Перспективы развития пэс кратко

Обновлено: 25.06.2024

Общая мощность океанских приливов на нашей планете составляет около 3000 ГВт, из которых на долю районов, где принципиально возможно строительство ПЭС, приходится 1000 ГВт. Создание ПЭС в 20 самых перспективных районах, разбросанных по всей Земле, могут обеспечить выработку электроэнергии суммарной мощностью порядка 120 ГВт.

Первой ПЭС на территории Российской Федерации является опытно- промышленная Кислогубская станция, построенная на Кольском полуострове в Кислой губе Баренцева моря в 1968 г. Параметры: напор – 4,7 м; мощность – 0,40 ГВт; годовая выработка электроэнергии – 1,2 ГВт*ч.

Сущность метода состоит в том, что строительство и монтаж объекта производятся в благоприятных условиях приморского промышленного центра, а затем в собранном виде объект буксируется по воде к месту его установки.

Опыт работы Кислогубской ПЭС и станции в Рансе позволил приступить к проектированию Мезенской ПЭС в Белом море, Пенжинской и Тугурской ПЭС в Охотском море (табл. 9.2). Обычно на ПЭС устанавливают капсульные гидроагрегаты, которые могут использоваться с относительно высоким КПД в генераторном (прямом и обратном) и насосном (прямом и обратном) режимах, а также в качестве водопропускного отверстия.

Параметры российских ПЭС

Месторасположение Средняя высота прилива, м Площадь бассейна, км 2 Средняя мощность, ГВт Годовая выработка ГВт*ч
Мезенский залив 6,0 15,2 50,0
Пенжинская губа 6,2 87,4 190,0
Тугурский залив 4,7 10,3 27,6

Общая мощность океанских приливов на нашей планете составляет около 3000 ГВт, из которых на долю районов, где принципиально возможно строительство ПЭС, приходится 1000 ГВт. Создание ПЭС в 20 самых перспективных районах, разбросанных по всей Земле, могут обеспечить выработку электроэнергии суммарной мощностью порядка 120 ГВт.

Первой ПЭС на территории Российской Федерации является опытно- промышленная Кислогубская станция, построенная на Кольском полуострове в Кислой губе Баренцева моря в 1968 г. Параметры: напор – 4,7 м; мощность – 0,40 ГВт; годовая выработка электроэнергии – 1,2 ГВт*ч.

Сущность метода состоит в том, что строительство и монтаж объекта производятся в благоприятных условиях приморского промышленного центра, а затем в собранном виде объект буксируется по воде к месту его установки.

Опыт работы Кислогубской ПЭС и станции в Рансе позволил приступить к проектированию Мезенской ПЭС в Белом море, Пенжинской и Тугурской ПЭС в Охотском море (табл. 9.2). Обычно на ПЭС устанавливают капсульные гидроагрегаты, которые могут использоваться с относительно высоким КПД в генераторном (прямом и обратном) и насосном (прямом и обратном) режимах, а также в качестве водопропускного отверстия.




В существующем мире человек все чаще задумывается о необходимости применения возобновляемых источников энергии при получении электроэнергии, одним из таких, является энергия морских приливов, а для ее преобразования служат приливные электростанции.

Как известно, природные приливы и отливы, взаимосвязаны с движением Луны и Солнца вокруг биосферы планеты Земля, а также от ее движения вокруг своей оси вращения. В зависимости от положения космических тел по отношению к Земле, приливы и отливы могут различаться по свое силе, но так как это явление происходит регулярно, то человек решил, что их можно применить для своего использования.

Принцип работы приливной электростанции

Приливная электростанция – это комплекс инженерных систем, при помощи которых энергия от движения воды, или кинетическая энергия воды, преобразуется в электрическую.

Характер работы – цикличный, это обусловлено периодичностью приливов и отливов. В период покоя, а это происходит когда отлив заканчивается, или только начинается прилив, кинетическая энергия воды мала, и ее недостаточно. Этот период длится 1-2 часа. В активный период, ее продолжительность 4-5 часов, энергия водных масс, преобразуется в электрическую энергию. Циклы, в течение суток повторяются 4 раза.

Основным элементом любой электростанции служит генератор, который вырабатывает электрический ток, разница лишь в механизме, приводящем его во вращательное движение. В варианте приливной электростанции, этим механизмом становится гидротурбина.

приливная схема

Для того чтобы повысить КПД такого сложного комплекса, как приливная электростанция, выбирается местоположение, где регистрируются максимальные приливы. Затем монтируется плотина, которая отделяет акваторию самого моря от прибрежной зоны.

В тело построенной плотины монтируются гидротурбины, которые преобразуют кинетическую поступательную энергию воды, в кинетическую вращательную энергию. Также, чтобы повысить коэффициент использования, изготавливаются резервные водохранилища, которые во время прилива наполняются морской водой.

Во время отлива, набранная водная масса увеличивает количество вырабатываемой электрической энергии, за счет увеличения объема, который проходит через турбину. В качестве механизма, обеспечивающего набор воды во время прилива, выступают также гидротурбины.

Показателем работы электростанции любого типа является ее мощность, которая зависит от технических показателей и вида преобразуемой энергии.

У приливных электростанций мощность установки зависит от:

  • характера приливов и отливов, а также их мощности;
  • количества и объема резервных водохранилищ;
  • количества и мощности гидротурбин.

Количество турбин и их мощность напрямую зависят от характеров приливов и объема резервных хранилищ.

приливная станция

В связи с тем, что сооружение плотин сильно увеличивает стоимость строительства станции, то и развитие гидроэнергетики этого типа шло довольно медленно. Последние десятилетия появились новые материалы и новые технологии, которые не обошли своим вниманием и энергетику, в свете этого, появились новые типы приливных электростанций.

Принцип действия приливных электростанций нового поколения остался прежним, это преобразование движения водных масс, отличие же в том, что на специальной конструкции, которая закрепляется на дне, монтируются лопасти большого диаметра. Они вращаются при движении водных масс и через редукторы передают вращательное движение на генераторы. По конструкции электростанции такого типа напоминают ветряные генераторы, с той лишь разницей, что источником энергии у ветряных установок служит ветер, а у приливных станций – вода.

Плюсы и минусы использования

У любого агрегата всегда есть положительные и отрицательные аспекты его использования, и именно соотношение этих параметров определяет целесообразность его применения. Приливные электростанции не являются исключением, рассмотрим все плюсы и минусы использования этого источника энергии.

приливные

К плюсам использования можно отнести:

  1. экологическая безопасность установок;
  2. возобновляемый источник энергии;
  3. возможность рассчитать количество получаемой энергии в долгосрочной перспективе;
  4. низкая себестоимость получаемой электроэнергии;
  5. продолжительный срок эксплуатации.

К минусам данного типа электростанций относятся:

  1. высокие затраты на строительство при продолжительном сроке окупаемости проекта;
  2. малая мощность вырабатываемой энергии;
  3. цикличность работы.

Приливные электростанции в России

Использование источников энергии, способных к возобновлению, которые позволяют получать электроэнергию с низкой себестоимостью, дает ученым и инженерам всех стран, новые идеи и способы воплощения их в жизнь.

На территории нашей страны уже построен ряд приливных электростанций, и работы в этом направлении продолжаются.

Успешными проектами являются следующие.

Кислогубская ПЭС

Расположена в губе Кислая Баренцова моря, в Мурманской области. Работала с 1968 по 1992 год, когда
была поставлена на консервацию. Начиная с 2004 года производилась реконструкция станции, и с 2007 года работа станции была возобновлена. В настоящее время станция работает в штатном режиме.

кислогубская

  • Электрическая мощность – 1,7 МВт;
  • Тип турбин – ортогональные;
  • Количество турбин – 2 комплекта;
  • Количество генераторов – 2 шт.;
  • ОРУ – 35 кВ.

Малая Мезенская ПЭС

Расположена в Мезенском заливе Белого моря, в Архангельской области. Начало работы – 2007 год, работает по настоящее время.

  • Электрическая мощность – 1,5 МВт;
  • Тип турбины – ортогональная;
  • Количество турбин – 1 комплект;
  • Количество генераторов – 1 шт.

Ведутся работы по увеличения мощности и модернизации станции в более крупную Мезенскую ПЭС.

В настоящее время, кроме перечисленных выше, уже успешно реализованных, в стадии разработки и реализации находится еще несколько проектов.

Северная ПЭС

Расположена в губе Долгая-Восточная Баренцова моря, в Мурманской области. Проектная мощность 12,0 МВт, годовая выработка электрической энергии составит 23,8 млн. кВт/часов.

Пенжинская ПЭС пенжинская

Расположена в Пенжинской губе залива Шелихоа в Охотском море.

Проектная мощность 21,4 ГВт, годовая выработка электрической энергии составит 50,0 млрд. кВт/часов.

Тугурская ПЭС

Расположена в Тугурском заливе Охотского моря, в Хабаровском крае.

Проектная мощность 8,0 ГВт, годовая выработка электрической энергии составит 20,0 млрд. кВт/часов.

Использование приливных электростанций за рубежом

Использование природной энергии широко распространено во многих странах мира, так приливные электростанции успешно работают в США, Франции, Канаде, Норвегии, Южной Корее, Великобритании, Китае и Индии. Важными условиями наличия подобных энергетических объектов являются: наличие технических возможностей и присутствие собственных морских побережий.

Рассмотрим несколько зарубежных проектов

Великобритания

лагуна

В 1913 году около города Ливерпуль в бухте Ди в Великобритании впервые в мире запустили приливнуюэлектростанцию, мощность которой была 0,635 МВт.

В настоящее время там же в Великобритании на реке Северн идёт подготовка по реализации проекта в строительстве уже самой большой и мощной приливной электростанции. Проектная мощность составляет 8,6 ГВт.

Первая подобную станцию, в этой стране, начали строить в 1935 году. В настоящее время успешно реализованы несколько проектов, и есть проекты в стадии разработки.

Южная Корея

В планах строительство еще нескольких электростанций подобного типа.

аннаполис

Норвегия

Франция

Хотя использованием возобновляемых источников энергии интересуется большое количество специалистов из разных стран нашей планеты, тем не менее широкое распространение способ использования энергии природных приливов и отливов пока не получил. Это обусловлено рядом объективных причин.

Причины малой распространенности приливных станций

Мировой океан обладает огромным потенциалом, энергией которого можно обеспечить почти 20% от необходимого количества энергопотребления.

прилив

Причинами, которыми можно объяснить малое распространение приливных электростанций, можно назвать следующие:

  1. При строительстве станций подобного типа приходится осуществлять вывод из общего пользования прибрежных территорий, что обусловлено организацией бассейна станции (строительство резервных бассейнов и охранные мероприятия).
  2. Высокая стоимость при малой проектной мощности, что определяет большой срок окупаемости проекта.

Приведенные выше причины постепенно утрачивают свою актуальность, т. к. при использовании новых типов станций с лопастно-редукторными агрегатами, позволяет отказаться от строительства плотин и резервных бассейнов, что значительно снижает стоимость строительства и снижает сроки окупаемости проекта. А разработка новых, более мощных генераторов, позволяет получать большее количество электрической энергии, при тех же исходных параметрах первичной энергии, которой является энергия приливов и отливов.

Электростанции использующие в своей основе энергию приливов называются приливными. ПЭС возводятся на морских побережьях, так как их работа зависит от гравитации и вращения земного шара. Уровень воды на таких станциях меняется два раза в день. Это напрямую связано с воздействием сил Солнца и Луны. Уровень воды может меняться до восемнадцати метров.

Для того, чтобы обеспечить стабильное функционирование станции, необходимо возведение плотины. Это помогает избежать резких колебаний в уровне воды в разные времена года. Выработку электроэнергии на ПЭС обеспечивают гидроагрегаты. Они также могут выполнять функцию насосов, в сезоны отсутствия приливов. Устанавливаются они либо на самой плотине, либо на специально оборудованных судах. В плотинных сооружениях для генераторов устанавливаются протоки, внутри которых и размещаются турбины.

ПЭС также могут работать и без возведения плотин. Гидроагрегаты устанавливаются на дне моря или пролива. Их производительность зависит от скорости течения, приливов и отливов.


Широкое использование ПЭС получили в странах, географическое положение которых обеспечивает им открытый выход к морю. А точнее, в:

  • Южной Корее;
  • Великобритании;
  • США;
  • Канаде;
  • Франции;
  • Китае;
  • ● Индии.

В России такая станция существует в качестве экспериментального проекта. Кислогубская ПЭС была возведена в 1968 году на берегу залива Баренцева Моря. Но в 1994 году была законсервирована и переведена на экспериментальные исследования. Сегодня ПЭС продолжает свою работу, но вырабатываемые ей объемы не могут полностью обеспечить даже саму себя. На этапе проектирования находится приливная станция Северная ПЭС. Предполагаемая мощность станции будет составлять 12 МВт. По предварительным подсчетам стоимость строительства составит 4 миллиарда рублей.

Как и многие источники энергии, ПЭС требуют больших расходов на строительство, а также могут нанести вред морской флоре и фауне при нарушении правил эксплуатации. Однако такие станции обладают и рядом преимуществ, в числе которых:

  • возобновляемость источников;
  • экологичность;
  • низкая стоимость производства;
  • сохранение ресурсов плодородных земель от затопления;
  • безопасность;
  • ● простота в обслуживании.


Фото: eenergy.media

  • Динамическая. Работу станции обеспечивают низконапорные турбины. А сама плотина возводится не на берегу, а в море. Средняя протяженность от 35 до 55 км;
  • Плотинная. Плотина возводится на берегу моря, где захватывает и удерживает воду в дни приливов. При возвращении воды в море, вода высвобождается и обеспечивает работу турбин;
  • Генераторная. Работу таких агрегатов обеспечивает кинетическая энергия земли, которая обеспечивает движение приливов. Принципы функционирования генераторов приливных потоков схожи с работой ветряных турбин. Их встраивают в специальные мосты или погружают на морское дно;
  • Лагунная. Плотина возводится по кругу в виде водоемов, которые обеспечивают работу агрегатов.

Особенности приливных турбин


Внешне приливные турбины напоминают ветряные мельницы. Однако технически лопасти ротора намного прочнее из-за плотности воды. Размещаются они как в вертикальном, так и в горизонтальном положении.

Перспективы развития ПЭС

На 2021 год в мире функционирует около десяти ПЭС. Так как это сравнительно новый источник производства электроэнергии, исследования в данной области продолжаются до сих пор. Однако многие эксперты считают, что приливные электростанции обладают большими перспективами для развития. Уже сегодня небольшие ПЭС в Канаде сокращают выбросы парниковых газов, обеспечивают электричеством до 600 домов и создают новые рабочие места, благоприятно влияя на экономику региона.

Благодаря ПЭС производство электроэнергии возросло на 16% в 2018 и на 13% в 2019 годах. В будущем морские приливы смогут покрыть большую часть мировой потребности в электроэнергии. По экономическим прогнозам к 2050 году такие станции смогут обеспечить до 10% потребностей Евросоюза.

Производительность таких станций достигает до 254 МВт в год. Они не зависят ни от наличия топлива, ни от водности сезона. ПЭС также могут стать дополнительным источником, покрывающим перебои в других видах производства электроэнергии.

Почему мы?

Компания Changsha Lichuan Hydroelectric Power Control Equipment Co., LTD и ASUMB помогает предпринимателям по всему миру реализовать проекты по производству приливных гидроэлектростанций с 2009 года. Наши специалисты не только помогут Вам создать безопасный и рентабельный источник производства электроэнергии, но также окажут услуги по:

Мы поддержим Ваш проект на всех этапах реализации, а также после окончания работ. У нас Вы также можете купить все необходимое оборудование для ПЭС. Все созданные нами технологии не имеют аналогов в мире, так как созданы на основе уникальных исследований и защищены интеллектуальным правом. На основе чего, мы с уверенностью гарантируем Вам высокое качество и долговечность нашего оборудования.


Но самое пристальное внимание сегодня обращено на проект создания Пенжинской ПЭС и двух её "сестёр" — Тугурской и Мезенской приливных электростанций. Они могут стать основой энергосистемы Дальнего Востока, необходимой для производства экологически чистого водорода. На реализацию этого мегапроекта планируется выделить $200 миллиардов.

Человечество давно ищет максимально продуктивный и при этом экологичный способ добычи электроэнергии. Сегодня никого не удивить гидроэлектростанциями, тепловыми электростанциями и АЭС. Также наверняка многие слышали о генераторах, преобразующих ветровую и солнечную энергию в электричество. У каждого из этих вариантов есть свои плюсы и минусы. Тепловые станции загрязняют атмосферу и расходуют углеводородный ресурс, аварии на ГЭС чреваты разрушительными последствиями для жителей прилегающих к ним территорий. Ветровые и солнечные станции зависят от времени суток. Атомные станции производят радиоактивные отходы, а в случае аварии опасны для окружающей среды и человека. Есть ещё важнейший ресурс — энергия приливов и отливов, а точнее — кинетическая энергия вращения Земли. На её использовании и базируется работа ПЭС.

Использовать энергию воды человечество додумалось ещё в XIX веке. Первая российская ГЭС — Берёзовская — построена в 1892 году. Использовать же приливную энергию стали уже в 60-е годы XX века. Первыми это сделали французы, запустив в 1966 году ПЭС La Rance в Северной Бретани. Длина плотины составляет 800 метров, вырабатываемая мощность — 240 мегаватт. Это самая мощная на сегодняшний день приливная электростанция. В 1968 году в СССР ввели в эксплуатацию экспериментальную Кислогубскую ПЭС в Мурманской области. Гидроагрегат для неё предоставили французы. Сегодня гидротурбины для этой станции производит предприятие "Севмаш", а генераторы — ООО "Русэлпром". Благодаря Кислогубской ПЭС были изучены основные аспекты использования этой технологии.

По итогам эксплуатации разработчики сделали вывод, что ПЭС безопасны для экологии. При воздействии природных катаклизмов (землетрясения, наводнения, оползни) ПЭС, в отличие от ГЭС или АЭС, не угрожают жителям прилегающих к станциям районов. Они защищают берега от шторма и даже смягчают местный климат. ГЭС уничтожает свыше 90% планктона, ПЭС наносит минимальный урон — в 5–10%.

ПЭС оптимизируют транспортную систему, открывают новые возможности для развития туризма. Единственный минус — высокая стоимость, но при грамотном использовании вложения отобьются за несколько лет. Сегодня ПЭС стоят на передовой энергетики всех ведущих стран — Великобритании, Канады, США, Южной Кореи, Китая, Индии. У России есть шансы их всех обойти. Благодаря Пенжинской губе.

Пенжинская губа не особенно на слуху у тех, кто не вникал в эту тему. Тем не менее это уникальное место. Она находится в Охотском море у основания Камчатки — аккурат там, где полуостров стыкуется с материком. Её длина — 300 километров, средняя ширина — 65 километров, максимальная глубина — 62 метра. Во время прилива волна поднимается на 13–15 метров. Через её ворота каждые сутки перемещается до 500 кубических километров воды. К примеру, река Волга перенесёт столько воды за два года, Дон — за 25 лет. Самая полноводная в мире река Амазонка справится с такой нагрузкой за 25 дней. Пенжинской губе на это требуется всего лишь 24 часа.

Работает электростанция так: в море устанавливается дамба, в неё монтируются гидроагрегаты, включающие в себя турбину и генератор. Сегодня в России производят гидроагрегаты, составляющие конкуренцию зарубежным аналогам, а в ряде случаев и превосходящие их по показателям эффективности и надёжности. Во время прилива мощный поток воды вращает гидротурбину, вырабатывая большое количество тока. Во время отлива происходит то же самое. То есть турбина никогда не простаивает. Она также пригодна для комбинированного использования с другими типами энергосистем. Пенжинский проект состоит из двух этапов: намечено строительство Северного створа (мощность 21 гигаватт) и Южного створа (мощность 87 гигаватт).

Чтобы эффективность такого сооружения стала очевиднее, нужно сравнить будущую ПЭС с другими электростанциями. Печально известная Чернобыльская АЭС вырабатывала 1 гигаватт в час (1 миллиард Вт·ч), Саяно-​Шушенская ГЭС вырабатывает 4,6 ГВт·ч. Признанный чемпион среди мировых электростанций — китайская гравитационная плотинная ГЭС "Три ущелья" на реке Янцзы выдаёт до 22,5 ГВт·ч. Потенциально Пенженская ПЭС способна вырабатывать свыше 100 ГВт·ч. Это как 25 современных АЭС, или 40% общей мощности российской энергосистемы.

На бумаге даже среди мировых уже построенных в разных точках планеты ПЭС ей нет конкурентов — она мощнее французской La Rance в 500 раз. Специалисты отмечают, что при такой отдаче для рационального использования вырабатываемой энергии вокруг Пенжинской ПЭС нужно выстроить многоуровневую инфраструктуру.

Главная проблема состоит в том, что стоимость строительства такого объекта очень велика — ещё во времена СССР на строительство Северного створа уникальной ПЭС планировали потратить примерно 40 млрд долларов. Южный, более протяжённый район, требовал вложений примерно на 120–150 млрд. Как будут решать эту проблему инженеры и экономисты, ещё предстоит понять, однако 100 ГВт·ч электричества на дороге не валяются, и инвестиции в такой проект могут окупиться многократно.

К тому же ближайшие потребители, а именно — Камчатка, Магадан, Приморье, Сахалин, Хабаровский край, даже не выключая свет дома и на работе, столько энергии переварить не в силах. Менее мощная — проектируемая в данный момент Мезенская ПЭС — способна обеспечить электричеством семь таких городов, как Санкт-​Петербург. Потенциальными покупателями электроэнергии могут стать ближайшие соседи — Китай, Южная и Северная Корея. На поставках электроэнергии в эти страны Россия может зарабатывать постоянно, особенно с учётом того, что человечество движется к водородно-​электрическому транспорту.

Но помимо производства водорода, для которого нужно огромное количество электроэнергии, приливные электростанции могут запитать и традиционные объекты промышленности, например НПЗ, авиационные, сталелитейные и другие заводы. В перспективе, если проект доведут до ума, а хотя бы один створ на каждом направлении уникальной электростанции будет построен, россияне забудут, что такое дорогое электричество и смогут жечь света столько, сколько нужно.


В статье авторы раскрывают проблемы, мешающие реализации Пенжинской ПЭС.

Ключевые слова: Пенжинская губа, проект, приливная электростанция.

Ветер, волны, молнии, ураганы, смерчи, вулканические извержения представляют собой масштабные перемещения масс и энергии воздуха, воды, тепла и статического электричества. Если получится научиться отбирать у природы хотя бы часть ее силы для потребностей нашей растущей цивилизации, то за будущее человечества можно быть спокойными. В противном случае при растущем потреблении не возобновляемых ресурсов неизбежно их истощение. Когда-нибудь уголь, нефть, газ, уран, плутоний и прочие полезные ископаемые закончатся, и наступит всепланетный энергетический коллапс. Возможным выходом из перспективного кризиса справедливо считаются приливные электростанции [1].

Одним из перспективных решений является проект Пенжинской ПЭС.

Он предусматривает расположение Пенжинской ПЭС в Охотском море, северо-восточная часть залива Шелихова в Пенжинской губе. Этот участок является одним из самых перспективных мест для строительства приливной электростанции по нескольким причинам:

− высота прилива здесь достигает 13,4 м.;

− очертание в плане самой губы позволяет создать большой бассейн.

В настоящий момент разработано два перспективных проекта: южный створ и северный створ (см. рис. 1). Основные характеристики двух створов приведены в таблице 1.

Пенжинская губа и створы ПЭС [2, с. 264]

Основные характеристики створов

Наименование

Месторасположение

Между мысами Средний и Водопадный

Между мысами Поворотный-Дальний

Мощность ( N, ГВт)

Годовая отдача (ТВт*ч)

Длина ( L, км)

Описание

На участках с глубинами 26 м можно расположить 568 гидроагрегатов с D 1 = 10 м мощностью по 19,8 МВт каждый, а на участке меньших глубин (21 м) 920 агрегатов с D 1 = 7,5 м мощностью по 11 МВт каждый.

Здесь может быть расположено 519 восьмиагрегатных блоков размером 103х98 и высотой от 90 до 78 м.

Как видно из таблицы, проект южного створа является более масштабным, чем проект северного створа.

Сравнение проектов Пенжинской ПЭС с крупнейшими существующими ГЭС, показывает, что ни одна из построенных ГЭС не превосходит ПЭС по мощности и годовой выработке электроэнергии. По сведениям, приведенным в таблице 2, проект северного створа Пенжинской ПЭС приближается по мощности к крупнейшей ГЭС Три ущелья. А проект южного створа Пенжинской ПЭС почти в 4 раза превосходит её по мощности.

Сравнение крупнейших ГЭС мира с проектами Пенжинской ПЭС

Наименование

Страна (год)

Мощность ( N, МВт )

Среднегодовая выработка (млн кВт*ч)

Проект южного створа Пенжинской ПЭС

Российская Федерация, годы проекта 1972–1996 гг.

Китай, ввод в эксплуатацию 2003 г.

Проект северного створа Пенжинской ПЭС

Российская Федерация, годы проекта 1983–1996 гг.

Бразилия и Парагвай, ввод в эксплуатацию 1984 г.

Китай, ввод в эксплуатацию 2013 г.

Российская Федерация, ввод в эксплуатацию 1978 г.

Проведя сравнительный анализ (таблица 2) можно сказать, что на сегодняшний день не существует ГЭС мощнее, чем проекты Пенжинской ПЭС.

Сравнение Пенжинской ПЭС с построенными ПЭС всего мира, показывает, что в перспективе этот проект может стать самым крупным по вырабатываемой электроэнергии в приливной энергетике. Это наглядно представлено на рис. 2.

Сравнение построенных ПЭС с проектами Пенжинской ПЭС

В настоящий момент существует ряд проблем, препятствующих реализации проекта:

Стоимость строительства на 2007 год Пенжинской ПЭС-1 (Северный створ) — оценивается в 60 млрд. долларов США, ПЭС-2 (Южный створ) — в 200 млрд. долларов. Для одной страны данная сумма является очень большой, поэтому единственным решением будет создание транснационального консорциума, в который будут входить страны азиатско-тихоокеанского региона, такие как Япония, Россия, США, Канада, Республика Корея, Китай и т. д.

В данном регионе в настоящий момент нет потребителя такого количества электроэнергии. Однако в будущем, если ПЭС будет построена, её мощности можно использовать по нескольким направлениям:

− электроэнергию от Пенжинской ПЭС можно использовать для преобразования угля в горючие углеводороды: — синтетическую нефть или метанол.

− строительство линий электропередач в Хабаровский и Приморский края;

− производство водорода на Камчатке.

Наиболее перспективным из перечисленных является производство водорода на Камчатке. Пенжинская ПЭС позволит организовать экономически эффективное производство водорода, который затем будет связан углеродсодержащим веществом с целью получения жидкого топлива. А в перспективе, по мере развития технологий водородной энергетики, водород может быть использован в чистом виде.

Объём производимого на Камчатке водорода может достичь 30 млрд. куб. м в год, из которого далее можно получить 10 млн. т жидкого топлива [4].

Ледовая обстановка в Пенжинской губе очень сурова. Продолжительные зимы с сильными северо-западными ветрами способствуют развитию больших масс льда. Льды Охотского моря — исключительно местного образования. Здесь встречаются как неподвижные льды — припай, так и плавучие льды, представляющие собой основную форму льдов моря [5].

В Пенжинской губе лед появляется в конце октября. Сплошным льдом губа не покрывается из-за очень сильных приливных течений, однако, в местах, укрытых от прямого действия течений, образуется припай [6].

Общая продолжительность ледового периода в северной части моря достигает 280 дней в году.

Решить проблему дрейфующего льда можно путем проектирования наплавного блока станции с криволинейной формой верхней его части (см. рис. 3). В этом варианте наплавного блока подразумевается переброска льда через верх плотины.

Многоярусная наплавная конструкция Пенжинской ПЭС [2, с. 134]

Рис. 3. Многоярусная наплавная конструкция Пенжинской ПЭС [2, с. 134]

Данная проблема связана в свою очередь со строителями на время возведения станции и в будущем с обслуживающим персоналом во время её эксплуатации. В районе Пенжинской губы нет крупных городов и поселков. Вследствие этого необходимо строительство комплексов для проживания людей.

Доставка людей к месту строительства по морю осложняется льдами. Предполагается доставлять людей в летний период, вследствие этого работа на станции будет вестись вахтовым методом. Доставлять людей по земле не представляется возможным, так как отсутствует железная дорога.

Проект Пенжинской ПЭС требует тщательного изучения и проработки с точки зрения инженерии, логистики и финансов. Но в случае реализации он позволит создать вокруг ПЭС водородно-энергетический кластер Камчатки, способный в течение 10–15 лет превратить Камчатку в мировой центр по производству водорода и разработки новых технологий его хранения, транспортировки и использования.

Основные термины (генерируются автоматически): проект, Северный створ, Южный створ, Пенжинская губа, Китай, Камчатка, мощность, производство водорода, российская Федерация, жидкое топливо.

Читайте также: