Основные узлы и механизмы цифрового фотоаппарата кратко

Обновлено: 05.07.2024

В предыдущей статье в разделе технических основ фотодела мы рассматривали виды фотоаппаратов. Если кто не читал статью, настоятельно рекомендую ознакомиться, потому что тема сегодняшней статьи будет перекликаться с предыдущей. Для всех остальных еще раз повторю резюме. Существует три типа фотоаппаратов: компактные, беззеркальные и зеркальные. Компактные – самые простые, а зеркальные – самые продвинутые. Практический вывод статьи заключался в том, что для более-менее серьезного занятия фотографией следует остановить свой выбор на беззеркалках и зеркалках.

Сегодня мы поговорим об устройстве фотоаппарата. Как и в любом деле, нужно понимать принцип работы своего инструмента для уверенного управления. Не обязательно досконально знать устройство, но основные узлы и принцип действия понимать надо. Это позволит взглянуть на фотоаппарат с другой стороны – не как на черный ящик со входным сигналом в виде света и выходом в виде готового изображения, а как на устройство, в котором вы разбираетесь и понимаете, куда дальше проходит свет и как получается итоговый результат. Компактные камеры затрагивать не будем, а поговорим о зеркальных и беззеркальных аппаратах.

Устройство зеркального фотоаппарата

Глобально фотоаппарат состоит из двух частей: фотоаппарата (его еще называют body — тушка) и объектива. Тушка выглядит следующим образом:

Тушка — вид спереди Тушка – вид сверху

А вот так выглядит фотоаппарат в комплекте с объективом:

тушка с объективом

тушка с объективом 1

фотоаппарат с объективом

Теперь посмотрим на схематическое изображение фотоаппарата. Схема будет отображать структуру фотоаппарата “в разрезе” с такого же ракурса, как на последнем изображении. На схеме цифрами обозначены основные узлы, которые мы и будем рассматривать.

устройство фотоаппарата

Объектив представляет собой набор линз, которые пропускают свет и формируют изображение. Конструкция объективов, их типы и особенности не входят в данную статью. Поэтому рассмотрим их позже, а сейчас двигаемся дальше.

диафрагма

Внутри объектива находится диафрагма. Она представляет собой набор лепестков, которые накладываются друг на друга и образуют отверстие круглой формы. В зависимости от того, на какое расстояние будет сдвинут лепесток от начального положения, будет зависеть площадь кружка. Итак, мы пришли к тому, что диафрагма служит для регулирования количества пропускаемого света. Она имеет свойство открываться и закрываться. При полностью закрытой диафрагме площадь отверстия минимальна и света проходит также минимум, при полностью открытой – наоборот.

Часть света, которая прошла через диафрагму, через дальнейший набор линз попадает на полупрозрачное зеркало 3. Если снять объектив, то первое, что вы увидите внутри, будет зеркало. Вернитесь в начало статьи, посмотрите на первое изображение и вы увидите не что иное, как зеркало. На нем световой поток разделяется на две части.

Первая часть потока поступает на систему фокусировки 4. Система фокусировки представляет собой несколько фазовых датчиков, которые определяют, находится ли изображение в фокусе или нет и выдают задание на перемещение линз так, чтобы нужный объект попал в фокус.

Вторая часть светового потока поступает на фокусировочный экран 5, который позволяет фотографу оценить точность фокусировки и увидеть, какой будет ГРИП (глубина резко изображаемого пространства) в итоговом снимке. Над фокусировочным экраном, который представляет собой матовое стекло, расположена выпуклая линза, увеличивающая картинку.

После фокусировочного экрана свет поступает в пентапризму. Изображение, поступающее с объектива 1 на зеркало 3, является перевернутым. Пентапризма состоит из двух зеркал, которые переворачивают изображение, чтобы в итоге в видоискателе оно отображалось нормальным. Выступ сверху характерен для зеркалок и представляет собой не что иное, как пентапризму.

С пентапризмы свет поступает в видоискатель, в котором мы и видим итоговое нормальное (не перевернутое) изображение. Основными характеристиками видоискателя являются его покрытие, размер и светлость. В современных зеркалках покрытие видоискателя составляет 96-100%. Если оно меньше 100%, то получаемая фотография будет немного больше, чем видит фотограф. Но, во-первых, это незначительно, а, во-вторых, больше — не меньше. При высоком разрешении матриц в современных камерах лишнее можно “отрезать”. Размер видоискателя определяется его площадью, а светлость – качеством и светопропускаемостью стекол, из которых он изготовлен. Чем видоискатель больше и стекла светлее, тем легче фотографу будет фокусироваться и определять, попал ли нужный объект в фокус. В целом работать со светлыми и большими видоискателями одно удовольствие, но устанавливаются они только в топовые камеры и фотоаппараты уровня выше среднего.

После настройки всех параметров, кадрирования и фокусировки фотограф нажимает кнопку спуска. При этом зеркало поднимается и поток света попадает на главный элемент фотоаппарата – матрицу.

зеркало поднято

Как видите, поднимается зеркало и открывается затвор 1. Затвор в зеркалках механический и определяет время, в течении которого свет будет поступать на матрицу 2. Это время называется выдержкой. Также его называют временем экспонирования матрицы. Основные характеристики затвора: лаг затвора и его скорость. Лаг затвора определяет, как быстро откроются шторки затвора после нажатия кнопки спуска – чем меньше лаг, тем больше вероятность, что вон та проносящаяся мимо вас машина, которую вы пытаетесь снять, получится в фокусе, не смазана и скадрирована так, как вы это сделали при помощи видоискателя. У зеркалок и беззеркалок лаг затвора небольшой и измеряется в мс (миллисекундах). Скорость затвора определяет минимальное время, в течении которого будет открыт затвор – т.е. минимальную выдержку. На бюджетных камерах и камерах среднего уровня минимальная выдержка – 1/4000 с, на дорогих (в основном полнокадровых) – 1/8000 с. Когда зеркало поднято, свет не поступает ни на систему фокусировки, ни на пентапризму через фокусировочный экран, а попадает прямо на матрицу через открытый затвор. Когда вы делаете кадр зеркальным фотоаппаратом и при этом все время смотрите в видоискатель, то после нажатия на спуск вы на время увидите черное пятно, а не изображение. Это время определяется выдержкой. Если установить выдержку 5 с, к примеру, то после нажатия на кнопку спуска вы будете наблюдать черное пятно в течении 5 секунд. После окончания экспонирования матрицы зеркало возвращается в исходное положение и свет опять поступает в видоискатель. ЭТО ВАЖНО! Как видите, существуют два основных элемента, регулирующих поток света, попадающий на сенсор. Это диафрагма 2 (см. предыдущую схему), которая определяет количество пропускаемого света и затвор, который регулирует выдержку – время, за которое свет попадает на матрицу. Эти понятия лежат в основе фотографии. Их вариациями достигаются различные эффекты и важно понять их физический смысл.

Матрица фотоаппарата 2 представляет собой микросхему со светочувствительными элементами (фотодиодами), которые реагируют на свет. Перед матрицей стоит светофильтр, который отвечает за получение цветной картинки. Двумя важными характеристиками матрицы можно считать ее размер и соотношение сигнал/шум. Чем выше и то, и другое, тем лучше. Подробнее о фотоматрицах мы поговорим в отдельной статье, т.к. это очень обширная тема.

С матрицы изображение поступает на АЦП (аналого-цифровой преобразователь), оттуда в процессор, обрабатывается (или не обрабатывается, если ведется съемка в RAW) и сохраняется на карту памяти.

Еще к важным деталям зеркалок можно отнести репетир диафрагмы. Дело в том, что фокусировка производится при полностью открытой диафрагме (насколько это возможно, определяется конструкцией объектива). Выставляя в настройках закрытую диафрагму, фотограф не видит изменений в видоискателе. В частности, ГРИП остается постоянной. Чтобы увидеть, каким будет выходной кадр, можно нажать на кнопку, диафрагма прикроется до установленного значения и вы увидите изменения до нажатия на кнопку спуска. Репетир диафрагмы устанавливается на большинстве зеркалок, но мало кто им пользуется: новички часто о нем не знают или не понимают назначения, а опытные фотографы примерно знают, какой будет ГРИП в тех или иных условиях и им легче сделать пробный кадр и в случае необходимости поменять настройки.

Устройство беззеркального фотоаппарата

Давайте сразу посмотрим на схему и будем обсуждать предметно.

устройство беззеркалки

Беззеркалки не в пример проще зеркалок и по сути являются их упрощенным вариантом. В них нет зеркала и сложной системы фазовой фокусировки, а также установлен видоискатель другого типа.

Световой поток попадает через объектив на матрицу 1. Естественно, свет проходит через диафрагму в объективе. Она не обозначена на схеме, но, думаю, по аналогии с зеркалками вы догадались, где она расположена, ведь объективы зеркалок и беззеркалок по конструкции практически не отличаются (разве что размерами, байонетом и количеством линз). Более того, большинство объективов от зеркалок через переходники можно установить на беззеркалки. В беззеркалках нет затвора (точнее, он электронный), поэтому выдержка регулируется временем, в течении которого матрица включена (принимает фотоны). Что касается размера матрицы, то он соответствует формату Micro 4/3 или APS-C. Второй используется чаще и полностью соответствует матрицам, встраиваемым в зеркалки от бюджетного до продвинутого любительского сегмента. Сейчас стали появляться полнокадровые беззеркалки. Думаю, в будущем количество FF (Full Frame — полнокадровых) беззеркалок будет увеличиваться.

Под цифрой 3 изображен экран, на который выводится изображение в режиме реального времени (режим Live View). В отличии от зеркалок в беззеркалках это не сложно сделать, потому что световой поток не преграждается зеркалом, а беспрепятственно поступает на матрицу.

В общем все выглядит просто замечательно – убраны сложные конструктивные механические элементы (зеркало, датчики фокусировки, фокусировочный экран, пентапризма, затвор). Это значительно облегчило и удешевило производство, уменьшило в размере и весе аппараты, но также создало массу других проблем. Надеюсь, вы помните их из раздела о беззеркалках в статье о типах фотоаппаратов. Если нет, то сейчас мы их обсудим, попутно разбирая, какими техническими особенностями обусловлены эти недостатки.

Первая главная проблема – видоискатель. Так как свет попадает прямо на матрицу и никуда не отражается, то мы не можем видеть изображение напрямую. Мы видим лишь то, что попадает на матрицу, потом непонятным образом преобразуется в процессоре и выводится на непонятно какой экран. Т.е. в системе существует множество погрешностей. Мало того, у каждого элемента имеются свои задержки и изображение мы видим не сразу, что неприятно при съемке динамических сцен (из-за постоянно улучшающихся характеристик процессоров, экранов видоискателей и матриц это не так критично, но все равно имеет место быть). Изображение выводится на электронный видоискатель, у которого высокое разрешение, но которое все равно не сравнится с разрешением глаза. Электронные видоискатели имеют свойство слепнуть при ярком свете из-за ограниченной яркости и контрастности. Но более чем вероятно, что в будущем эту проблему преодолеют и чистое изображение, пропущенное через ряд зеркал канет лету также, как и “правильная пленочная фотография”.

Вторая проблема возникла из-за отсутствия фазовых датчиков автофокуса. Вместо них используется контрастный метод, который по контуру определяет, что должно быть в фокусе, а что – нет. При этом линзы объектива перемещаются на определенное расстояние, определяется контрастность сцены, линзы перемещаются опять и снова определяется контрастность. И так до тех пор, пока не будет достигнута максимальная контрастность и камера не сфокусируется. Это занимает слишком много времени и такая система менее точна, чем фазовая. Но в то же время контрастный автофокус представляет собой программную функцию и не занимает дополнительного места. Сейчас в матрицы беззеркалок уже научились встраивать фазовые датчики, получив гибридный автофокус. По скорости он сопоставим с системой автофокусировки у зеркалок, но пока что устанавливается только в избранных дорогих моделях. Думаю, в будущем эта проблема также будет решена.

Третья проблема представляет собой низкую автономность из-за напичканности электроникой, которая постоянно работает. Если фотограф работает с камерой, то все это время свет поступает на матрицу, постоянно обрабатывается процессором и выводится на экран или электронный видоискатель с высокой скоростью обновления – фотограф ведь должен видеть происходящее в реальном времени, а не в записи. Кстати, последний (я про видоискатель) тоже потребляет энергию, и не мало, т.к. его разрешение высоко и яркость с контрастностью должны быть на уровне. Отмечу, что при увеличении плотности пикселей, т.е. при уменьшении их размера при одном и том же энергопотреблении неизбежно снижается яркость и контрастность. Поэтому на питание качественных экранов с высоким разрешением расходуется много энергии. В сравнении с зеркалками количество кадров, которое можно сделать от одного заряда батареи, в несколько раз меньше. Пока что эта проблема критична, потому что значительно уменьшить энергопотребление не получится, а рассчитывать на прорыв в элементах питания не приходится. По крайней мере такая проблема долгое время существует на рынке ноутбуков, планшетов и смартфонов и ее решение успехом не увенчалось.

Четвертая проблема представляет собой как преимущество, так и недостаток. Речь идет об эргономике камеры. Вследствие избавления от “ненужных элементов” зеркалочного происхождения уменьшились размеры. Но беззеркалки пытаются позиционировать как замену зеркалкам и размеры матриц это подтверждают. Соответственно, используются объективы не самого маленького размера. Небольшая беззеркалка, похожая на цифрокомпакт, просто исчезает из поля зрения при использовании телевика (объектива с большим фокусным расстоянием, сильно приближающим объекты). Также многие элементы управления спрятаны в меню. В зеркалках они вынесены на корпус в виде кнопок. Да и просто приятнее работать с аппаратом, который нормально ложится в руку, не норовит выскользнуть и в котором можно наощупь, не задумываясь оперативно менять настройки. Но размер камеры – это палка о двух концах. С одной стороны большой размер обладает выше описанными преимуществами, а с другой — малая камера помещается в любой карман, ее можно чаще брать с собой и люди обращают на нее меньше внимания.

Что касается пятой проблемы, то она связана с оптикой. Пока что существует множество байонетов (типов креплений объективов к камерам). Под них сделано на порядок меньше объективов, чем под байонеты основных систем зеркалок. Проблема решается установкой переходников, с помощью которых на беззеркалках можно использовать абсолютное большинство зеркалочных объективов. Простите за каламбур)

Устройство компактного фотоаппарата

Что касается компактов, то у них масса ограничений, основным из которых является малый размер матрицы. Это не позволяет получить картинку с низким шумом, высоким динамическим диапазоном, качественно размыть фон и накладывает еще массу ограничений. Далее идет система автофокусировки. Если в зеркалках и беззеркалках используется фазовый и контрастный виды автофокуса, которые относятся к пассивному типу фокусировки, так как ничего не излучают, то в компактах используется активный автофокус. Камерой излучается импульс инфракрасного света, который отражается от объекта и попадает обратно в камеру. По времени прохождения этого импульса определяется расстояние до объекта. Такая система работает очень медленно и не работает на значительных расстояниях.

В компактах используется несменная низкокачественная оптика. Для них недоступен широкий набор аксессуаров, как для старших собратьев. Визирование происходит в режиме Live View по дисплею или через видоискатель. Последний представляет собой обычное стекло не очень хорошего качества, не связан с оптической системой фотоаппарата, из-за чего возникает неправильное кадрирование. Особенно сильно это проявляется при съемке близлежащих объектов. Продолжительность работы компактов от одного заряда невелика, корпус маленький и его эргономичность еще намного хуже, чем у беззеркалок. Количество доступных настроек ограничено и они спрятаны в глубине меню.

Если говорить об устройстве компактов, то оно простое и представляет собой упрощенную беззеркалку. Здесь меньше и хуже матрица, другой тип автофокуса, нет нормального видоискателя, отсутствует возможность замены объективов, невысокая продолжительность работы от аккумулятора и непродуманная эргономика.

Вывод

Вкратце мы рассмотрели устройство фотоаппаратов различных типов. Думаю, теперь вы имеете общее представление о внутреннем строении камер. Эта тема очень обширна, но для понимания и управления процессами, происходящими при съемке теми или иными фотоаппаратами при различных настройках и с разной оптикой вышеизложенной информации, думаю, будет достаточно. В дальнейшем мы все-таки поговорим об отдельных важнейших элементах: матрице, системах автофокусировки и объективах. А пока давайте на этом остановимся.

Что такое цифровой фотоаппарат

устройство цифровой фотокамеры

Цифровой фотоаппарат – это все тоже устройство для фиксации статических изображений окружающего мира, с целью их последующего использования, что и его механический старший брат. Нажатием кнопки спуска затвора мир замирает на миг и этот миг уже никогда не будет забыт. Теперь этот миг запечатлен на носитель информации и доступен каждому желающему. Ровно тем же занимаются люди уже второй век подряд, держа в руках это волшебное устройство. Только если раньше процесс был затратным, то сегодня во все социальные сети загружается около полумиллиона фотографий в минуту! А сколько остается на жестком диске? Устройства фотофиксации сегодня встраиваются везде, но они обладают несколько другими принципами получения изображения. Поговорим об устройстве фототехники на примере цифрового зеркального фотоаппарата. И забегая вперед, в конце статьи разберем разницу с новшеством — беззеркальной цифровой камерой.

Начинка цифрового зеркального фотоаппарата

Основными элементами цифрового фотоаппарата являются корпус, затвор, пентапризма и зеркала, видоискатель, объектив, матрица, диафрагма, процессор, дисплей. Существуют и дополнительные элементы, которые также необходимы для получения изображения, такие как датчики фокусировки и экспозамера, карта памяти, аккумулятор и другие. Однако, хотя без них и невозможна работа цифрового фотоаппарата, их назначение говорит само за себя и в отдельном представлении не нуждается. Рассмотрим основные элементы в той последовательности, в которой через них проходит свет на пути к построению окончательного изображения.

Беззеркальный цифровой фотоаппарат

Беззеркальная фотокамера

Имея схожий принцип работы, беззеркалка все же отличается своими методами поступления света на матрицу. Беззеркальные цифровые фотокамеры становятся все более распространенными. Некоторые производители уже делают ставки именно на беззеркальное будущее.

Основными плюсами современных беззеркалок являются меньший размер (что не всегда может быть плюсом, фотографы привыкли к размерам зеркалки) и возможность видеть конечное получаемое изображение на экране еще до производства спуска затвора. Это стало возможным благодаря отсутствию зеркала.

Свет попадает на матрицу устройства напрямую. Видоискатель в беззеркалках электронный, изображение в нем формируется маленьким четким дисплеем. В этом тоже есть своеобразный плюс – 100% покрытие кадра (в оптических видоискателях показатель покрытия – около 95%). Электронный видоискатель может передать больше полезной информации – от установленных настроек до диаграммы.

Основным же недостатком цифрового беззеркального устройства является меньшая автономность. Работа дисплеев – основной потребитель энергии. В среднем в два раза автономность беззеркалок уступает зеркальным цифровым фотоаппаратам.

Изображение объекта – это свет, отраженный от него. Именно свет несет в наш глаз всю информацию. Наши глаза и мозг – природный аналог фотоаппарата. Наша память – фотоальбом. Устройство современной цифровой фотокамеры не сильно сложно в познании. Но изучение принципов работы фотоаппарата крайне необходимо начинающему фотографу и является одной из тем в любой нормальной фотошколе. Понимая как строится кадр и формируется изображение в фотокамере, гораздо легче будет понять как достигать боке, регулировать ГРИП, фокусироваться при пейзажной или портретной съемке, какое значение выдержки и диафрагмы выбрать под конкретные творческие задачи.

В этом уроке вы узнаете: Принцип действия фотоаппарата. Из каких основных элементов состоит фотокамера.

Фотография — это не только диафрагма, выдержка, оптика объектива, не только пиксели, датчики изображения, карты-носители цифровой информации или программное обеспечение. Фотография — это опыт, исследование, выражение и общение. Главное в фотографии — подметить то, что обычно остается незамеченным, и поделиться увиденным с другими. Но прежде чем приступать к съемке, необходимо получить ясное представление об устройстве современной фотокамеры. Этому и будет посвящен наш первый урок.

Принцип действия цифровой фотокамеры

Фотография прежде всего связана со светом. Рассмотрим рисунок.


Свет от солнца или искусственного источника (1) сначала отражается от сцены, находящейся перед объективом фотокамеры, а затем проходит через объектив (2) и, если он есть, затвор (7) (о затворе вы узнаете чуть позже в этом уроке) к задней стенке корпуса камеры - на матрицу (сенсор) (8). В зеркальной фотокамере (DSLR) до нажатия на кнопку спуска затвора свет, отраженный зеркалом (3), пройдя через призму (4) - попадает в видоискатель (5). При съемке зеркало поднимается, и свет попадает на матрицу, как в компактной камере. В некоторых зеркальных камерах Sony зеркало неподвижное, полупрозрачное (SLT камеры).

Этот процесс аналогичен прохождению света через хрусталик человеческого глаза к колбочкам и палочкам, расположенным на задней стенке глаза, а также к зрительным нервам. Когда же свет достигает задней стенки корпуса, он попадает на чувствительный элемент (датчик изображения), который преобразует свет в электрическое напряжение. Затем полученная таким образом информация обрабатывается процессором для исключения помех, расчета значений цвета, формирования файла данных изображения и записи этого файла на носитель информации (карту для хранения цифровых изображений). После этого фотокамера подготавливается к экспонированию следующего изображения.


Весь этот процесс, в течение которого огромное количество информации обрабатывается и записывается на носитель, происходит довольно быстро.

Ниже представлены рисунки, дающие представление об основных элементах, из которых состоит компактная (беззеркальная) и зеркальная фотокамера.



Рассмотрим подробнее эти основные элементы, из которых состоит цифровая фотокамера и которые позволяют свету, отраженному от объекта съемки, стать фотографией.

Объектив


Объектив фотокамеры представляет собой весьма сложную конструкцию. Как правило, он состоит из целого ряда стеклянных линз, преломляющих и фокусирующих свет, поступающий в объектив. Благодаря этому увеличивается изображение снимаемой сцены и осуществляется фокусировка на конкретной точке. Подробнее об объективах вы узнаете из последующих уроков.

Видоискатель и экран ЖКИ

Видоискатель позволяет видеть изображение в момент его съемки и некоторые из параметров съемки, и представляет собой небольшое окно, в которое наблюдается снимаемая сцена. С его помощью уточняется композиция непосредственно перед съемкой.

Экран ЖКИ обеспечивает предварительный просмотр снимков перед их получением, а также последующий просмотр и анализ только что сделанных снимков относительно правильности установленной экспозиции и композиции либо для показа их окружающим. Кроме того, на экране ЖКИ могут быть просмотрены любые сделанные ранее снимки.

В цифровых фотокамерах экран ЖКИ также может выполнять функцию видоискателя. Вместо того, чтобы подносить фотокамеру к глазу для составления композиции снимаемой сцены, подготовить ее к съемке можно в любом положении, наблюдая на экране ЖКИ изображение еще до того, как оно будет зафиксировано. Один из недостатков экранов ЖКИ заключается в высоком потреблении энергии от батареи питания фотокамеры. Кроме того, просматривать изображения на экране ЖКИ в солнечный день на улице практически невозможно.


Несмотря на все перечисленные выше преимущества экрана ЖКИ, в цифровой фотокамере иногда полезным оказывается и видоискатель. В частности, когда заряд батареи питания на исходе и поэтому нецелесообразно расходовать драгоценную энергию на питание экрана ЖКИ. Как бы там ни было, но видоискатель по-прежнему служит удобной альтернативой экрану ЖКИ при составлении композиции фотографии.
Что же касается зеркальных цифровых фотокамер, то видоискатель и экран ЖКИ показывают одно и то же изображение, поскольку в этом случае для проецирования изображения из объектива в видоискатель используются зеркала. В компактных цифровых фотокамерах видоискатель служит в качестве простого окна, в которое видно снимаемую сцену, а не изображение, проецируемое через объектив для предварительного просмотра. Но поскольку видоискатель находится не в том месте, где и объектив, наблюдаемая в него перспектива оказывается несколько иной.

Затвор

Затвор представляет собой сложный механизм, точно управляющий продолжительностью прохождения света через объектив к пленке или цифровому чувствительному элементу, расположенному на задней стенке корпуса фотокамеры.

В цифровой фотокамере затвор в традиционном смысле может и не понадобиться, что зависит от типа используемого датчика изображения. Так как датчик изображения цифровой фотокамеры является электронным прибором, а не светочувствительным химическим веществом, он может включаться или выключаться электронным путем. Следовательно, необходимость в наличии механического затвора, управляющего поступлением света в фотокамеру, отпадает. Тем не менее для некоторых типов фотокамер затвор все же требуется, хотя во многих моделях цифровых фотокамер механический затвор не применяется.


Независимо от наличия или отсутствия механического затвора в цифровой фотокамере по-прежнему необходим механизм для управления экспонированием изображения, а также кнопка спуска затвора. При нажатии кнопки спуска затвора активизируется целый ряд действий, приводящих в итоге к получению окончательного изображения. Прежде всего необходимо зарядить датчик изображения, чтобы подготовить его к восприятию света из объектива.

Кнопки для настройки фотокамеры


На корпусе камеры имеется множество кнопок, рычажков, дисков, назначение которых лучше всего описано в инструкции к вашей фотокамере. Большинство из них служат для подготовки фотокамеры к съемке, ее настройки и непосредственно съемки.

К ним относятся: установка режима автоматической фокусировки, выбор подходящего баланса белого для обеспечения правильной передачи цветов снимаемой сцены в зависимости от вида используемого освещения, выбор режима экспозиции и т.д. Подробнее об этих и других параметрах вы узнаете из последующих уроков.

Датчик изображения

Датчик изображения состоит из миллионов отдельных светочувствительных пикселей. В этих пикселях, по сути, выполняется преобразование света в электрическое напряжение.

Подробнее о датчиках изображения вы узнаете из нашего следующего урока.

Встроенная вспышка

Встроенная вспышка есть в большинстве моделей цифровых фотокамер. Безусловно, это очень удобно, поскольку света в окружающих условиях зачастую не хватает. С другой стороны, вспышки, встроенные во многие фотокамеры, далеко не всегда оказываются практичными. Отчасти это связано с отсутствием контроля встроенной вспышки. Ведь в большинстве моделей цифровых фотокамер нельзя регулировать мощность встроенной вспышки, и поэтому при оценке уровня освещения приходится полностью полагаться на фотокамеру.

Для установки на фотокамеру внешней вспышки и другого необходимого оборудования (видоискателя при его отсутствии в камере, микрофона и т.д.) служит разъем "горячий башмак".

Носители цифровой информации

В цифровой фотокамере каждое зафиксированное изображение записывается на карту-носитель цифровой информации. В какой-то степени эта карта заменяет пленку (и поэтому иногда называется цифровой пленкой), однако у нее есть свои особенности.


Носители цифровой информации бывают самых разных форм и размеров: от формата книги до величины пластинки жевательной резинки и даже меньше. А в некоторых даже имеется возможность использования нескольких типов носителей, что дает дополнительные удобства.

Питание цифрового фотоаппарата


В качестве источника питания в цифровых фотоаппаратах наиболее часто применяются перезаряжаемые элементы - аккумуляторы. По размерам корпуса элементы подразделяются на несколько типов. В цифровой съемочной технике применяются элементы формата ААА и АА (говоря проще "самые тонкие" и "тонкие батарейки") или имеется фирменный, не совместимый с камерами других производителей, конструктив. Размещаются элементы питания в специальном отсеке камеры, где иногда некоторые ищут кнопку "шедевр" :))).


В зеркальных и некоторых беззеркальных фотокамерах со сменной оптикой применяются батарейные блоки, где размещены несколько аккумуляторов, что значительно увеличивает время автономной работы фотоаппарата.

Итоги занятия:

Итак, мы рассмотрели основные элементы конструкции цифровой фотокамеры. Очень важным предметом, который часто забывают изучить, а иногда просто теряют, является руководство по фотокамере.

Анализируя поисковые запросы, которые приводят посетителей на наш сайт, констатирую, что вопросов "как включить" какую либо функцию камеры очень много. Для того чтобы максимально использовать возможности вашей фотокамеры, необходимо внимательно прочитать прилагаемое к ней руководство, что пользователи довольно часто ленятся делать, полагаясь на свои способности разбираться в новой аппаратуре по ходу дела. Как показывает практика - не разберетесь или станете разбираться в самый неподходящий момент.

Это и есть ваше первое практическое задание - внимательно изучить руководство (или инструкцию) по эксплуатации вашей фотокамеры.

На вопросы по теме первого урока, по изложенному материалу и по практическому заданию вы можете задать на форуме сайта.

В следующем уроке №2: Типы фотокамер. Основные характеристики современных фотоаппаратов. Узнаем подробнее о сенсорах. Поговорим о мегапикселях. Расскажем, как выбрать фотокамеру.

Если раньше фотоаппараты были доступны только профессионалам, которые имеют определенные навыки и знания по использованию данной техники, то сейчас ими пользуются все желающие. Рынок цифровой электроники пестрит разнообразием моделей, отличающихся по функциям, характеристикам и, конечно же, стоимости. Несмотря на богатый ассортимент, все устройства имеют одинаковые основные части.

Устройство

Основная конструкция фотокамеры

Зеркальные цифровые модели, которые сейчас доступны каждому покупателю, считаются отдельным видом техники. Они обладают усовершенствованной конструкцией, за счет чего получили большой набор полезных функций. На основе стандартной модели можно продемонстрировать, из чего состоит фотоаппарат.



Мы рассмотрели основные составные части, однако без остальных деталей работа оборудования будет существенно ограничена или вовсе невозможна.

  • Вспышка. Дополнительный источник света.
  • Аккумулятор. Источник питания.
  • ЖК-монитор. Экран для кадрирования, а также настройки фотоаппарата и управления его опциями.
  • Набор датчиков.
  • Карта памяти. Устройство для хранения информации (снимков и видео).

Чтобы наглядно ознакомиться с конструкцией цифровой фотокамеры, изучите следующую схему. На ней указаны все составляющие аппарата, а также продемонстрирован ход лучей в оптической системе.

Принцип работы

Каждому новичку, который только начинает свое знакомство с фототехникой, интересно узнать подробности о ее работе. Многие пользователи не имеют понятия, как работает фотоаппарат.

Узнаем, что же происходит во время того, как вы делаете снимок.

  1. При выборе автоматического режима работы (или автофокусировки) фотоаппарат самостоятельно настраивает четкость изображения.
  2. После этого происходит стабилизация картинки, тут в работу включается специальный элемент – оптический стабилизатор.
  3. Помните, что в вышеуказанном режиме техника самостоятельно подбирает экспозицию (баланс белого, светочувствительность, параметры диафрагмы и время выдержки).
  4. Далее происходит подъем зеркала и затвора.
  5. Лучи света проникают в объектив, проходят через систему линз. В результате на светочувствительной матрице формируется фотография.
  6. Процессор считывает полученные данные и переводит их в цифровой код. Фотография в формате файла сохраняется.
  7. Затвор закрывается, зеркало встает на изначальную позицию.

Как устроены детали?

Структура цифрового фотоаппарата включает множество элементов, некоторые из которых мы рассмотрим подробнее.

Объектив

Первая составляющая, которую мы рассмотрим, является оптической системой. Объектив состоит из специальных линз и их оправ. При изготовлении дорогостоящих моделей используется стекло, а в бюджетных моделях часто встречается пластик. Чтобы из световых лучей получилось изображение, они должны пройти через линзы и достигнуть матрицы.

При использовании качественного оборудования фотографии получаются четкими (резкими).

Профессионалы выбирают объективы с учетом их основных технических характеристик.



Вспышка

Вспышка активно используется не только при студийной съемке, но и при работе на улице. Это источник света, который всегда под рукой. Основной составляющей данной части конструкции является специальная импульсная ксеноновая лампа. Внешне она выглядит как стеклянная трубка. На ее концах размещены электроды. Также используется зажигательный электрод.

Есть несколько разновидностей вспышек.

  • Встроенные модели являются частью корпуса фотоаппарата. Профессиональные фотографы их не используют из-за недостаточной мощности и резких теней. Также при их использовании картинка может получаться плоской. Такие вспышки используются, чтобы смягчить тени при ярком и естественном освещении.
  • Макро. Такие варианты разработаны специально для макросъемки. Внешне они имеются форму кольца. Для использования их устанавливают на объектив фотоаппарата.
  • Закрепленные. Вспышки этого вида можно настраивать вручную или выбирать автоматический режим. Они намного мощнее встроенных вариантов.
  • Неприкрепленные. Для работы с таким видом оборудования нужны специальные штативы. Это крупные модели.



Затвор

Во время срабатывания затвора слышен характерный щелчок. Он находится между матрицей и зеркалом, внутри устройства. Его назначение – дозирование света. Наверняка вы слышали о таком параметре, как выдержка. Это отрезок времени, на протяжении которого затвор остается открытым. В течение всего нескольких долей секунд происходит экспонирование.

При производстве современных фотоаппаратов используются следующие виды:

В первом случае чаще всего используются механические элементы. Они могут быть размещены по вертикали или горизонтали. Для изготовления затворов выбирают плотный и светонепроницаемый материал. Главные характеристики затворов – скорость и лаг. Для опытных специалистов каждая техническая характеристика играет существенную роль.

Процесс срабатывания затвора требует долю секунды, после чего он возвращается в исходное состояние.

Второй вариант представляет собой специальную систему регулирования экспозиции. Техника сама регулирует световой поток, используя определенный принцип действия. При наличии электронного затвора от этого элемента используется только название, сам элемент – отсутствует.

Заметка: сейчас можно найти фотоаппараты, которые оснащены сразу двумя видами затворов. В зависимости от необходимого эффекта на фотографии используется тот или иной вариант. Механический элемент часто применяется в качестве защиты светочувствительной матрицы от частиц пыли.



Матрица

На смену пленке пришла матрица. С появлением цифровой фотографии отпала необходимость считать количество сделанных фотографий, так как запас органичен только объемом карты памяти. А при необходимости цифровой носитель можно очистить. Матрицы, используемые при изготовлении зеркалок, представляют собой цифро-аналоговую или аналоговую микросхему. Данный элемент оснащен фотосенсорами.

Качество и модель матрицы существенно влияют на стоимость техники, а также на фото и видеоматериала. Как только лучи света доходят до матрицы, энергия от них переходит в электрический заряд. Иными словами, это преобразователь полученных данных в цифровой код, из которого и состоит изображение.

При выборе фотоаппарата рекомендуется обращать внимание на следующие характеристики матрицы:

  • разрешение – чем выше, тем детальнее и четче изображение;
  • размеры – оборудование премиум-класса оснащают матрицей крупного размера;
  • чувствительность к свету (ISO);
  • отношение сигнал/шум.



Теперь рассмотрим последние три параметра подробнее.

  • Первый пункт указывает на число светочувствительных элементов. Современные производители используют обозначение – мегапиксели. Чтобы точно передавать мелкие элементы на фотографии, данный параметр должен быть высоким.
  • При измерении размеров светочувствительного элемента используется диагональ. Данную характеристику выбирают по аналогии с вышеуказанной. Чем больше размеры, тем лучше для фотографа. Большие размеры минимизируют шум на изображении. Востребованный показатель варьируется от 1/1,8 до 1/3,2 дюйма.
  • Последний параметр обозначается аббревиатурой ISO. Большинство моделей современных фотокамер работают в пределах от 50 до 3200. Высокая светочувствительность позволяется получать резкие и детализированные снимки в условиях низкой освещенности, а низкое значение выбирают, чтобы сократить избыток света.



Особенности строения разных моделей

Мы разобрались в устройстве современного фотоаппарата. Несмотря на большое разнообразие моделей, все образцы работают по одному принципу, и при их сборке используются одинаковые составляющие. Однако до появления цифрового оборудования фотографы использовали пленочные модели.

Однообъективный пленочный фотоаппарат активно использовался мастерами фотографии того времени.

  • объектив;
  • система зеркал;
  • затвор;
  • пленка;
  • линза;
  • стекло с матовым покрытием;
  • окуляр;
  • пентазеркало.



В следующем видео вы узнаете, как настроить фотоаппарат правильно.

Читайте также: