными условиями, кроме одного, это одно условие играет решающую роль в жизни конкретного организма. Учитывая то, что он ограничивает развитие организма, его следует называть лимитирующим фактором. Другими словами, лимитирующим является экологический фактор со значением, выходящим за пределы выживаемости вида.

Изначально учёные остановили, что развитие живых организмов лимитируется недостатком какого-то одного элемента (света, влаги, минеральных солей и т.д.). Однако в середине XIX столетия немецким химиком-органиком Юстасом Либихом было впервые экспериментально доказано, что рост растений находится в зависимости от компонента питания, изначально присутствующего в минимальном количестве. Данное явление получило название закона минимума Либиха.

Если же дать этому закону современную формулировку, то выглядеть она будет следующим образом: выносливость живого организма определяет самое слабое звено в цепочке его экологических потребностей.

Закон толерантности Шелфорда

Через 70 лет после открытия закона минимума Либиха было установлено, что лимитирующее воздействие оказывается не только недостатком, но и преизбытком фактора (обильные дожди губят урожай, почва становится неплодородной от перенасыщения удобрениями и т.п.).

Эта идея была введена американским зоологом Виктором Шелфордом, который и сформулировал закон толерантности. Этот закон звучит так: роль лимитирующего фактора процветания организма может выполнять и минимум, и максимум экологического воздействия, а имеющийся между ними диапазон указывает на предел толерантности (величину выносливости) или экологическую валентность организма к конкретному экологическому фактору.

Сам же принцип ограничивающих факторов применим к любым типам живых организмов: животным и растениями, биотическим и абиотическим формам. К примеру, конкуренция одного вида с другим – это лимитирующий фактор; сорняки, вредители или недостаточная популяция другого вида – это тоже лимитирующие факторы. Однако, исходя из закона толерантности, если какое-то вещество или энергия присутствуют в среде в избытке, начинается загрязнение среды.

Что же касается предела выносливости организма, то измерить его можно на стадии перехода от одной стадии развития к другой, т.к. нередко молодые особи являются более требовательными к среде и уязвимыми, нежели взрослые. Самым же критическим с позиции влияния любых факторов можно назвать именно период размножения, когда множество факторов приобретают статус лимитирующих.

Следует также отметить, что всё, сказанное до этого, относительно выносливости организма, касалось лишь одного фактора, однако для живой природы характерно совместное действие всех экологических факторов.

Взаимодействие экологических факторов

Смещение самой оптимальной зоны и пределов толерантности живого организма в отношении какого-то экологического фактора зависит от сочетания действий других факторов. Этот феномен называется констелляцией или взаимодействием экологических факторов.

К примеру, каждый знает, что жаркая погода гораздо легче переносится, когда воздух сухой, а не влажный; замёрзнуть при низкой температуре можно быстрее, когда дует ветер; растущие в тени растения меньше нуждаются в цинке, чем растения, растущие на солнце и т.д. Говоря несколько иначе, имеет место компенсация действия экологических факторов.

Но эта компенсация ограничена, ведь один фактор не способен на 100% заменить другой. Если не будет воды или одного из питательных элементов, то растения погибнут, даже если другие факторы будут находиться в идеальном сочетании. И из этого можно заключить, что каждое условие среды, которое поддерживает жизнь, имеет одинаковое значение, а лимитировать существование живого организма может любой фактор. Этот закон называется законом равнозначности условий жизни.

В огромном количестве законов, которые определяют взаимодействие особи или человека с окружающей средой, можно также выделить и правило соответствия условий среды генетической предопределённости организма. Согласно этому правилу, существование какого-либо вида обусловлено соответствием окружающей природной среды его генетическому потенциалу адаптации к изменениям и колебаниям.

Послесловие

Любой из видов живых организмов появился в конкретной среде, в какой-то мере к ней адаптировался и продолжение его жизни возможно только лишь в ней или в максимально к ней близкой. Быстрые и резкие изменения среды обитания могут стать причиной того, что организм просто не сможет к ней приспособиться, т.к. его генетический адаптивный потенциал окажется недостаточным для этого.

И это является одной из основных гипотез, объясняющих вымирание крупных пресмыкающихся по причине резкого изменения экологических условий на планете, ведь приспособиться крупным организмам намного сложнее, нежели мелким, и адаптация требует огромных временных затрат. Исходя из этого, серьёзные преобразования окружающей среды представляют угрозу для любого живого существа на планете, и для человека в том числе.

Берегите природу и старайтесь сохранять чистоту не только внутри себя, но и снаружи!

Взаимодействие температуры и влажности, как н взаимодействие большинства других факторов, зависит не только от относительной, но и от абсолютной величины каждого из них. Так, температура оказывает более выраженное лимитирующее влияние на организмы, если условия влажности близки к критическим, т. е. если влажность очень велика или очень мала. Точно так же влажность играет более критическую роль, если температура близка к предельным значениям. Можно считать, что это еще один аспект рассмотренного выше в этой главе принципа взаимодействия факторов. Например, хлопковый долгоносик при низкой и умеренной влажности переносит более высокие температуры, чем прп очень высокой влажности. Сухая п жаркая погода в хлопковом поясе США — сигнал для фермеров ожидать увеличения популяции долгоносика, но, к сожалению, она не так хороша и для хлопчатника.[ . ]

Правило взаимодействия факторов. Сущность его заключается в том, что одни факторы могут усиливать или смягчать силу действия других факторов. Например, избыток тепла может в какой-то мере смягчаться пониженной влажностью воздуха, недостаток света для фотосинтеза растений — компенсироваться повышенным содержанием углекислого газа в воздухе и т. п. Из этого, однако, не следует, что факторы могут взаимозаменяться. Они не взаимозаменяемы.[ . ]

Дополнительное правило взаимодействия факторов в законе минимума: организм в определенной мере способен заменить дефицитное вещество или другой действующий фактор жизни функционально близким веществом или фактором (например, одно вещество другим, химически близким) — вызвало поток аналогичных постулатов. Среди них закон относительности действия лимитирующих факторов, или закон Лундегарда — Полетаева: форма кривой роста численности популяции (ее биомассы) зависит не только от одного вещества с минимальной концентрацией, а от концентрации и свойств других ионов, имеющихся в среде.[ . ]

Большое экологическое значение имеет взаимодействие факторов. За счет него может быть расширен диапазон выживания. Так, снижение температуры повышает выносливость рыб по отношению к недостатку пищи и кислорода; недостаточная освещенность для растений может быть частично компенсирована повышенной концентрацией углекислого газа; действие повышенной кислотности почвы отчасти нейтрализуется благоприятными окислительно-восстановительными условиями; у многих растений и животных реакция на свет зависит от температуры и т.д. Диаграмма выживания для одного фактора всегда изменяется под влиянием другого фактора.[ . ]

Докучаев подчеркивал, что почва образуется в результате взаимодействия факторов почвообразования. При взаимодействии факторов они влияют друг на друга и, как результат этого взаимовлияния и взаимодействия, развиваются микро-, мезо- и макропроцессы почвообразования Под их воздействием формируется почва с набором генетических горизонтов и конкретными свойствами.[ . ]

Образование (генезис) любой почвы есть результат сложного взаимодействия факторов почвообразования. Поскольку в распределении факторов на земной поверхности наблюдаются определенные закономерности, естественно, они отражаются на распределении почв. Главные закономерности в географии почв выражаются следующими законами: закон горизонтальной (широтной) почвенной зональности, закон вертикальной почвенной зональности, закон фациальности почв, закон аналогичных топографических рядов.[ . ]

На протяжении последних десятилетий было установлено, что взаимодействие факторов почвообразования приводит в движение огромные массы вещества. В результате взаимодействия горных пород и живых организмов происходит закономерное перераспределение химических элементов, своеобразный обмен вещества. То же самое имеет место в системах живые организмы — атмосфера, горные породы — выпавшая атмосферная вода и т. п. В почве эти процессы миграции протекают особенно напряженно, так как в них участвуют одновременно все факторы почвообразования. Первоначально полагали, что движение химических элементов осуществляется в виде более или менее замкнутых кругооборотов. В дальнейшем выяснилось, что движение вещества в почве многообразно, но основное значение имеют незамкнутые циклы миграции. Процессы миграции, протекающие при почвообразовании, в свою очередь, входят в общепланетарные циклы, охватывающие всю биосферу.[ . ]

В этом аспекте очень важно представление о взаимокомпеи-сацип факторов почвообразования, из которого вытекает, что изменение воздействия одного из факторов в известных пределах может компенсироваться противодействием другого (Глазовская, 1972). Но подобная взаимокомпенсация действует лишь в определенных пределах количественного измене-, пия каждого из факторов. Когда эти пределы превышаются, эффект взаимодействия факторов становится иным и, если почва обладает определенной сепсорностыо и рефлекториостыо, в ней возникают изменения процессов, а затем и свойств, т. е. начинается ее метаморфоз (Глазовская, 1972).[ . ]

В связи с комплексным влиянием на численности популяций многих взаимодействующих факторов приходится развивать математические модели все более сложные, а особенно в тех случаях, когда вовлекаются и антропогенные факторы. Например, установлено, что действие инсектицида находится в зависимости от температуры, а последняя влияет и на плодовитость и быстроту развития паразита и хозяина; плотность популяции паразита и хозяина также влияют на размножение паразита. Отсюда температура, концентрации инсектицида, условия агротехники, плотность паразита и хозяина и т. д. комплексно влияют на численность хозяина. Многие факторы среды одновременно и разнохарактерно влияют на плотность популяций. Например, температура может оказывать как непосредственное влияние, вызывая смертность насекомого, изменяя его плодовитость или быстроту его развития, так и косвенно — через влияние на качество пищи и т. д.[ . ]

Метаногенные микроорганизмы в основном чувствительны к влиянию взаимодействующих факторов окружающей среды, как прямых, так и косвенных (рис. 4.15), которые в свою очередь управляются основными факторами, связанными с местоположением свалки. Состав твердых отходов является определяющим как для состава газа [302], так и для скорости его образования [304]. Существует слишком мало работ о потенциальных ингибиторах метаногенеза, хотя и было показано, что тяжелые металлы, токсичность которых зависит от ряда обстоятельств [263], слабо влияют на чувствительные метаногенные микроорганизмы. Предобработка может приводить к значительным изменениям. Уменьшение размера частиц от 250 до 10 мм увеличивает скорость образования газа в четыре раза, возможно, из-за увеличения площади поверхности или благодаря лучшему поступлению кислорода, так как при этом наблюдается сдвиг в ферментационном равновесии по диоксиду углерода.[ . ]

Все это приводит к заключению, что плодородие почвы, зависящее от ряда взаимодействующих факторов и, в первую очередь, от фактора, наиболее удаленного от оптимума, различно в отношении к разным породам и может изменяться на протяжении жизни леса в отношении к одной и тон же породе. Следствием этого вывода должно явиться признание изменяемости бонитета данного места произрастания.[ . ]

В. В. Докучаев показал, что почва — особое природное тело, которое образуется в результате взаимодействия факторов почвообразования, и установил характерные черты морфологии почвы (в первую очередь строение профиля). Это дало возможность разработать классификацию почв на совершенно иной основе, чем это делалось ранее.[ . ]

Выявление слабого звена цепи является важным обстоятельством не только в оптимизации и управлении взаимодействий в системе “общество-природа”, но и в экологическом прогнозировании развития ноо-биогеоценозов, а также при экспертизе проектов. Правило взаимодействия факторов позволяет рационально производить замену дефицитных веществ и воздействий на менее дефицитные, что важно в природопользовании.[ . ]

Сущность комплексной стандартизации следует понимать как систематизацию, оптимизацию и увязку всех взаимодействующих факторов, обеспечивающих экономически оптимальный уровень качества продукции в требуемые сроки.[ . ]

Требуется определить, в какой мере на фоне случайных погрешностей существенно влияние того или иного фактора x¡ или взаимодействия факторов на отклик У; провести сравнение с другими факторами и выделить наиболее существенные.[ . ]

Почва — это поверхностный горизонт земной коры, образующий небольшой по мощности слой, сформировавшийся в результате взаимодействия факторов почвообразования: климата, организмов, почвообразующих пород, рельефа местности, возраста страны (времени), хозяйственной деятельности человека.[ . ]

Наука о почве, созданная В. В. Докучаевым, качественно обогатила естествознание и раздвинула его границы, открыв путь к изучению взаимодействия факторов окружающей природной среды. По этой причине генетическое почвоведение, с одной стороны, предопределило возникновение биогеохимии, изучающей миграцию и распределение химических элементов между компонентами природы под влиянием процессов жизнедеятельности, а с другой, — создало условия для развития ланд-шафтоведения и физической географии в целом.[ . ]

Выявление указанных закономерностей, сама постановка задачи стали возможны лишь на основе концепции В. В. Докучаева о почве как результате взаимодействия факторов почвообразования. Поэтому именно с позиции генетического почвоведения мы рассмотрим основные закономерности географии почв.[ . ]

Таким образом, Докучаев показал, что понятие о почве неразрывно связано с диалектическим представлением о ее генезисе (образовании) в результате взаимодействия факторов почвообразования. Поэтому учение Докучаева о почве получило название генетического почвоведения.[ . ]

Реда жизни менные люди, намного шире обычного пони-современного мания экологической среды, такой, как описана человека в гл 4 Окружающая человека среда кроме факторов общей для всех наземных животных природной среды включает еще созданные самим человеком материальную и социальную среды. Они образуют единую сложную систему взаимодействующих факторов (рис. 5.2).[ . ]

Методы планирования экспериментов весьма разнообразны, они используются для поиска оптимальных условий и оптимизации параметров, для получения математических моделей, отражающих взаимодействие факторов, объясняющих механизм и физику явлений, а также для проверки гипотез и уточнения констант математических моделей.[ . ]

Второ.. веж.л!Я вспомогательный принцип каоается взаимодействия факторов.Так, высокая концентрация или дэст .шость одного вещества или действие другого (не минимального) фактора может изменить скорость потребления элемента питания, содержащегося в минимальном количестве. Так, в местах, где много стронция, в раковинах моллюсков кальци до некоторой степени заменяется стронцием.[ . ]

Все возрастающая роль водоемов в народном хозяйстве и прогрессирующее их загрязнение делают защиту водоемов одной из важнейших проблем санитарной техники. Разрешение ее является первоочередной задачей научно-исследовательских организаций и возможно только при условии всестороннего углубленного изучения всех взаимодействующих факторов.[ . ]

Читайте также: